Алюминий металл 20 века

Обновлено: 11.05.2024

За один урок очень сложно рассказать об элементе, строении его атома, свойствах веществ, в состав которых он входит, получении и применении этих веществ. Предлагаем разработку урока, посвященного алюминию. Этот материал можно использовать и в 11 классе при повторении темы «Металлы».

Статья сопровождается авторской презентацией.

Оборудование и реактивы: Диаграмма «Распространение элементов в земной коре», «Периодическая система химических элементов», инструктивные карты (для каждого ученика), пробирки, штатив пробирочный, спиртовка, спички, пробиркодержатель, алюминий, образцы соединений алюминий, коллекция сплавов на основе алюминия, серная, соляная кислоты (разбавленные растворы), горячая вода в стакане.

Задачи:

  • Образовательные: сформировать знания о химическом элементе алюминии, физических и характерных химических свойствах простого вещества алюминия, сформировать понятие о составе и свойствах оксидов и гидроскидов алюминия.
  • Развивающие: продолжать формирование умений устанавливать взаимосвязь между составом, строением и свойствами веществ, способствовать развитию исследовательских навыков, развивать представление о познаваемости и единстве окружающего мира путем изучения информации об алюминии, его соединениях, нахождении в природе, продолжать формировать умения работать в темпе, экономя время урока.
  • Воспитательные: воспитывать чувство гордости за свою Родину как самую богатую природными ресурсами страну, культуру учебного труда, аккуратность, внимание про проведении эксперимента.

Цели:

  1. Сформировать представление о физических и химических свойствах алюминия.
  2. Развивать умения учащихся прогнозировать свойства вещества на основе знаний о его строении.
  3. Развивать умения проводить анализ, сравнение, обобщение данных.

Ход урока

I. Организационный момент

II. Побуждение к изучению темы

В 13-ой квартире живу, известный в мире
Как проводник прекрасный,
пластичен, серебрист.
Еще по части сплавов
Завоевал я славу, -
И в этом деле я крутой специалист.
Вот мчусь я словно ветер
В космической ракете.
Спускаюсь в бездну моря –
Там знают все меня.
По внешности я видный,
Хоть плёнкою оксидной
Покрыт: она мне прочная броня.
Я мягкий, легкий, ковкий,
Сверкаю в упаковке
(Обернуты конфеты блестящею фольгой):
Для плиток шоколада
Меня немало надо,
А раньше был я очень дорогой.

Учитель: Итак, мы последуем за словами этого стихотворения и рассмотрим свойства этого чудесного металла, алюминия.

III. Положение алюминия в таблице Д.И. Менделеева. Строение атома, проявляемые степени окисления.

Элемент алюминий расположен в III группе, главное «А» подгруппе, 3 периоде периодической системы, порядковый номер 13, относительная атомная масса Ar(Al)=27. Его соседом слева в таблице является магний – типичный металл, а справа – кремний, который уже не является металлом. Следовательно, алюминий должен проявлять свойства некоторого промежуточного характера и его соединения являются амфотерными, что мы докажем химическими реакциями в ходе лабораторной работы.

Основное состояние
1s 2 2s 2 2p 6 3s 2 3p 1
Возбужденное состояние
1s 2 2s 2 2p 6 3s 1 3p 2

Алюминий проявляет в соединениях степень окисления +3 : Al 0 – 3 e - —> Al +3 (восстановитель)

IV. Нахождение в природе

По распространенности в природе алюминий занимает первое место среди металлов и третье место среди элементов, уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры.

В природе алюминий встречается только в соединениях (минералах): коллекция соединений алюминия.

Некоторые из них:

Интересные факты из истории открытия алюминия, которые нашли и подготовили ученики.

1-й ученик: В 1855 году на Всемирной выставке в Париже было представлено «серебро из глины», которое произвело большую сенсацию. Это были пластины и слитки из алюминия, полученного французским ученым Сент-Клер Девилем. К чести Девиля, он поступил как подобает настоящему ученому: из алюминия собственного производства он отчеканил медаль с портретом Фридриха Велера и датой «1827» и послал ее в подарок немецкому ученому, который смог выделить крупинки этого металла. Впервые несколько килограммов металлического алюминия получил в 1825 году датский физик Г.Эрстед действием амальгамы калия на хлорид алюминия, однако тогда не удалось точно установить, какой продукт был получен.

2-й ученик: В пробе лунного грунта, взятой автоматической станцией «Луна-20» с лунной поверхности, впервые был обнаружен самородный алюминий. При исследовании лунной фракции были выявлены три крохотные частицы алюминия. Это плоские, слегка удлиненные крупицы с матовой поверхностью и серебристо-серые в свежем изломе. Алюминий – лунный камень. В земных же условиях природный чистый алюминий в столь миниатюрном виде так и не найден.

V. Физические свойства алюминия

Учитель: Перейдем к изучению простого вещества алюминия.

Лабораторная работа «Физические свойства алюминия».

  1. Рассмотрите алюминиевую пластинку.
  2. Определите агрегатное состояние вещества алюминия.
  3. Какого цвета пластинка?
  4. Определите, имеет ли данная пластинка блеск.
  5. Опустите пластинку на ¼ ее длины в стакан с горячей водой на 10-15 секунд. Вытащите пластинку из воды, протрите салфеткой и определите, обладает ли алюминий теплопроводностью.
  6. Возьмите в руки алюминиевую фольгу. Определите, обладает ли алюминий пластичностью. Легкий ли это металл?
  7. Поместите в стакан с холодной водой алюминиевую пластинку, проверните ее несколько раз. Наблюдается ли растворение алюминия?
  8. Кратко запишите свои наблюдения согласно плану:
    • агрегатное состояние;
    • цвет;
    • блеск;
    • теплопроводность;
    • пластичность;
    • растворимость в воде.

На доске выписаны некоторые дополнительные сведения о свойствах алюминия:

  • легкий, p = 2,7 г/см 3 ;
  • легкоплавкий, t пл = 660°С
  • электропроводный (лишь два металла – серебро и медь – имеют более высокие показатели)

Хотя алюминий является активным металлом, в воде он не растворяется, так как его поверхность покрыта плотной непористой оксидной пленкой.

VI. Химические свойства алюминия

Учитель: Как всякий металл в химических реакциях алюминий проявляет восстановительные свойства.

Реакции с простыми веществами:

2Al + 3S = Al2S3 (сульфид алюминия)

2Al + N2 = 2AlN (нитрид алюминия)

Al + P = AlP (фосфид алюминия)

4Al + 3С = Al4C3 (карбид алюминия)

2Al + 3I2 = 2AlI3 (йодид алюминия)

В виде стружек или порошка он ярко горит на воздухе, выделяя большое количество теплоты:

Реакции со сложными веществами:

Взаимодействие с водой:

без оксидной пленки

Взаимодействие с оксидами металлов:

Алюминий хороший восстановитель, так как является одним из активных металлов. Стоит в ряду активности сразу после щелочно-земельных металлов. Поэтому восстанавливает металлы из их оксидов. Такая реакция – алюмотермия – используется для получения чистых редких металлов, например, таких, как вольфрам, ваннадий и другие.

Лабораторная работа учащихся выполняется в течение 10-15 минут по инструктивным картам.

  1. Возьмите две пробирки. В каждую положите по кусочку алюминия. Прилейте в одну из них 1-2 мл раствора соляной кислоты, а в другую – столько же раствора разбавленной серной кислоты. Пробирки слегка нагрейте. Что наблюдаете? Запишите уравнение соответствующих реакций.
  2. В пробирку поместите кусочек алюминия и прилейте раствор щелочи. Содержимое пробирки нагрейте. Что происходит? Запишите уравнение реакции.

Работа с книгой: раздел «Химические свойства алюминия». Инструктивные карты сдаются в конце урока.

Вывод: алюминий, а значит, и его соединения проявляют амфотерные свойства.

VII. Получение алюминия

1) Современный рентабельный способ получения алюминия был изобретен американцем Холлом и французом Эру в 1886 году. Он заключается в электролизе раствора оксида алюминия в расплавленном криолите. Расплавленный криолит Na3AlF6 растворяет Al2O3 как вода растворяет сахар.

Электролиз «раствора» оксида алюминия в расплавленном криолите происходит так, как если бы криолит был только растворителем, а оксид алюминия – электролитом.

В настоящее время по объему производства алюминий прочно занимает среди металлов второе место после железа и его сплавов. Для выплавки 1 тонны алюминия требуется 13-17 тысяч кВт/час электрической энергии, поэтому алюминиевые заводы расположены вблизи крупных ГЭС.

В английской «Энциклопедии для мальчиков и девочек» статья об алюминии начинается следующими словами: «23 февраля 1886 года в истории цивилизации начался новый металлический век – век алюминия. В этот день Чарльз Холл, 22-летний химик, явился в лабораторию своего первого учителя с дюжиной маленьких шариков серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять этот металл дешево и в больших количествах». Так, Холл сделался основоположником американской алюминиевой промышленности и англосаксонским национальным героем как человек, сделавший из науки великолепный бизнес.

VII. Применение алюминия

Учитель демонстрирует презентацию по алюминиевым сплавам. Ученики рассматривают коллекцию сплавов на основе алюминия.

Применение в технике: крупным потребителем алюминия является авиационная промышленность – самолет на 2/3 состоит из алюминия и его сплавов. Самолет из стали оказался бы слишком тяжелым и смог бы нести гораздо меньше пассажиров, поэтому алюминий называют «крылатым» металлом. Из алюминия изготавливают кабели и провода: при одинаковой электрической проводимости их масса в два раза меньше, чем у соответствующих изделий из меди.

Учитывая коррозионную устойчивость алюминия, из него изготавливают детали аппаратов и тару для азотной кислоты. Порошок алюминия является основой при изготовлении серебристой краски для защиты железных изделий от коррозии, а также для отражения тепловых лучей: такой краской покрывают нефтехранилища, костюмы пожарных.

Алюминий широко применяется в таких областях, как ядерная энергетика, полупроводниковая электроника, радиолокация. Его используют для защиты металлических поверхностей от химической и атмосферной коррозии. Отражающие поверхности нагревательных и осветительных рефлекторов и зеркал своим существованием также часто обязаны алюминию – его высокой светоотражающей способности.

Алюминий применяется и в металлургической отрасли промышленности в качестве восстановителя при получении некоторых метталов аллюмотермическими методами, для сварки стальных деталей или раскисления стали. Применяется алюминий и его сплавы также в промышленном и гражданском строительстве, при изготовлении каркасов зданий, ферм, оконных рам, лестниц и других конструкций.

Оксид алюминия используется для получения алюминия, а также как огнеупорный материал.

Гидроксид алюминия – основной компонент всем известных лекарств (маалокса, альмагеля), которые понижают кислотность желудочного сока.

Учитель: Итак, мы сегодня познакомились с чудесным металлом:

Из глины я обыкновенной,
Но я на редкость современный.
Я не боюсь электротока,
Бесстрашно в воздухе лечу,
Служу на кухне я без срока –
Мне все задачи по плечу.
Горжусь своим я именем:
Зовусь я … (Алюминием).

АЛЮМИНИЙ — МЕТАЛЛ XX ВЕКА

Алюминий — один из интереснейших химических элементов. Интересен он не только тем, что неожиданно быстро и победоносно, в течение нескольких десятков лет, вошел в нашу жизнь, в быт, в технику, в важнейшие отрасли народного хозяйства, не только тем, что это тот легкий металл, который вместе с магнием создал крылатую мощь самолета. Большой интерес представляют его свойства и прежде всего геохимическая роль. Дело в том, что алюминий, с которым культурное человечество познакомилось так недавно, является одним из важнейших, самых распространенных химических элементов.

Мы с вами отлично знаем, что под покровом глин, песков, образовавшихся в разное время в результате выветривания и разрушения массивных горных пород, находится сплошная, облегающая весь земной шар, каменная оболочка Земли, или земная кора.

Мощность этой каменной оболочки, ее толщина не менее сотни километров, а может быть, как сейчас начинают предполагать, и значительно больше. Эта оболочка на глубине постепенно переходит в другую — рудную, содержащую железо и другие металлы, и, наконец, в центре Земли находится, по-видимому, железное ядро.

Каменная оболочка образует на поверхности Земли огромные выступы — материковые массы, или континенты. На них, в свою очередь, образовались складки в виде длинных цепей гор.

Каменная оболочка Земли, составляющая основание континентов и их горных цепей, слагается из алюмосиликатов и силикатов. Алюмосиликаты состоят, как это видно по их названию, из кремния, алюминия и кислорода. Вот почему каменную оболочку часто называют «сиаль» — SiAl,— по сочетанию первых слогов латинских названий кремния — Silicium — и алюминия — Aluminium.

Эта оболочка, в состав которой главным образом входит гранит, по весу состоит примерно !лз 50% кислорода, 25% кремния и 10% алюминия. Таким образом, алюминий но распространению занимает на Земле третье место среди химических элементов и первое место среди металлов. Его на Земле больше, чем железа.

Алюминий, кремний и кислород вместе являются самыми главными элементами, из которых построена земная кора, и в каменной оболочке Земли они образуют разнообразные минералы. Эти минералы являются такого рода соединениями атомов, у которых в центре находится либо атом кремния, либо атом алюминия, а вокруг них правильно в четырех углах, образуя фигуру тетраэдра, располагаются атомы кислорода.

Таким образом, наряду с кремнекислородными возникают алюмокислородные тетраэдры. При этом роль алюминия бывает двоякой: либо он, подобно другим металлам, располагается между кремнекислородными тетраэдрами, связывая их друг с другом, либо он становится в некоторых тетраэдрах на место кремния.

Вот из этих-то тетраэдров кремния и алюминия путем сочетания их между собой я образуется множество важнейших минералов земной коры, объединенных под общим названием алюмосиликатов. С первого взгляда сложный рисунок расположения атомов алюминия, кремния и кислорода напоминает яам тонкие кружева или узоры ковров. Эта картина могла быть установлена лишь при помощи рентгеновских лучей, которые как бы сфотографировали внутреннее строение минералов.

Вспомним, какими серыми и однообразными казались нам камни в далеком детстве и какая сложная и разнообразная картина рисуется нам, когда мы проникаем в глубь их структуры.

Распространенность некоторых алюмосиликатов колоссальна. Достаточно сказать, что более половины земной коры сложено минералами, носящими название нолевых шпатов. Они входят в состав гранитов, гнейсов и других каменных пород, охватывающих землю как бы сплошным каменным панцирем и выступающих в виде могучих горных цепей.

В результате выветривания полевых шпатов на земной поверхности в ходе тысячелетий откладываются, грандиозные скопления глин, состоящих на 15—20% из алюминия. Алюминий, открытый в составе этих повсеместно распространенных пород, даже был назван глинием.

Безводную окись алюминия (АЬОз) мы встречаем в виде минерала корунда, отличающегося замечательной твердостью, а иногда и необычайной красотой. Прозрачные разности глинозема, где к алюминию и кислороду примешиваются лишь крошечные количества элементов — красителей — хрома, железа, титана, принадлежат к числу первоклассных красавцев- самоцветов. Какое разнообразие цветов и богатство красок создает в одном и том же глиноземе ничтожная примесь того или иного вещества! Это сверкающий яркими тонами красный рубин и синий сапфир, пленявшие человека с незапамятных времен. Сколько сказок связано с этими камнями! Издавна служат человеку и менее чистые, непрозрачные, окрашенные в бурые, серые, синеватые, красноватые цвета кристаллы корунда, по своей твердости уступающие лишь алмазу.

С их помощью мы обрабатываем разные твердые материалы, в том числе блестящую сталь инструментов, оружия, станков, машин.

Мелкие кристаллики того же корунда в смеси с магнетитом и другими минералами,— так называемый наждак — хорошо известны каждому; вы, вероятно, не раз чистили наждаком свой перочинный ножик!

Корунд мог бы, конечно, служить легким источником получения металлического алюминия, но он слишком ценен сам по себе, и его мало в природе.

С незапамятных времен, еще на заре человеческой культуры, с каменного века и до наших дней человек широко использовал граниты, базальты, порфиры, глины и другие породы из алюмосиликатов, строя из них целые города, создавая здания, произведения искусства, утварь, получая керамику, фаянс, фарфор.

Но в течение тысячелетий человек и не подозревал благородных и чудесных свойств алюминия — металла, который был скрыт в этих породах.

Алюминий никогда и нигде в природе не встречается в металлическом виде, он всегда находится в различных соединениях, совершенно отличных по свойствам и виду от металла алюминия.

И нужен был гений человека, его упорный труд, чтобы извлечь и вызвать к жизни этот чудесный металл.

Впервые удалось выделить небольшое количество блестящего серебристого металла около 125 лет назад. Й никто тогда не думал, что он вообще будет играть какую-то роль в жизни человека, тем более, что получение его было очень трудным. Но вот в начале прошлого века ряду ученых удалось путем электролиза выделить алюминий на катоде под коркой шлаков из расплавленных при высоких температурах соединений алюминия. Это был чистый серебристый металл — «серебро из глины», как говорили в то время.

Этот метод получения алюминия перешел на заводы, и металл быстро стал завоевывать себе широкое применение. Он имеет цвет, напоминающий серебро. А свойства его действительно оказались удивительными.

Производство металлического алюминия основано на двух самостоятельных процессах. Прежде всего из боксита после довольно сложной обработки извлекается чистая безводная окись алюминия — глинозем. Затем окись алюминия подвергается электролизу в специальных ваннах, выложенных графитовыми плитами.

Порошок глинозема загружается в эти ванны в смеси с порошком криолита. При включении мощного электрического тока развивается высокая температура (около 1000°); криолит плавится и растворяет в себе глинозем, который в дальнейшем разлагается током на алюминий и кислород. Дно ванны служит при этом катодом (отрицательным полюсом), и на нем собирается расплавленный алюминий. Через особый кран его выпускают и разливают по формам, где он и застывает в виде блестящих серебристых брусков.

Кое-какие из свойств алюминия хорошо известны всем. Это очень легкий металл, почти в три раза легче железа. Он очень тягуч и при этом достаточно прочен: его можно вытягивать в проволоку, плющить в тончайшие листы. Не менее замечательны и его химические свойства. С одной стороны, он как будто не боится окисления; это мы знаем по поведению алюминиевой посуды, кастрюлек, сковородок, бидонов. А между тем сродство его с кислородом очень велико. Это кажущееся противоречие отметил еще наш великий химик Д. И. Менделеев. Дело в том, что серебряно-блестящий после выплавки алюминий на воздухе покрывается тусклой пленочкой окиси, которая предохраняет его от дальнейшего окисления. Не всякому металлу дана такая способность самозащиты. Окись железа, например, хорошо всем известная ржавчина, нисколько не мешает дальнейшему разрушению металла: она слишком рыхла и легко проницаема для воздуха и ®оды. Напротив, тоненькая пленочка окиси, одевающей алюминий, очень плотна, эластична и служит ему надежным покровом.

При нагревании алюминий жадно соединяется с кислородом, превращаясь в окись алюминия, и выделяет при этом огромное количество тепла. Это свойство алюминия выделять тепло при сгорании было использовано в технике для выплавки других металлов из их окисей путем смешения с порошком металлического алюминия. В этом процессе алюминотермии

металлический алюминий отбирает кислород от окисей других металлов и восстанавливает их.

Если вы смешаете, например, порошок окиси железа с порошком алюминия и подожжете эту смесь лентой магния, на ваших глазах разовьется бурная реакция с выделением огромного количества тепла, и температура поднимется до 3 000°. Вытесненное алюминием железо при этой температуре плавится, а образовавшаяся окись алюминия всплывает на его поверхность в виде шлака. Человек использовал эту активность алюминия для получения некоторых тугоплавких и технически ценных металлов.

Таким путем выплавляют металлический титан, ванадий, хром, марганец и другие металлы. Так как при алюминотермии развивается высокая температура, то смесь окиси железа с алюминием — так называемый термит — применяют для сварки стали. Каждый из вас видел, вероятно, как это делается, например, при сварке трамвайных рельсов. Расплавляемое при горении термита железо стекает на соединенные концы рельсов и сваривает их.

Вряд ли можно назвать много элементов, которые сделали бы столь быструю и блестящую карьеру, как алюминий!

Алюминий стал стремительно проникать в автомобильную, машиностроительную и другие области промышленности, во многих случаях заменяя сталь и железо. В военном судостроении его использование произвело переворот, позволив создать, например, «карманные линкоры» (суда размером с легкий крейсер и мощностью дредноута).

Человек научился получать это «серебро» из природных минералов в огромных масштабах. И «серебро из глины» позволило человеку окончательно покорить воздушную стихию.

Алюминий или его легкие сплавы как нельзя лучше подходят для постройки жестких аэростатов, фюзеляжей, крыльев или цельнометаллических самолетов.

Эта новая промышленность, которая так широко использовала алюминий, выросла с чудесной быстротой на наших глазах.

Когда мы видим летающий над нами самолет, вспомним, что 69% его веса без мотора приходится на алюминий и его- сплавы, и что даже в авиационном моторе вес алюминия и магния — двух легчайших металлов — достигает 25%.

Одновременно с грандиозным потреблением в тяжелой промышленности, с постройкой цельноалюминиевых поездов, с затратой алюминия на машиностроение и особенно на авиационную промышленность, сотни тысяч тонн алюминия расходуются на алюминиевые провода и детали для электрической промышленности.

Но и этим не исчерпывается применение этого металла.

Добавим еще отражательные зеркала прожекторов, ответственные части спарядов и пулеметных лент, осветительные ракеты, алюминиевый порошок в смеси с окисью железа — в зажигательных бомбах. Вспомним о колоссальном значении искусственного кристаллического глинозема (электрокорунда, алундума), получаемого в настоящее время из тех же бокситов и применяемого в так называемом абразивном деле, главным образом в обработке металлов.

Кристаллизуя чистую окись алюминия с добавкой красителей, мы получаем чудесные рубины и сапфиры, не уступающие природным ни по твердости, ни по красоте. Мы применяем их главным образом как не поддающиеся истиранию опорные камни в ответственных частях точных приборов: часовых механизмов, весов, электросчетчиков, гальванометроз и т. п.

Тонким порошком алюминия мы покрываем железо, получая своего рода алюминиевую жесть, не поддающуюся ржавчине. Этот же порошок служит для приготовления красивой литографской краски. А с недавнего времени его оценили и мастера знаменитого народного искусства — хохломской росписи по дереву. Алюминиевая пудра при помощи мягкой «куколки» наносится на пропитанную маслом поверхность предмета. Таким образом создается прелестный серебряный фон, по которому мастер выводит затем сложный цветистый узор росписи.

Почему мы называем алюминий металлом XX века?

Потому что его применение благодаря его замечательным свойствам растет и растет с каждым годом, а огромные запасы алюминия неисчерпаемы, и есть все основания считать, что алюминий сейчас входит в обиход человечества так же, как вошло в свое время железо.

Пройдут столетия, и наше время, возможно, будут называть алюминиевым веком!

Смотрите также:

Недаром алюминий называют металлом 20 века.
Чистый алюминий - довольно мягкий металл; из него делают электрические провода, детали конструкций, фольгу для пищевых продуктов, кухонную утварь и "серебряную" краску.

Каждый знает, что железо, медь, алюминий, золото и серебро относятся к металлам, что сталь - металлический
Смотрите также: "Очерки истории науки и техники" Альманах Эврика 84 Альманах Эврика 90 Тайны двадцатого века Знак Вопроса (Знание) Чудеса и Приключения.

История отрасли

Алюминий – один из самых молодых металлов, открытых человеком. В чистом виде в природе он не встречается, поэтому получить его удалось лишь в XIX веке, благодаря развитию химии и появлению электричества. За полтора века алюминий прошел невероятно интересный путь от драгоценного металла до материала, использующегося абсолютно в каждой
сфере деятельности людей.



В элементах орнамента гробниц китайских императоров III века н.э. использован алюминиевый сплав, содержащий алюминий, медь и марганец

Человечество сталкивалось с алюминием задолго до того, как этот металл был получен. В «Естественной истории» римского ученого Плиния Старшего говорится о легенде I века, в которой мастер дарит императору Тиберию чашу из неизвестного металла – похожую на серебряную, но при этом очень легкую .

Достаточно широко в древности применялись квасцы – соль на основе алюминия. Полководец Архелай обнаружил, что дерево практически не горит, если его выдержать в растворе квасцов – этим пользовались для защиты деревянных укреплений от поджогов. В античные времена квасцы применялись в медицине, при выделке кож, в качестве протравы при крашении тканей. В Европе, начиная с XVI века квасцы использовались повсеместно: в кожевенной промышленности в качестве дубильного средства, в целлюлозно-бумажной – для проклеивания бумаги, в медицине – в дерматологии, косметологии, стоматологии и офтальмологии.

Именно квасцам (по-латински – alumen) алюминий обязан своим именем. Его металлу дал английский химик Гемфри Дэви, который в 1808 году установил, что получить алюминий можно методом электролиза из глинозема (оксид алюминия), но подтвердить теорию практикой он не смог.


Это сделал датчанин Ханс Кристиан Эрстед в 1825 году. Правда, судя по всему, ему удалось получить не чистый металл, а некий сплав алюминия с элементами, участвовавшими в опытах. Ученый сообщил об открытии и прекратил эксперименты.

Его работу продолжил немецкий химик Фридрих Вёлер, который 22 октября 1827 года получил около 30 граммов алюминия в виде порошка. Ему понадобилось еще 18 лет непрерывных опытов, чтобы в 1845 году получить небольшие шарики застывшего расплавленного алюминия (корольки).



Открытие алюминиевой руды. В 1821 году геолог Пьер Бертье обнаружил во Франции залежи глинистой красноватой по роды. Свое название «боксит» (bauxite) порода получила по наименованию местности, где была найдена – Les Baux.



Открытый учеными химический метод получения алюминия довел до промышленного применения выдающийся французский химик и технолог Анри-Этьенн Сент-Клер Девиль. Он усовершенствовал метод Вёлера и в 1856 году совместно со своими партнерами организовал первое промышленное производство алюминия на заводе братьев Шарля и Александра Тиссье в Руане (Франция).

200 тонн

Получаемый металл был похож на серебро, был легким и при этом дорогим, поэтому в то время алюминий считался элитным материалом, предназначенным для изготовления украшений и предметов роскоши. Первыми продуктами из алюминия считаются медали с барельефами Наполеона III, который всячески поддерживал развитие производства алюминия, и Фридриха Вёлера, а также погремушка наследного принца Луи-Наполеона, выполненная из алюминия и золота.

Однако уже тогда Сент-Клер Девиль понимал, что будущее алюминия связано отнюдь не с ювелирным делом.



«Нет ничего труднее, чем заставить людей использовать новый металл. Предметы роскоши и украшения не могут служить единственной областью его применения. Я надеюсь, что настанет время, когда алюминий будет служить удовлетворению повседневных нужд».

Об алюминии

Лёгкий, прочный, стойкий к коррозии и функциональный – именно это сочетание качеств сделало алюминий главным конструкционным материалом нашего времени. Алюминий есть в домах, в которых мы живем, автомобилях, поездах и самолетах, на которых мы преодолеваем расстояния, в мобильных телефонах и компьютерах, на полках холодильников и в современных интерьерах. А ведь еще 200 лет назад об этом металле мало что было известно.

«То, что казалось несбыточным на протяжении веков, что вчера было лишь дерзновенной мечтой, сегодня становится реальной задачей, а завтра — свершением».

Сергей Павлович Королев
учёный, конструктор, основоположник практической космонавтики


Алюминий – серебристо-белый металл, 13-й элемент периодической таблицы Менделеева. Невероятно, но факт: алюминий – самый распространенный металл на Земле, на него приходится более 8% всей массы земной коры, и это третий по распространенности химический элемент на нашей планете после кислорода и кремния.

При этом алюминий не встречается в природе в чистом виде из-за своей высокой химической активности. Вот почему мы узнали о нем относительно недавно. Формально алюминий был получен лишь в 1824 году, и прошло еще полвека, прежде чем началось его промышленное производство.

Чаще всего в природе алюминий встречается в составе квасцов. Это минералы, объединяющие в себе две соли серной кислоты: одну на основе щелочного металла (лития, натрия, калия, рубидия или цезия), а другую – на основе металла третьей группы таблицы Менделеева, преимущественно алюминия.

Квасцы и сегодня применяют при очистке воды, в кулинарии, медицине, косметологии, в химической и других отраслях промышленности. Кстати, свое имя алюминий получил как раз благодаря квасцам, которые на латыни назывались alumen.

Рубины, сапфиры, изумруды и аквамарин являются минералами алюминия.
Первые два относятся к корундам – это оксид алюминия (Al2O3) в кристаллической форме. Он обладает природной прозрачностью, а по прочности уступает только алмазам. Пуленепробиваемые стекла, иллюминаторы в самолетах, экраны смартфонов производятся именно с применением сапфира.
А один из менее ценных минералов корунда – наждак используется как абразивный материал, в том числе для создания наждачной бумаги.


На сегодняшний день известно почти 300 различных соединений и минералов алюминия – от полевого шпата, являющегося основным породообразующим минералом на Земле, до рубина, сапфира или изумруда, уже не столь распространенных.

Ханс Кристиан Эрстед (1777–1851) – датский физик, почетный член Петербургской академии наук (1830). Родился в городе Рудкёрбинге в семье аптекаря. В 1797 году окончил Копенгагенский университет, в 1806 – стал профессором.

Но каким бы распространенным ни был алюминий, его открытие стало возможным только, когда в распоряжении ученых появился новый инструмент, позволяющий расщеплять сложные вещества на простые, – электрический ток.

И в 1824 году с помощью процесса электролиза датский физик Ханс Кристиан Эрстед получил алюминий. Он был загрязнен примесями калия и ртути, задействованных в химических реакциях, однако это был первый случай получения алюминия.

Используя электролиз, алюминий производят и в наши дни.

Сырьем для производства алюминия сегодня служит еще одна распространенная в природе алюминиевая руда – бокситы. Это глинистая горная порода, состоящая из разнообразных модификаций гидроксида алюминия с примесью оксидов железа, кремния, титана, серы, галлия, хрома, ванадия, карбонатных солей кальция, железа и магния – чуть ли не половины таблицы Менделеева. В среднем из 4-5 тонн бокситов производится 1 тонна алюминия.

Бокситы в 1821 году открыл геолог Пьер Бертье на юге Франции. Порода получила свое название в честь местности Ле-Бо (Les Baux), где была найдена. Около 90% мировых запасов бокситов сосредоточено в странах тропического и субтропического поясов – в Гвинее, Австралии, Вьетнаме, Бразилии, Индии и на Ямайке.


Из бокситов получают глинозем. Это оксид алюминия Al2O3, который имеет форму белого порошка и из которого путем электролиза на алюминиевых заводах производят металл.

Производство алюминия требует огромного количества электроэнергии. Для производства одной тонны металла необходимо около 15 МВт*ч энергии – столько потребляет 100-квартирный дом в течение целого месяца.Поэтому разумнее всего строить алюминиевые заводы поблизости от мощных и возобновляемых источников энергии. Самое оптимальное решение – гидроэлектростанции, представляющие самый мощный из всех видов «зеленой энергетики».

Алюминий имеет редкое сочетание ценных свойств. Это один из самых легких металлов в природе: он почти в три раза легче железа, но при этом прочен, чрезвычайно пластичен и не подвержен коррозии, так как его поверхность всегда покрыта тончайшей, но очень прочной оксидной пленкой. Он не магнитится, отлично проводит электрический ток и образует сплавы практически со всеми металлами.

Легкий

Прочный


Пластичный


Нет коррозии

Алюминий легко обрабатывается давлением, причем как в горячем, так и в холодном состоянии. Он поддается прокатке, волочению, штамповке. Алюминий не горит, не требует специальной окраски и не токсичен в отличие от пластика.

Очень высока ковкость алюминия: из него можно изготовить листы толщиной всего 4 микрона и тончайшую проволоку. А сверхтонкая алюминиевая фольга втрое тоньше человеческого волоса. Кроме того, по сравнению с другими металлами и материалами он более экономичен.

Высокая способность к образованию соединений с различными химическими элементами породила множество сплавов алюминия. Даже незначительная доля примесей существенно меняет характеристики металла и открывает новые сферы для его применения. Например, сочетание алюминия с кремнием и магнием в повседневной жизни можно встретить буквально на дороге – в форме литых колесных дисков, двигателей, в элементах шасси и других частей современного автомобиля. А если добавить в алюминиевый сплав цинк, то, возможно, вы сейчас держите его в руках, ведь именно этот сплав используется при производстве корпусов мобильных телефонов и планшетов. Тем временем ученые продолжают изобретать новые и новые алюминиевые сплавы.

Сегодня существование строительной, автомобильной, авиационной, космической, электротехнической, энергетической, пищевой и других отраслей промышленности невозможно без алюминия. Более того, именно этот металл стал символом прогресса – все новейшие электронные устройства, средства передвижения изготавливаются из алюминия.


Алюминий против меди

Если заменить всю медную проводку в автомобиле
на алюминиево-циркониевую, то его общий
вес уменьшится на 12 кг


По расчетам Международного института алюминия (IAI), в мире накопилось около 400 миллионов тонн алюминия в инфраструктуре, быту, транспорте.

Казалось бы, вышеперечисленный набор характеристик уже сам по себе достаточен для того, чтобы алюминий стал металлом приоритетного выбора в индустрии, однако есть еще одна, не менее значимая характеристика. Использование алюминия может быть бесконечно: этот металл и сплавы из него можно неоднократно переплавлять без утраты механических характеристик. Ученые подсчитали, что 1 кг собранных и сданных в переплавку алюминиевых банок позволяет сэкономить 8 кг боксита, 4 кг различных фторидов и 14 кВт/ч электроэнергии.

Около 75% алюминия, выпущенного за все время существования отрасли, используется до сих пор.

Алюминий

Алюминий

Алюминий – это пластичный и лёгкий металл белого цвета, покрытый серебристой матовой оксидной плёнкой. В периодической системе Д. И. Менделеева этот химический элемент обозначается, как Al (Aluminium) и находится в главной подгруппе III группы, третьего периода, под атомным номером 13. Купить алюминий вы можете на нашем сайте.

История открытия

В 16 веке знаменитый Парацельс сделал первый шаг к добыче алюминия. Из квасцов он выделил «квасцовую землю», которая содержала оксид неизвестного тогда металла. В 18 веке к этому эксперименту вернулся немецкий химик Андреас Маргграф. Оксид алюминия он назвал «alumina», что на латинском языке означает «вяжущий». На тот момент металл не пользовался популярностью, так как не был найден в чистом виде.
Долгие годы выделить чистый алюминий пытались английские, датские и немецкие учёные. В 1855 году в Париже на Всемирной выставке металл алюминий произвёл фурор. Из него делали только предметы роскоши и ювелирные украшения, так как металл был достаточно дорогим. В конце 19 века появился более современный и дешёвый метод получения алюминия. В 1911 году в Дюрене выпустили первую партию дюралюминия, названного в честь города. В 1919 из этого материала был создан первый самолёт.

Физические свойства

Металл алюминий характеризуется высокой электропроводностью, теплопроводностью, стойкостью к коррозии и морозу, пластичностью. Он хорошо поддаётся штамповке, ковке, волочению, прокатке. Алюминий хорошо сваривается различными видами сварки. Важным свойством является малая плотность около 2,7 г/см³. Температура плавления составляет около 660°С.
Механические, физико-химические и технологические свойства алюминия зависят от наличия и количества примесей, которые ухудшают свойства чистого металла. Основные естественные примеси – это кремний, железо, цинк, титан и медь.

По степени очистки различают алюминий высокой и технической чистоты. Практическое различие заключается в отличии коррозионной устойчивости к некоторым средам. Чем чище металл, тем он дороже. Технический алюминий используется для изготовления сплавов, проката и кабельно-проводниковой продукции. Металл высокой чистоты применяют в специальных целях.
По показателю электропроводности алюминий уступает только золоту, серебру и меди. А сочетание малой плотности и высокой электропроводности позволяет конкурировать в сфере кабельно-проводниковой продукции с медью. Длительный отжиг улучшает электропроводность, а нагартовка ухудшает.

Теплопроводность алюминия повышается с увеличением чистоты металла. Примеси марганца, магния и меди снижают это свойство. По показателю теплопроводности алюминий проигрывает только меди и серебру. Благодаря этому свойству металл применяется в теплообменниках и радиаторах охлаждения.
Алюминий обладает высокой удельной теплоёмкостью и теплотой плавления. Эти показатели значительно больше, чем у большинства металлов. Чем выше степень чистоты алюминия, тем больше он способен отражать свет от поверхности. Металл хорошо полируется и анодируется.

Алюминий имеет большое сродство к кислороду и покрывается на воздухе тонкой прочной плёнкой оксида алюминия. Эта плёнка защищает металл от последующего окисления и обеспечивает его хорошие антикоррозионные свойства. Алюминий обладает стойкостью к атмосферной коррозии, морской и пресной воде, практически не вступает во взаимодействия с органическими кислотами, концентрированной или разбавленной азотной кислотой.

Химические свойства

Алюминий - это достаточно активный амфотерный металл. При обычных условиях прочная оксидная плёнка определяет его стойкость. Если разрушить оксидную плёнку, алюминий выступает как активный металл-восстановитель. В мелкораздробленном состоянии и при высокой температуре металл взаимодействует с кислородом. При нагревании происходят реакции с серой, фосфором, азотом, углеродом, йодом. При обычных условиях металл взаимодействует с хлором и бромом. С водородом реакции не происходит. С металлами алюминий образует сплавы, содержащие интерметаллические соединения – алюминиды.

При условии очищения от оксидной пленки, происходит энергичное взаимодействие с водой. Легко протекают реакции с разбавленными кислотами. Реакции с концентрированной азотной и серной кислотой происходят при нагревании. Алюминий легко реагирует со щелочами. Практическое применение в металлургии нашло свойство восстанавливать металлы из оксидов и солей – реакции алюминотермии.

Получение

Алюминий находится на первом месте среди металлов и на третьем среди всех элементов по распространённости в земной коре. Приблизительно 8% массы земной коры составляет именно этот металл. Алюминий содержится в тканях животных и растений в качестве микроэлемента. В природе он встречается в связанном виде в форме горных пород, минералов. Каменная оболочка земли, находящаяся в основе континентов, формируется именно алюмосиликатами и силикатами.

Алюмосиликаты – это минералы, образовавшиеся в результате вулканических процессов в соответствующих условиях высоких температур. При разрушении алюмосиликатов первичного происхождения (полевые шпаты) сформировались разнообразные вторичные породы с более высоким содержанием алюминия (алуниты, каолины, бокситы, нефелины). В состав вторичных пород алюминий входит в виде гидроокисей или гидросиликатов. Однако не каждая алюминийсодержащая порода может быть сырьём для глинозёма – продукта, из которого при помощи метода электролиза получают алюминий.

Наиболее часто алюминий получают из бокситов. Залежи этого минерала распространены в странах тропического и субтропического пояса. В России также применяются нефелиновые руды, месторождения которых располагаются в Кемеровской области и на Кольском полуострове. При добыче алюминия из нефелинов попутно также получают поташ, кальцинированную соду, цемент и удобрения.

В бокситах содержится 40-60% глинозёма. Также в составе имеются оксид железа, диоксид титана, кремнезём. Для выделения чистого глинозёма используют процесс Байера. В автоклаве руду нагревают с едким натром, охлаждают, отделяют от жидкости «красный шлам» (твёрдый осадок). После осаждают гидроокись алюминия из полученного раствора и прокаливают её для получения чистого глинозёма. Глинозём должен соответствовать высоким стандартам по чистоте и размеру частиц.

Из добытой и обогащённой руды извлекают глинозём (оксид алюминия). Затем методом электролиза глинозём превращают в алюминий. Заключительным этапом является восстановление процессом Холла-Эру. Процесс заключается в следующем: при электролизе раствора глинозёма в расплавленном криолите происходит выделение алюминия. Катодом служит дно электролизной ванны, а анодом – угольные бруски, находящиеся в криолите. Расплавленный алюминий осаждается под раствором криолита с 3-5% глинозёма. Температура процесса поднимается до 950°С, что намного превышает температуру плавления самого алюминия (660°С). Глубокую очистку алюминия проводят зонной плавкой или дистилляцией его через субфторид.

Применение

Алюминий применяется в металлургии в качестве основы для сплавов (дуралюмин, силумин) и легирующего элемента (сплавы на основе меди, железа, магния, никеля). Сплавы алюминия используются в быту, в архитектуре и строительстве, в судостроении и автомобилестроении, а также в космической и авиационной технике. Алюминий применяется при производстве взрывчатых веществ. Анодированный алюминий (покрытый окрашенными плёнками из оксида алюминия) применяют для изготовления бижутерии. Также металл используется в электротехнике.

Рассмотрим, как используют различные изделия из алюминия.

Алюминиевая лента представляет собой тонкую алюминиевую полосу толщиной 0,3-2 мм, шириной 50-1250 мм, которая поставляется в рулонах. Используется лента в пищевой, лёгкой, холодильной промышленности для изготовления охлаждающих элементов и радиаторов.

Круглая алюминиевая проволока применяется для изготовления кабелей и проводов для электротехнических целей, а прямоугольная для обмоточных проводов.

Алюминиевые трубы отличаются долговечностью и стойкостью в условиях сельских и городских промышленных районов. Применяются они в отделочных работах, дорожном строительстве, конструкции автомобилей, самолётов и судов, производстве радиаторов, трубопроводов и бензобаков, монтаже систем отопления, магистральных трубопроводов, газопроводов, водопроводов.

Алюминиевые втулки характеризуются простотой в обработке, монтаже и эксплуатации. Используются они для концевого соединения металлических тросов.

Алюминиевый круг - это сплошной профиль круглого сечения. Используется это изделие для изготовления различных конструкций.

Алюминиевый пруток применяется для изготовления гаек, болтов, валов, крепежных элементов и шпинделей.
Около 3 мг алюминия каждый день поступает в организм человека с продуктами питания. Больше всего металла в овсянке, горохе, пшенице, рисе. Учёными установлено, что он способствует процессам регенерации, стимулирует развитие и рост тканей, оказывает влияние на активность пищеварительных желёз и ферментов.

При использовании алюминиевой посуды в быту необходимо помнить, что хранить и нагревать в ней можно исключительно нейтральные жидкости. Если же в такой посуде готовить, к примеру, кислые щи, то алюминий поступит в еду, и она будет иметь неприятный «металлический» привкус.

Алюминий входит в состав лекарственных препаратов, используемых при заболеваниях почек и желудочно-кишечного тракта.

Читайте также: