Алюминий при нагревании восстанавливает многие металлы из их оксидов

Обновлено: 04.07.2024

Элементы главной подгруппы III группы периодической системы:

бор (В), алюминий (Аl), галлий (Ga), индий (In) и таллий (Тl).

Открытие металлов главной подгруппы III группы

Бор представляет собой неметалл. Алюминий — переход­ный металл, а галлий, индий и таллий — полноценные метал­лы. Таким образом, с ростом радиусов атомов элементов каждой группы периодической системы металлические свой­ства простых веществ усиливаются.

Рассмотрим подробнее свойства алюминия.

1. Положение алюминия в таблице Д. И. Менделеева. Строение атома, проявляемые степени окисления.

Элемент алюминий расположен в III группе, главной «А» подгруппе, 3 периоде периодической системы, порядковый номер №13, относительная атомная масса Ar(Al) = 27. Его соседом слева в таблице является магний – типичный металл, а справа – кремний – уже неметалл. Следовательно, алюминий должен проявлять свойства некоторого промежуточного характера и его соединения являются амфотерными.

Al 0 – 3 e - → Al +3 Алюминий проявляет в соединениях степень окисления +3:

2. Физические свойства алюминия

Алюминий в свободном виде — се­ребристо-белый металл, обладающий высокой тепло- и электро­проводностью. Температура плавления 650 о С. Алюминий имеет невысокую плотность (2,7 г/см 3 ) — при­мерно втрое меньше, чем у железа или меди, и одновременно — это прочный металл.

3. Нахождение в природе

По распространённости в природе занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры.

В природе алюминий встречается только в соединениях (минералах).

Некоторые из них:

4. Химические свойства алюминия и его соединений

Алюминий легко взаимодействует с кислородом при обычных условиях и покрыт оксидной пленкой (она придает матовый вид).

Её толщина 0,00001 мм, но благодаря ней алюминий не коррозирует. Для изучения химических свойств алюминия оксидную пленку удаляют. (При помощи наждачной бумаги, или химически: сначала опуская в раствор щелочи для удаления оксидной пленки, а затем в раствор солей ртути для образования сплава алюминия со ртутью – амальгамы).

I. Взаимодействие с простыми веществами - неметаллами

Алюминий уже при комнатной температуре активно реагирует со всеми галогенами, образуя галогениды.

при нагревании он взаимодействует с серой (200 °С) 2Аl + 3S = Аl 2 S 3 (сульфид алюминия),

азотом (800 °С) 2Аl + N 2 = 2АlN (нитрид алюминия),

фосфором (500 °С) Аl + Р = АlР (фосфид алюминия)

углеродом (2000 °С) 4Аl + 3С = Аl 4 С 3 (карбид алюминия)

с йодом в присутствии катализатора - воды (видео) 2Аl + 3I 2 = 2 AlI 3 (йодид алюминия)

Все эти соединения полностью гидролизуются с образованием гидроксида алюминия и, соответственно, сероводорода, аммиака, фосфина и метана:

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2

Al 4 C 3 + 12H 2 O = 4Al(OH) 3 + 3CH 4 ­

В виде стружек или порошка он ярко горит на воздухе, выде­ляя большое количество теплоты:

4Аl + 3O 2 = 2Аl 2 О 3 + 1676 кДж.

II. Взаимодействие алюминия со сложными веществами

Взаимодействие с водой:

2Al + 6H 2 O = 2 Al(OH) 3 + 3H 2 без оксидной пленки!!

Взаимодействие с оксидами металлов:

Алюминий – хороший восстановитель, так как является одним из активных металлов. Стоит в ряду активности сразу после щелочно-земельных металлов. Поэтому восстанавливает металлы из их оксидов . Такая реакция – алюмотермия – используется для получения чистых редких металлов, например таких, как вольфрам, ваннадий и др.

3 Fe 3 O 4 + 8Al = 4Al 2 O 3 + 9Fe +Q

Термитная смесь Fe3O4 и Al (порошок) –используется ещё и в термитной сварке.

Сr 2 О 3 + 2Аl = 2Сr + Аl 2 О 3

Взаимодействие с кислотами, например с раствором серной кислоты с образованием соли и водорода:

2 Al + 3 H 2 SO 4 = Al 2 (SO 4 ) 3 + 3 H 2

С холодными концентрированными серной и азотной не реагирует (пассивирует). Поэтому азотную кислоту перевозят в алюминиевых цистернах. При нагревании алюминий способен восстанавливать эти кислоты без выделения водорода:

Взаимодействие алюминия с щелочами (видео) .

2Al + 2NaOH + 6H 2 O = 2 Na[Al(OH) 4 ] + 3H 2

Na[Аl(ОН)4] – тетрагидроксоалюминат натрия

По предложению химика Горбова, в русско-японскую войну эту реакцию использовали для получения водорода для аэростатов.

Взаимодействие алюминия с растворами солей:

2Al + 3CuSO 4 = Al 2 (SO 4 ) 3 + 3Cu

Если поверхность алюминия потереть солью ртути, то происходит реакция:

2Al + 3HgCl 2 = 2AlCl 3 + 3Hg

Выделившаяся ртуть растворяет алюминий, образуя амальгаму.

5. Применение алюминия и его соединений: РИСУНОК 1 и РИСУНОК 2

Физические и химические свойства алюминия обусловили его широкое применение в технике. Крупным потребителем алюминия является авиационная промышленность: самолет на 2/3 состоит из алюминия и его сплавов. Самолет из стали оказался бы слишком тяжелым и смог бы нести гораздо меньше пассажиров. Поэтому алюминий называют крылатым металлом. Из алюминия изготовляют кабели и провода: при одинаковой электрической проводимости их масса в 2 раза меньше, чем соответствующих изделий из меди.

Учитывая коррозионную устойчивость алюминия, из него изготовляют детали аппаратов и тару для азотной кислоты. Порошок алюминия является основой при изготовлении серебристой краски для защиты железных изделий от коррозии, а также для отражения тепловых лучей такой краской покрывают нефтехранилища, костюмы пожарных.

Оксид алюминия используется для получения алюминия, а также как огнеупорный материал.

Гидроксид алюминия – основной компонент всем известных лекарств маалокса, альмагеля, которые понижают кислотность желудочного сока.

Соли алюминия сильно гидролизуются. Данное свойство применяют в процессе очистки воды. В очищаемую воду вводят сульфат алюминия и небольшое количество гашеной извести для нейтрализации образующейся кислоты. В результате выделяется объемный осадок гидроксида алюминия, который, оседая, уносит с собой взвешенные частицы мути и бактерии.

Таким образом, сульфат алюминия является коагулянтом.

6. Получение алюминия

1) Современный рентабельный способ получения алюминия был изобретен американцем Холлом и французом Эру в 1886 году. Он заключается в электролизе раствора оксида алюминия в расплавленном криолите. Расплавленный криолит Na3AlF6 растворяет Al2O3, как вода растворяет сахар. Электролиз “раствора” оксида алюминия в расплавленном криолите происходит так, как если бы криолит был только растворителем, а оксид алюминия - электролитом.

В английской “Энциклопедии для мальчиков и девочек” статья об алюминии начинается следующими словами: “23 февраля 1886 года в истории цивилизации начался новый металлический век - век алюминия. В этот день Чарльз Холл, 22-летний химик, явился в лабораторию своего первого учителя с дюжиной маленьких шариков серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять этот металл дешево и в больших количествах”. Так Холл сделался основоположником американской алюминиевой промышленности и англосаксонским национальным героем, как человек, сделавшим из науки великолепный бизнес.

Металлический алюминий первым выделил в 1825 году датский физик Ханс Кристиан Эрстед. Пропустив газообразный хлор через слой раскаленного оксида алюминия, смешанного с углем, Эрстед выделил хлорид алюминия без малейших следов влаги. Чтобы восстановить металлический алюминий, Эрстеду понадобилось обработать хлорид алюминия амальгамой калия. Через 2 года немецкий химик Фридрих Вёллер. Усовершенствовал метод, заменив амальгаму калия чистым калием.

К 1855 году французский ученый Сен- Клер Девиль разработал способ получения металлического алюминия в технических масштабах. Но способ был очень дорогостоящий. Девиль пользовался особым покровительством Наполеона III, императора Франции. В знак своей преданности и благодарности Девиль изготовил для сына Наполеона, новорожденного принца, изящно гравированную погремушку – первое «изделие ширпотреба» из алюминия. Наполеон намеревался даже снарядить своих гвардейцев алюминиевыми кирасами, но цена оказалась непомерно высокой. В то время 1 кг алюминия стоил 1000 марок, т.е. в 5 раз дороже серебра. Только после изобретения электролитического процесса алюминий по своей стоимости сравнялся с обычными металлами.

А знаете ли вы, что алюминий, поступая в организм человека, вызывает расстройство нервной системы. При его избытке нарушается обмен веществ. А защитными средствами является витамин С, соединения кальция, цинка.

При сгорании алюминия в кислороде и фторе выделяется много тепла. Поэтому его используют как присадку к ракетному топливу. Ракета "Сатурн" сжигает за время полёта 36 тонн алюминиевого порошка. Идея использования металлов в качестве компонента ракетного топлива впервые высказал Ф. А. Цандер.

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Для получения алюминия из хлорида алюминия в качестве восстановителя можно использовать металлический кальций. Составьте уравнение данной химической реакции, охарактеризуйте этот процесс при помощи электронного баланса.

Алюминий при нагревании восстанавливает многие металлы из их оксидов

Тип 8 № 1895

Установите соответствие между реагирующими веществами и продуктами взаимодействия: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

1) гидроксид алюминия и водород

2) сульфат алюминия и водород

3) гидроксид алюминия и сероводород

4) гидроксоалюминат натрия и водород

5) оксид алюминия и сероводород

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Алюминий — амфотерный металл, он способен реагировать с водой (при удалении оксидной пленки), при этом получится гидроксид алюминия и водород А—1.

При реакции алюминия со щелочью может образоваться соль — гидроксоалюминат и водород. Б—4.

С разбавленной серной кислотой произойдет окисление — образование сульфата алюминия и водорода В—2.

Сульфид алюминия гидролизуются до гидроксида металла и соответствующего водородного соединения — в данном случае гидроксида алюминия и сероводорода. Г—3.

Тип 34 № 7054

При нагревании образца нитрата алюминия часть вещества разложилась, при этом выделилось 6,72 л газов (в пересчете на н. у.). Остаток массой 25,38 г полностью растворили в минимальном объеме 24%-ного раствора гидроксида натрия. Определите массовую долю нитрата натрия в конечном растворе. В ответе напишите уравнения реакций, которые указаны в условии задачи, и приведите все необходимые вычисления.

При разложении нитрата алюминия (соли амфотерного металла) образуются оксид алюминия, бурый газ — диоксид азота (IV) и кислород:

Поскольку в условии задачи речь идет о полном растворении остатка, состоящего из оксида и нитрата алюминия, то в итоге образуется комплексная соль алюминия — тетрагидроксоалюминат натрия:

Вычислим количество вещества газа, выделившегося при разложении нитрата алюминия:

По уравнению реакции разложения нитрата алюминия следовательно,

Вычислим массу и количество вещества оставшегося нитрата алюминия:

Вычислим количество вещества и массу взаимодействующего с оксидом и нитратом алюминия гидроксида натрия:

Масса 24%-ного раствора гидроксида натрия равна:

Вычислим количество вещества и масса образовавшегося в результате реакции нитрата алюминия со щелочью нитрата натрия:

Вычислим массу образовавшегося раствора равна и массовую долю нитрата натрия:

Почему в 3 уравнении получилась комплексная соль, ведь гидроксида натрия взято минимальное количество. будет ли правильным решением с гидроксидом алюминия

"Оста­ток мас­сой 25,38 г пол­но­стью рас­тво­ри­ли" - образовался раствор.

Тип 34 № 2625

Смесь сульфида алюминия и алюминия обработали водой, при этом выделилось 6,72 л (н. у.) газа. Если эту же смесь растворить в избытке соляной кислоты, то выделится 13,44 л (н. у.) газа. Определите массовую долю алюминия в исходной смеси.

Напишем уравнения реакций:

С водой реагирует только сульфид алюминия:

С соляной кислотой реагируют и сульфид алюминия и алюминий:

Рассчитаем количество вещества и массу сульфида алюминия.

Из данных по первой реакции получаем:

Рассчитаем количество вещества и массу алюминия.

Из данных по второй реакции получаем:

Найдем массовую долю алюминия:

Реакция между алюминием и водой не идет?

2Al + 6H2O = 2Al(OH)3 + 3H2↑

В комментарии к этому видео есть слово АМАЛЬГАМА. Это необходимое условие для реакции.

Вспомните про алюминиевые кастрюли. Неужели они растворялись в воде?

Задания Д9 № 3778

В схеме превращений

веществом Х является

1) гидроксид алюминия

3) оксид алюминия

4) нитрат алюминия (р-р)

Из всех приведенных вариантов кроме нитрата алюминия можно в одну стадию получить сульфат алюминия, но из тетрагидроксоалюмината натрия в одну стадию можно получить только гидроксид алюминия.

Тип 31 № 6996

К раствору бромоводородной кислоты добавили гидрокарбонат калия, в результате чего наблюдали выделение бесцветного газа. Полученную соль выделили и добавили к раствору дихромата калия, подкисленного серной кислотой. Образовавшееся в результате этой реакции простое вещество — красно-бурая жидкость с резким запахом прореагировало с алюминием. Продукт этой реакции помесили в раствор сульфида натрия, в результате чего наблюдали выделение токсичного газа с неприятным запахом.

Напишите уравнения четырёх описанных реакций.

1) Более сильная бромоводородная кислота способна вытеснить более слабую угольную из ее соли, в результате чего выделяется диоксид углерода:

2) Действием восстановителей соединения хрома (VI) восстанавливаются до соединений хрома (III) преимущественно в кислой среде:

3) Галогены (F2, Cl2, Br2) способны окислить алюминий до галогенида алюминия:

4) Бромид алюминия вступает в обменную реакцию с сульфидом натрия, при этом образующийся сульфид алюминия сразу же гидролизуется с образованием гидроксида алюминия и сероводорода (реакция совместного гидролиза бромида алюминия и сульфида натрия):

Тип 20 № 21070

Установите соответствие между веществом и возможным способом его получения путём электролиза: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

2) раствора в расплавленном криолите

3) водного раствора

4) водного раствора

5) водного раствора

В случае электролиза растворов порядок разрядки на катоде:

Катионы металлов в ряду активности до алюминия, включая алюминий, не разряжаются, поэтому образуется только водород. Катионы металлов от алюминия до водорода разряжаются с образованием металла и водорода, катионы металлов после водорода разряжаются до чистого металла.

В случае электролиза растворов порядок разрядки на аноде:

Бескислородные анионы кроме фтора разряжаются до чистого неметалла, органические анионы — до углекислого газа и удвоенного оставшегося органического скелета. Фтор и кислородсодержащие анионы не разряжаются, образуется кислород.

Таким образом, водород и хлор можно получить электролизом водного раствора хлорида алюминия, калий — электролизом расплава фторида калия, а алюминий — электролизом раствора оксида алюминия в расплавленном криолите.

Тип 31 № 7007

При взаимодействии оксида серы(VI) с водой получили кислоту. При обработке порошкообразного иодида калия концентрированным раствором этой кислоты образовались серые кристаллы простого вещества. Это вещество прореагировало с алюминием. Полученную соль растворили в воде и смешали с раствором карбоната натрия, в результате чего образовался осадок и выделился газ.

1) При взаимодействии кислотного оксида — оксида серы(VI) с водой образуется серная кислота:

2) При действии на порошок иодида калия концентрированной серной кислоты протекает окислительно-восстановительная реакция, в результате которой образуются кристаллы простого вещества — йода и выделяется сероводород (реакция твердого KI с концентрированной серной кислотой протекает с образованием сероводорода и кислой соли — гидросульфата калия):

3) Алюминий легко реагирует с галогенами, в данном случае образуется иодид алюминия:

4) При взаимодействии иодида алюминия с водным раствором карбонатом натрия в осадок выпадает гидроксид алюминия и выделяется углекислый газ (соли карбоната алюминия не существует):

Почему во второй реакции образуется кислая соль? В справочнике Р.А. Лидина и В.А. Молочко образуется средняя соль.

Обычно реакцию твердой соли с кислотой пишут до кислой соли, поскольку кислоты при этом избыток. Но для данной задачи это непринципиально.

В условии сказано, что образовались серые кристаллы, но кристаллы йода фиолетовые.

пары фиолетовые, а кристаллы серые.

Тип 6 № 26270

В двух колбах находился раствор нитрата алюминия. В первую колбу добавили избыток раствора вещества Х, а во вторую — раствор вещества Y. В первой колбе выпал осадок, а во второй выпал осадок и выделился газ. Из предложенного перечня выберите вещества X и Y, которые могут вступать в описанные реакции.

Запишите в таблицу номера выбранных веществ под соответствующими буквами.

Составим уравнения реакций.

Нитрат алюминия с аммиаком образует нерастворимый гидроксид алюминия:

Веществом X является аммиак. (5)

При взаимодействии нитрата алюминия и сульфита калия образуется сульфит алюминия:

Затем он гидролизуется, выпадает осадок гидроксида алюминия и выделяется сернистый газ:

Веществом Y является сульфит калия. (3)

Задания Д26 № 686

Для подтверждения качественного состава хлорида алюминия необходимы растворы

1) фосфата калия и бромида серебра

2) нитрата серебра и гидроксида калия

3) нитрата натрия и гидроксида бария

4) хлорида кальция и фенолфталеина

Хлорид алюминия при растворении в воде распадается на ионы

Качественной реакцией на ионы хлора является реакция с ионами серебра, при этом выпадает белый осадок хлорида серебра.

Ионы серебра есть в растворе нитрата серебра. Бромид серебра - нерастворимое в воде вещество и на ионы не распадается.

Ионы алюминия можно обнаружить с помощью раствора щелочи (например, гидроксида калия). При добавлении к раствору соли алюминия раствора щелочи выпадает белый осадок гидроксида алюминия, который при добавлении избытка щелочи растворяется, превращаясь в комплексный тетрагидроксоалюминат-ион

Почему 1 вариант не подходит?

Бромид серебра (из первого варианта) нерастворимое вещество (растворяется хуже хлорида серебра), поэтому реакция с хлоридом алюминия не пойдет.

Тип 20 № 3755

Установите соответствие между формулой соли и продуктом, образующимся на катоде при электролизе её водного раствора: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

1) сульфид алюминия

При электролизе водных растворов солей на катоде выделяется:

— водород, если это соль металла, стоящего в ряду напряжений металлов левее алюминия (включая алюминий);

— металл, если это соль металла, стоящего в ряду напряжений металлов правее водорода;

— металл и водород, если это соль металла, стоящего в ряду напряжений металлов между алюминием и водородом.

Поэтому при электролизе следующих солей выделится:

Задания Д6 № 6417

Верны ли следующие суждения о свойствах алюминия?

А. Алюминий растворяется в щелочах с выделением водорода.

Б. Алюминий растворяется в кислотах без выделения водорода.

1) верно только А

2) верно только Б

3) верны оба суждения

4) оба суждения неверны

Алюминий действительно растворяется в щелочах с выделением водорода.

Алюминий реагирует с разбавленными кислотами (при амальгамировании или механическом снятии оксидной пленки) при этом выделяется водород. В концентрированных кислотах-окислителях он пассивируется.

Задания Д6 № 6594

Верны ли следующие утверждения о свойствах алюминия?

А. Алюминий при нагревании восстанавливает многие металлы из их оксидов.

Б. Алюминий пассивируется холодной концентрированной азотной кислотой.

Алюминий довольно активный металл, поэтому при нагревании действительно восстанавливает многие металлы из их оксидов.

Также алюминий известен тем, что пассивируется холодной концентрированной азотной кислотой.

Верны оба суждения.

Тип 34 № 6626

Смесь алюминия с серой общей массой 3,21 г сильно нагрели. После окончания реакции полученное вещество частично растворилось в избытке соляной кислоты с выделением 1,008 л (н. у.) газа с неприятным запахом. Рассчитайте массовые доли (в%) простых веществ в исходной смеси.

1) Составим уравнения реакций:

По условию "вещество частично растворилось в избытке соляной кислоты", значит, остался компонент, который не растворяется в соляной кислоте, т. е. сера. Значит, сера была в избытке, задачу решаем по алюминию. Газ выделяется при действии соляной кислоты на сульфид алюминия:

2) Рассчитаем количества вещества сероводорода и сульфида алюминия:

3) Рассчитаем массу алюминия в исходной смеси:

4) Рассчитаем массовые доли простых веществ в смеси:

Откуда в это действии мы берём 1/3?

Виктор, это мы вычисляем количество Al2S3 из второй реакции, потому что знаем количество H2S.

Задание не корректное. Вот допустим найдем массу Серы, а не алюминия, тогда получим:

m(S)=0,045 * 32 = 1,44 г

w(S)= 1,44:3,21=0,449 то есть 44.9%

А почему в решении 74,8%?

Я решал иным путем, потратил минут 20 на эту задачу, задача может и интересная, но просто не могу понять почему именно имеем такой ответ. Надеюсь вы мне ответите и растолкуете.

Все сходится вне зависимости от того как решать задачу - через серу или через алюминий. Вы просто не учли тот факт, что изначальная смесь алюминия и серы содержала избыток серы. Соответственно в вашей попытке решить задачу через серу необходимо было первым делом рассчитать массу серы в сульфиде алюминия - что вы и сделали. Вторым делом, к полученной массе серы прибавить ту массу серы из смеси, которая осталось в избытке. Ее можно рассчитать если вычесть из массы изначальной смеси массу сульфида алюминия. После этого все сходится.

Тип 31 № 7002

Гидрокарбонат натрия разложили. Полученное в результате разложения вещество добавили к раствору бромида алюминия, в результате чего выпал осадок – гидроксид алюминия и выделился бесцветный газ. Осадок растворили в азотной кислоте, а газ пропустили через раствор силиката калия.

1) При разложении кислой соли — гидрокарбоната натрия образуется средняя соль — карбонат натрия и выделяется углекислый газ:

2) При взаимодействии карбоната натрия с раствором бромида алюминия в осадок выпадает гидроксид алюминия (III) и выделяется углекислый газ:

3) Нерастворимое вещество с амфотерными свойствами — гидроксид алюминия хорошо растворяется в растворах как в кислотах, так и в основаниях:

4) При пропускании углекислого газа через раствор силиката калия в осадок выпадает кремниевая кислота и образуется карбонат калия:

Тип 25 № 9782

Установите соответствие между простым веществом и основным способом его промышленного получения: к каждой позиции, обозначенной буквой, подберите соответствующую позицию, обозначенную цифрой.

1) восстановление оксида углеродом

2) восстановление оксида водородом

3) реакция замещения в водном растворе

4) электролиз раствора

5) электролиз расплава

А) Алюминий образует прочную химическую связь с кислородом. По сравнению с другими металлами, восстановление алюминия из руды более сложно в связи с его высокой реакционной способностью и с высокой температурой плавления большинства его руд (таких, как бокситы). Прямое восстановление углеродом применяться не может, потому что восстановительная способность алюминия выше, чем у углерода. Современный метод получения заключается в растворении оксида алюминия в расплаве криолита с последующим электролизом с использованием расходуемых коксовых или графитовых анодных электродов.

Б) В промышленности железо получают из железной руды, в основном из гематита () и магнетита ().

Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.

Первый этап производства — восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха. В печи углерод в виде кокса окисляется до монооксида углерода. Данный оксид образуется при горении в недостатке кислорода. В свою очередь, монооксид углерода восстанавливает железо из руды. Чтобы данная реакция шла быстрее, нагретый угарный газ пропускают через оксид железа (III).

В) Первым промышленным способом получения натрия была реакция восстановления карбоната натрия углем при нагревании тесной смеси этих веществ в железной ёмкости до 1000 °C (способ Девилля). С появлением электроэнергетики более практичным стал другой способ получения натрия — электролиз расплава едкого натра или хлорида натрия. В настоящее время электролиз — основной способ получения натрия.

Г) В промышленности кремний технической чистоты получают, восстанавливая расплав коксом при температуре около 1800 °C в рудотермических печах шахтного типа. Чистота полученного таким образом кремния может достигать 99,9%.

III группа главная подгруппа периодической таблицы Менделеева (Алюминий)

Алюминий – лёгкий серебристо-белый металл, легко поддающийся формовке, литью, механической обработке. Обладает высокой тепло- и электропроводностью.

Аl — довольно активный металл, однако при обычных условиях ведет себя инертно — имеет высокую температуру воспламенения, со многими веществами реагирует только при высокой температуре;

Все реакции с участием Al проходят через первоначальный замедленный период из-за наличия на его поверхности очень тонкой, прочной, газо- и водонепроницаемой пленки Al2O3. При нарушении цельности этой пленки AI реагирует со многими веществами как активный восстановитель.

Алюминий расположен в главной подгруппе III группы, в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронная конфигурация алюминия:

Алюминий_электронная конфигурация

Нахождение алюминия в природе

Алюминий — самый распространенный металл в природе, и 3-й по распространенности среди всех элементов (после кислорода и кремния).

Содержание в земной коре — примерно 8,6 %.

В природе алюминий встречается в виде соединений:

Способы получения алюминия

Промышленный способ:

Алюминий получают электролизом Al2O3 в расплавленном криолите (Na3AlF6) при температуре 960–970°С:

Процесс электролиза можно представить так:

На катоде происходит восстановление ионов алюминия, а на аноде — окисление алюминат-ионов:

К: Al 3+ +3e → Al 0

Лабораторный способ:

Вакуумтермический способ

Восстановление безводного хлорида алюминия металлическим калием (при нагревании и без доступа воздуха)

AlCl3 + ЗК = Al + 3KCl

Химические свойства алюминия

Качественные реакции

  • Соли алюминия можно обнаружить с помощью водного раствора аммиака. При этом выпадает полупрозрачный белый осадок гидроксида алюминия:
  • Качественной является реакция взаимодействия солей алюминия с недостатком щелочей. При этом образуется белый аморфный осадок гидроксида алюминия:

При дальнейшем добавлении щелочи осадок гидроксида алюминия растворяется с образованием комплексного соединения тетрагидроксоалюмината:

Обратите внимание, если изначально поместить соль алюминия в избыток раствора щелочи, то сразу образуется растворимый тетрагидроксоалюминат:

Взаимодействие с простыми веществами – неметаллами

С кислородом

С кислородом взаимодействуют с образованием прочной оксидной пленки — оксида.

При нагревании сгорает с выделением большого количества теплоты (экзотермическая реакция):

При этом может развиваться температура до 3500 0 С.

С галогенами (F, Cl, Br, I)

Реагирует сгалогенами с образованием галогенидов:

С водородом

C водородом алюминий непосредственно не соединяется

С серой и фосфором

Взаимодействует с серой при нагревании до 150 -200 0 С с образованием сульфида:

С фосфором образует фосфид:

С азотом

С азотом взаимодействует при нагревании до 1000 о С с образованием нитрида:

С углеродом

С углеродом взаимодействует при нагревании примерно до 2000 о С с образованием карбида:

Взаимодействие со сложными веществами

С водой

Алюминий покрыт стойкой защитной оксидной пленкой Al2O3, которая защищает алюминий от дальнейшего окисления и действия воды.

При снятии защитной пленки алюминий бурно реагирует с водой с образованием гидроксида алюминия и водорода:

Оксидную пленку можно удалить с помощью растворов щелочи, хлорида аммония или солей ртути (амальгирование)

С кислотами

Алюминий не реагирует с концентрированными азотной и серной кислотами из-за пассивации.

Однако, при нагревании реакции протекают довольно активно:

С разбавленной азотной кислотой взаимодействует при обычной Т медленно при нагревании — быстро:

С щелочами

Алюминий взаимодействует с щелочами. При взаимодействии алюминия с раствором щелочи образуется тетрагидроксоалюминат и водород:

Алюминий реагирует с расплавом щелочи с образованием алюмината и водорода:

С солями

При нагревании реагирует с растворами солей менее активных металлов:

С оксидами

Алюминий при нагревании восстанавливает менее активные металлы из их оксидов:

Этот метод широко используется при получении металлов и называется алюмотермией.

Алюминий. Химия алюминия и его соединений


Алюминий расположен в главной подгруппе III группы (или в 13 группе в современной форме ПСХЭ) и в третьем периоде периодической системы химических элементов Д.И. Менделеева.

Электронное строение алюминия и свойства

Электронная конфигурация алюминия в основном состоянии :

+13Al 1s 2 2s 2 2p 6 3s 2 3p 1 1s 2p

Электронная конфигурация алюминия в возбужденном состоянии :

+13Al * 1s 2 2s 2 2p 6 3s 1 3p 2 1s 2p 3p

Алюминий проявляет парамагнитные свойства. Алюминий на воздухе быстро образует прочные оксидные плёнки, защищающие поверхность от дальнейшего взаимодействия, поэтому устойчив к коррозии.

Физические свойства

Алюминий – лёгкий металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Обладает высокой тепло- и электропроводностью.


Температура плавления 660 о С, температура кипения 1450 о С, плотность алюминия 2,7 г/см 3 .

Алюминий — один из наиболее ценных цветных металлов для вторичной переработки. На протяжении последних лет, цена на лом алюминия в пунктах приема непреклонно растет. По ссылке можно узнать о том, как сдать лом алюминия.

Нахождение в природе

Алюминий — самый распространенный металл в природе, и 3-й по распространенности среди всех элементов (после кислорода и кремния). Содержание в земной коре — около 8%.

Бокситы Al2O3 · H2O (с примесями SiO2, Fe2O3, CaCO3) — гидрат оксида алюминия.


Корунд Al2O3. Красный корунд называют рубином, синий корунд называют сапфиром.


Способы получения

Алюминий образует прочную химическую связь с кислородом. Поэтому традиционные способы получения алюминия восстановлением из оксида протекают требуют больших затрат энергии. Для промышленного получения алюминия используют процесс Холла-Эру. Для понижения температуры плавления оксид алюминия растворяют в расплавленном криолите (при температуре 960-970 о С) Na3AlF6, а затем подвергают электролизу с углеродными электродами. При растворении в расплаве криолита оксид алюминия распадается на ионы:

На катоде происходит восстановление ионов алюминия:

Катод: Al 3+ +3e → Al 0

На аноде происходит окисление алюминат-ионов:

Суммарное уравнение электролиза расплава оксида алюминия:

Лабораторный способ получения алюминия заключается в восстановлении алюминия из безводного хлорида алюминия металлическим калием:

AlCl3 + 3K → Al + 3KCl

Качественные реакции

Качественная реакция на ионы алюминия — взаимодействие избытка солей алюминия с щелочами . При этом образуется белый аморфный осадок гидроксида алюминия.

Например , хлорид алюминия взаимодействует с гидроксидом натрия:

AlCl3 + 3NaOH → Al(OH)3 + 3NaCl



При дальнейшем добавлении щелочи амфотерный гидроксид алюминия растворяется с образованием тетрагидроксоалюмината:

Обратите внимание , если мы поместим соль алюминия в избыток раствора щелочи, то белый осадок гидроксида алюминия не образуется, т.к. в избытке щелочи соединения алюминия сразу переходят в комплекс:

AlCl3 + 4NaOH = Na[Al(OH)4] + 3NaCl

Соли алюминия можно обнаружить с помощью водного раствора аммиака. При взаимодействии растворимых солей алюминия с водным раствором аммиака также в ыпадает полупрозрачный студенистый осадок гидроксида алюминия.

AlCl3 + 3NH3·H2O = Al(OH)3 ↓ + 3NH4Cl

Al 3+ + 3NH3·H2O = Al(OH)3 ↓ + 3NH4 +

Видеоопыт взаимодействия раствора хлорида алюминия с раствором аммиака можно посмотреть здесь.

Химические свойства

1. Алюминий – сильный восстановитель . Поэтому он реагирует со многими неметаллами .

1.1. Алюминий реагируют с галогенами с образованием галогенидов:

1.2. Алюминий реагирует с серой с образованием сульфидов:

1.3. Алюминий реагируют с фосфором . При этом образуются бинарные соединения — фосфиды:

Al + P → AlP

1.4. С азотом алюминий реагирует при нагревании до 1000 о С с образованием нитрида:

2Al + N2 → 2AlN

1.5. Алюминий реагирует с углеродом с образованием карбида алюминия:

1.6. Алюминий взаимодействует с кислородом с образованием оксида:

Видеоопыт взаимодействия алюминия с кислородом воздуха (горение алюминия на воздухе) можно посмотреть здесь.

2. Алюминий взаимодействует со сложными веществами:

2.1. Реагирует ли алюминий с водой? Ответ на этот вопрос вы без труда найдете, если покопаетесь немного в своей памяти. Наверняка хотя бы раз в жизни вы встречались с алюминиевыми кастрюлями или алюминиевыми столовыми приборами. Такой вопрос я любил задавать студентам на экзаменах. Что самое удивительное, ответы я получал разные — у кого-то алюминий таки реагировал с водой. И очень, очень многие сдавались после вопроса: «Может быть, алюминий реагирует с водой при нагревании?» При нагревании алюминий реагировал с водой уже у половины респондентов))

Тем не менее, несложно понять, что алюминий все-таки с водой в обычных условиях (да и при нагревании) не взаимодействует. И мы уже упоминали, почему: из-за образования оксидной пленки . А вот если алюминий очистить от оксидной пленки (например, амальгамировать), то он будет взаимодействовать с водой очень активно с образованием гидроксида алюминия и водорода:

2Al 0 + 6 H2 + O → 2 Al +3 ( OH)3 + 3 H2 0

Амальгаму алюминия можно получить, выдержав кусочки алюминия в растворе хлорида ртути ( II ):

3HgCl2 + 2Al → 2AlCl3 + 3Hg

Видеоопыт взаимодействия амальгамы алюминия с водой можно посмотреть здесь.

2.2. Алюминий взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой). При этом образуются соль и водород.

Например , алюминий бурно реагирует с соляной кислотой :

2Al + 6HCl = 2AlCl3 + 3H2

2.3. При обычных условиях алюминий не реагирует с концентрированной серной кислотой из-за пассивации – образования плотной оксидной пленки. При нагревании реакция идет, образуются оксид серы (IV), сульфат алюминия и вода:

2.4. Алюминий не реагирует с концентрированной азотной кислотой также из-за пассивации.

С разбавленной азотной кислотой алюминий реагирует с образованием молекулярного азота:

При взаимодействии алюминия в виде порошка с очень разбавленной азотной кислотой может образоваться нитрат аммония:

2.5. Алюминий – амфотерный металл, поэтому он взаимодействует с щелочами . При взаимодействии алюминия с раствором щелочи образуется тетрагидроксоалюминат и водород:

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2

Видеоопыт взаимодействия алюминия со щелочью и водой можно посмотреть здесь.

2Al + 6NaOH → 2Na3AlO3 + 3H2

Эту же реакцию можно записать в другом виде (в ЕГЭ рекомендую записывать реакцию именно в таком виде):

2Al + 6NaOH → 2NaAlO2 + 3H2↑ + 2Na2O

2.6. Алюминий восстанавливает менее активные металлы из оксидов . Процесс восстановления металлов из оксидов называется алюмотермия .

Например , алюминий вытесняет медь из оксида меди (II). Реакция очень экзотермическая:

2Al + 3CuO → 3Cu + Al2O3

Еще пример : алюминий восстанавливает железо из железной окалины, оксида железа (II, III):

Восстановительные свойства алюминия также проявляются при взаимодействии его с сильными окислителями: пероксидом натрия, нитратами и нитритами в щелочной среде, перманганатами, соединениями хрома (VI):

Оксид алюминия

Оксид алюминия можно получить различными методами :

1. Горением алюминия на воздухе:

2. Разложением гидроксида алюминия при нагревании :

3. Оксид алюминия можно получить разложением нитрата алюминия :

Химические свойства

Оксид алюминия — типичный амфотерный оксид . Взаимодействует с кислотными и основными оксидами, кислотами, щелочами.

1. При взаимодействии оксида алюминия с основными оксидами образуются соли-алюминаты.

Например , оксид алюминия взаимодействует с оксидом натрия:

2. Оксид алюминия взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются соли—алюминаты, а в растворе – комплексные соли . При этом оксид алюминия проявляет кислотные свойства.

Например , оксид алюминия взаимодействует с гидроксидом натрия в расплаве с образованием алюмината натрия и воды:

Оксид алюминия растворяется в избытке щелочи с образованием тетрагидроксоалюмината:

3. Оксид алюминия не взаимодействует с водой.

4. Оксид алюминия взаимодействует с кислотными оксидами (сильных кислот). При этом образуются соли алюминия. При этом оксид алюминия проявляет основные свойства.

Например , оксид алюминия взаимодействует с оксидом серы (VI) с образованием сульфата алюминия:

5. Оксид алюминия взаимодействует с растворимыми кислотами с образованием средних и кислых солей.

Например , оксид алюминия реагирует с серной кислотой:

6. Оксид алюминия проявляет слабые окислительные свойства .

Например , оксид алюминия реагирует с гидридом кальция с образованием алюминия, водорода и оксида кальция:

Электрический ток восстанавливает алюминий из оксида (производство алюминия):

7. Оксид алюминия — твердый, нелетучий. А следовательно, он вытесняет более летучие оксиды (как правило, углекислый газ) из солей при сплавлении.

Например , из карбоната натрия:

Гидроксид алюминия

1. Гидроксид алюминия можно получить действием раствора аммиака на соли алюминия.

Например , хлорид алюминия реагирует с водным раствором аммиака с образованием гидроксида алюминия и хлорида аммония:

2. Пропусканием углекислого газа, сернистого газа или сероводорода через раствор тетрагидроксоалюмината натрия:

Чтобы понять, как протекает эта реакция, можно использовать несложный прием: мысленно разбить сложное вещество Na[Al(OH)4] на составные части: NaOH и Al(OH)3. Далее мы определяем, как реагирует углекислый газ с каждым из этих веществ, и записываем продукты их взаимодействия. Т.к. Al(OH)3 не реагирует с СО2, то мы записываем справа Al(OH)3 без изменения.

3. Гидроксид алюминия можно получить действием недостатка щелочи на избыток соли алюминия.

Например , хлорид алюминия реагирует с недостатком гидроксида калия с образованием гидроксида алюминия и хлорида калия:

4. Также гидроксид алюминия образуется при взаимодействии растворимых солей алюминия с растворимыми карбонатами, сульфитами и сульфидами . Сульфиды, карбонаты и сульфиты алюминия необратимо гидролизуются в водном растворе.

Например: бромид алюминия реагирует с карбонатом натрия. При этом выпадает осадок гидроксида алюминия, выделяется углекислый газ и образуется бромид натрия:

Хлорид алюминия реагирует с сульфидом натрия с образованием гидроксида алюминия, сероводорода и хлорида натрия:

1. Гидроксид алюминия реагирует с растворимыми кислотами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов и типа соли.

Например , гидроксид алюминия взаимодействует с азотной кислотой с образованием нитрата алюминия:

2. Гидроксид алюминия взаимодействует с кислотными оксидами сильных кислот .

Например , гидроксид алюминия взаимодействует с оксидом серы (VI) с образованием сульфата алюминия:

3. Гидроксид алюминия взаимодействует с растворимыми основаниями (щелочами). При этом в расплаве образуются соли—алюминаты, а в растворе – комплексные соли . При этом гидроксид алюминия проявляет кислотные свойства.

Например , гидроксид алюминия взаимодействует с гидроксидом калия в расплаве с образованием алюмината калия и воды:

Гидроксид алюминия растворяется в избытке щелочи с образованием тетрагидроксоалюмината:

4. Г идроксид алюминия разлагается при нагревании :

Видеоопыт взаимодействия гидроксида алюминия с соляной кислотой и щелочами (амфотерные свойства гидроксида алюминия) можно посмотреть здесь.

Соли алюминия

Нитрат и сульфат алюминия

Нитрат алюминия при нагревании разлагается на оксид алюминия, оксид азота (IV) и кислород:

Сульфат алюминия при сильном нагревании разлагается аналогично — на оксид алюминия, сернистый газ и кислород:

Комплексные соли алюминия

Для описания свойств комплексных солей алюминия — гидроксоалюминатов, удобно использоваться следующий прием: мысленно разбейте тетрагидроксоалюминат на две отдельные молекулы — гидроксид алюминия и гидроксид щелочного металла.

Например , тетрагидроксоалюминат натрия разбиваем на гидроксид алюминия и гидроксид натрия:

Na[Al(OH)4] разбиваем на NaOH и Al(OH)3

Свойства всего комплекса можно определять, как свойства этих отдельных соединений.

Таким образом, гидроксокомплексы алюминия реагируют с кислотными оксидами .

Например , гидроксокомплекс разрушается под действием избытка углекислого газа. При этом с СО2 реагирует NaOH с образованием кислой соли (при избытке СО2), а амфотерный гидроксид алюминия не реагирует с углекислым газом, следовательно, просто выпадает в осадок:

Аналогично тетрагидроксоалюминат калия реагирует с углекислым газом:

По такому же принципу тетрагидроксоалюминаты реагирует с сернистым газом SO2:

А вот под действием избытка сильной кислоты осадок не выпадает, т.к. амфотерный гидроксид алюминия реагирует с сильными кислотами.

Например , с соляной кислотой:

Правда, под действием небольшого количества ( недостатка ) сильной кислоты осадок все-таки выпадет, для растворения гидроксида алюминия кислоты не будет хватать:

Аналогично с недостатком азотной кислоты выпадает гидроксид алюминия:

Комплекс разрушается при взаимодействии с хлорной водой (водным раствором хлора) Cl2:

При этом хлор диспропорционирует.

Также комплекс может прореагировать с избытком хлорида алюминия. При этом выпадает осадок гидроксида алюминия:

Если выпарить воду из раствора комплексной соли и нагреть образующееся вещество, то останется обычная соль-алюминат:

Гидролиз солей алюминия

Растворимые соли алюминия и сильных кислот гидролизуются по катиону. Гидролиз протекает ступенчато и обратимо, т.е. чуть-чуть:

I ступень: Al 3+ + H2O = AlOH 2+ + H +

II ступень: AlOH 2+ + H2O = Al(OH )2 + + H +

Однако сульфиды, сульфиты, карбонаты алюминия и их кислые соли гидролизуются необратимо, полностью, т.е. в водном растворе не существуют, а разлагаются водой:

Более подробно про гидролиз можно прочитать в соответствующей статье.

Алюминаты

Соли, в которых алюминий является кислотным остатком (алюминаты) — образуются из оксида алюминия при сплавлении с щелочами и основными оксидами:

Для понимания свойств алюминатов их также очень удобно разбить на два отдельных вещества.

Например, алюминат натрия мы разделим мысленно на два вещества: оксид алюминия и оксид натрия.

NaAlO2 разбиваем на Na2O и Al2O3

Тогда нам станет очевидно, что алюминаты реагируют с кислотами с образованием солей алюминия :

KAlO2 + 4HCl → KCl + AlCl3 + 2H2O

NaAlO2 + 4HCl → AlCl3 + NaCl + 2H2O

Под действием избытка воды алюминаты переходят в комплексные соли:

Бинарные соединения

Сульфид алюминия под действием азотной кислоты окисляется до сульфата:

либо до серной кислоты (под действием горячей концентрированной кислоты):

Сульфид алюминия разлагается водой:

Карбид алюминия также разлагается водой при нагревании на гидроксид алюминия и метан:

Нитрид алюминия разлагается под действием минеральных кислот на соли алюминия и аммония:

Химические свойства основных оксидов


Подробно про оксиды, их классификацию и способы получения можно прочитать здесь.

1. Взаимодействие с водой. С водой способны реагировать только основные оксиды, которым соответствуют растворимые гидроксиды (щелочи). Щелочи образуют щелочные металлы (литий, натрий, калий, рубидий и цезий) и щелочно-земельные (кальций, стронций, барий). Оксиды остальных металлов с водой химически не реагируют. Оксид магния реагирует с водой при кипячении.

CuO + H2O ≠ (реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

2. Взаимодействие с кислотными оксидами и кислотами. При взаимодействии основным оксидов с кислотами образуется соль этой кислоты и вода. При взаимодействии основного оксида и кислотного образуется соль:

основный оксид + кислота = соль + вода

основный оксид + кислотный оксид = соль

При взаимодействии основных оксидов с кислотами и их оксидами работает правило:

Хотя бы одному из реагентов должен соответствовать сильный гидроксид (щелочь или сильная кислота).

Иными словами, основные оксиды, которым соответствуют щелочи, реагируют со всеми кислотными оксидами и их кислотами. Основные оксиды, которым соответствуют нерастворимые гидроксиды, реагируют только с сильными кислотами и их оксидами (N2O5, NO2, SO3 и т.д.).

Основные оксиды, которым соответствуют щелочи Основные оксиды, которым соответствуют нерастворимые основания
Реагируют со всеми кислотами и их оксидами Реагируют только с сильными кислотами и их оксидами
Na2O + SO2 → Na2SO3 CuO + N2O5 → Cu(NO3)2

3. Взаимодействие с амфотерными оксидами и гидроксидами.

При взаимодействии основных оксидов с амфотерными образуются соли:

основный оксид + амфотерный оксид = соль

С амфотерными оксидами при сплавлении взаимодействуют только основные оксиды, которым соответствуют щелочи . При этом образуется соль. Металл в соли берется из более основного оксида, кислотный остаток — из более кислотного. В данном случае амфотерный оксид образует кислотный остаток.

CuO + Al2O3(реакция не идет, т.к. Cu(OH)2 — нерастворимый гидроксид)

(чтобы определить кислотный остаток, к формуле амфотерного или кислотного оксида добавляем молекулу воды: Al2O3 + H2O = H2Al2O4 и делим получившиеся индексы пополам, если степень окисления элемента нечетная: HAlO2. Получается алюминат-ион AlO2 — . Заряд иона легко определить по числу присоединенных атомов водорода — если атом водорода 1, то заряд аниона будет -1, если 2 водорода, то -2 и т.д.).

Амфотерные гидроксиды при нагревании разлагаются, поэтому реагировать с основными оксидами фактически не могут.

4. Взаимодействие оксидов металлов с восстановителями.

При оценке окислительно-восстановительной активности металлов и их ионов можно использовать электрохимический ряд напряжений металлов:


Восстановительные свойства (способность отдавать электроны) у простых веществ-металлов здесь увеличиваются справа налево, окислительные свойства ионов металлов — увеличиваются наоборот, слева направо. При этом некоторые ионы металлов в промежуточных степенях окисления могут проявлять также восстановительные свойства (например ион Fe 2+ можно окислить до иона Fe 3+ ).

Более подробно про окислительно-восстановительные реакции можно прочитать здесь.

Таким образом, ионы некоторых металлов — окислители (чем правее в ряду напряжений, тем сильнее). При взаимодействии с восстановителями металлы переходят в степень окисления 0.

4.1. Восстановление углем или угарным газом.

Углерод (уголь) восстанавливает из оксидов до простых веществ только металлы, расположенные в ряду активности после алюминия. Реакция протекает только при нагревании.

FeO + C = Fe + CO


Активные металлы, расположенные в ряду активности левее алюминия, активно взаимодействуют с углеродом, поэтому при взаимодействии их оксидов с углеродом образуются карбиды и угарный газ:

CaO + 3C = CaC2 + CO

Угарный газ также восстанавливает из оксидов только металлы, расположенные после алюминия в электрохимическом ряду:

CuO + CO = Cu + CO2


4.2. Восстановление водородом .

Водород восстанавливает из оксидов только металлы, расположенные в ряду активности правее алюминия. Реакция с водородом протекает только в жестких условиях – под давлением и при нагревании.

CuO + H2 = Cu + H2O


4.3. Восстановление более активными металлами (в расплаве или растворе, в зависимости от металла)

При этом более активные металлы вытесняют менее активные. То есть добавляемый к оксиду металл должен быть расположен левее в ряду активности, чем металл из оксида. Реакции, как правило, протекают при нагревании.

Например , оксид цинка взаимодействует с алюминием:

3ZnO + 2Al = Al2O3 + 3Zn

но не взаимодействует с медью:

ZnO + Cu ≠

Восстановление металлов из оксидов с помощью других металлов — это очень распространенный процесс. Часто для восстановления металлов применяют алюминий и магний. А вот щелочные металлы для этого не очень подходят – они слишком химически активны, что создает сложности при работе с ними.

Алюмотермия – это восстановление металлов из оксидов алюминием.

Например : алюминий восстанавливает оксид меди (II) из оксида:

3CuO + 2Al = Al2O3 + 3Cu

Магниетермия – это восстановление металлов из оксидов магнием.

CuO + Mg = Cu + MgO


Железо можно вытеснить из оксида с помощью алюминия:

При алюмотермии образуется очень чистый, свободный от примесей углерода металл.

4.4. Восстановление аммиаком.

Аммиаком можно восстанавливать только оксиды неактивных металлов. Реакция протекает только при высокой температуре.

Например , аммиак восстанавливает оксид меди (II):

3CuO + 2NH3 = 3Cu + 3H2O + N2

5. Взаимодействие оксидов металлов с окислителями.

Под действием окислителей некоторые основные оксиды (в которых металлы могут повышать степень окисления, например Fe 2+ , Cr 2+ , Mn 2+ и др.) могут выступать в качестве восстановителей.

Например , оксид железа (II) можно окислить кислородом до оксида железа (III):

Читайте также: