Что является основными характеристиками механических свойств металлов

Обновлено: 19.05.2024

Поведение металла под нагрузкой определяется его механическими свойствами (прочностью, пластичностью, твердостью, упругостью, жесткостью, вязкостью). Методы испытаний механических свойств в зависимости от характера действия нагрузки делят на три группы: статические, когда нагрузка возрастает медленно (плавно); динамические – нагрузка возрастает с большой скоростью (мгновенно) – удар; циклические – при повторно-переменных нагрузках, когда нагрузка многократно изменяется по величине и знаку (испытания на усталость).

Механические свойства металлов при статическом нагружении.В результате испытаний определяют следующие характеристики металлов: прочность, пластичность, твердость, упругость, жесткость.

Прочность – свойство металла сопротивляться пластической деформации и разрушению под действием внешних сил. В зависимости от способа статического нагружения различают прочность при растяжении, сжатии и изгибе.

Испытания на растяжение. Для испытаний применяют специальные цилиндрические или плоские образцы. Расчетная длина образца равна десяти- или пятикратному диаметру. Образец закрепляют в испытательной машине и нагружают. Результаты испытаний отражают на диаграмме растяжения.

На диаграмме растяжения пластичных металлов (рис. 13, а) можно выделить три участка: ОА – прямолинейный, соответствующий упругой деформации; АВ – криволинейный, соответствующий упругопластической деформации при возрастании нагрузки; ВС – соответствующий упругопластической деформации при снижении нагрузки. В точке С происходит разрушение образца с разделением его на две части.

От начала деформации (точка О) до точки А образец деформируется пропорционально приложенной нагрузке. Участок ОА – прямая линия. Максимальное напряжение, не превышающее предела пропорциональности, практически вызывает только упругую деформацию, поэтому его часто называют пределом упругости металла.



Рис. 13. Диаграмма растяжения пластичных металлов:

а – с площадкой текучести; б – без площадки текучести

При испытании пластичных металлов на кривой растяжения образуется площадка текучести АА¢. В этом случае напряжение, отвечающее этой площадке, sт называют физическим пределом текучести. Физический предел текучести – это наименьшее напряжение, при котором металл деформируется (течет) без заметного изменения нагрузки.

Напряжение, вызывающее остаточную деформацию, равную 0,2 % от первоначальной длины образца, называют условным пределом текучести0,2).

Участок А¢В (см. рис 13, а) соответствует дальнейшему повышению нагрузки и более значительной пластической деформации во всем объеме металла образца. Напряжение, соответствующее наибольшей нагрузке (точка В), предшествующей разрушению образца, называют временным сопротивлением, или пределом прочности при растяжении σв. Это характеристика статической прочности:

где Рmax – наибольшая нагрузка (напряжение), предшествующая разрушению образца, МПа;

F0 – начальная площадь поперечного сечения образца, м 2 .

У пластичных металлов, начиная с напряжения σв, деформация сосредоточивается (локализуется) в одном участке образца, где появляется сужение, так называемая шейка. В результате развития множественного скольжения в шейке образуется множество вакансий и дислокаций, возникают зародышевые несплошности. Сливаясь, они образуют трещину, которая распространяется в поперечном направлении растяжению, и образец разрушается (точка С). Кривая растяжения образца без площадки текучести показана на рис. 13, б.

Пластичность – свойство металла пластически деформироваться, не разрушаясь под действием внешних сил. Это одно из важных механических свойств металла, которое в сочетании с высокой прочностью делает его основным конструкционным материалом. Для определения пластичности не требуется образцов и оборудования. После испытания металла на растяжение эти же образцы измеряют и определяют характеристики пластичности. Показатели пластичности – относительное удлинение δ и относительное сужение ψ.

Относительным удлинением δ называется отношение абсолютного удлинения, т. е. приращения расчетной длины образца после разрыва (ll0), к его первоначальной расчетной длине l0, выраженное в процентах:

где l0 – первоначальная длина образца, мм;

l – длина образца после разрыва, мм.

Относительным сужением y называется отношение абсолютного сужения, т. е. уменьшения площади поперечного сечения образца после разрыва (FоF), к первоначальной площади его поперечного сечения, выраженное в процентах:

где F0 – первоначальная площадь поперечного сечения образца, мм 2 ;

F – площадь поперечного сечения образца после разрыва, мм 2 .

Твердость – свойство металла сопротивляться внедрению в него другого более твердого тела. Для определения твердости часто не требуется изготовления специальных образцов, испытания проводятся без разрушения металла.


Твердость металла можно определять прямыми и косвенными методами: вдавливанием, царапаньем, упругой отдачей, магнитным методом. Прямые методы состоят в том, что в металл вдавливают твердый наконечник (индентор) различной формы из закаленной стали, алмаза или твердого сплава (шарик, конус, пирамида). После снятия нагрузки на индентор в металле остается отпечаток, размер которого характеризует твердость.

Существует множество методов определения твердости металлов. Но лишь некоторые из них нашли широкое применение в машиностроении. Все они названы в честь своих создателей.

Метод Бринелля. В плоскую поверхность металла вдавливается стальной закаленный шарик диаметром 10; 5 или 2,5 мм (рис. 14, а). После снятия нагрузки в металле остается отпечаток (лунка). Диаметр отпечатка d измеряют специальным микроскопом с точностью 0,05 мм. На практике пользуются специальной таблицей, в которой каждому диаметру отпечатка соответствует определенное число твердости НВ.

Метод Бринелля не рекомендуется применять для металлов с твердостью более НВ450, так как шарик может деформироваться и получится искаженный результат. Этот метод в основном используется для измерения твердости неупрочненного металла заготовок и полуфабрикатов.

Метод Роквелла. Твердость определяют по глубине отпечатка. Наконечником служит стальной закаленный шарик диаметром 1,58 мм для мягких металлов или алмазный конус с углом при вершине 120° – для твердых и сверхтвердых (более HRC70) металлов (рис. 14, б).

Шарик и конус вдавливаются в металл нагрузкой 60, 100 или 150 кг. Отсчет результатов измерений определяется по показанию стрелки на шкале индикатора твердомера (рис. 15, а). После включения нагрузки стрелка перемещается по шкале индикатора твердомера (рис. 15, б) и указывает значение твердости (рис. 15, в).


Рис. 15. Показания индикатора прибора ТК

При вдавливании стального шарика нагрузка – 100 кг (отсчет по внутренней (красной) шкале индикатора), твердость обозначают как НRВ. При вдавливании алмазного конуса отсчет твердости осуществляется по показанию стрелки на наружной (черной) шкале индикатора (см. рис. 15, в). Нагрузка 150 кг – для твердых металлов. Это основной метод измерения твердости закаленных сталей. Обозначение твердости – НRC. Для очень твердых металлов, а также мелких деталей нагрузка – 60 кг, обозначение твердости – НRА.

Определение твердости по Роквеллу дает возможность испытывать мягкие и твердые металлы, а отпечатки от шарика или конуса очень малы, поэтому можно измерять твердость готовых деталей. Измерения не требуют никаких вычислений – число твердости читается на шкале индикатора твердомера. Поверхность для испытания должна быть шлифованной.


Метод Виккерса. В испытуемую поверхность (шлифованную или полированную) вдавливается четырехгранная алмазная пирамида под нагрузкой 5, 10, 20, 30, 50, 100 кг. В металле остается квадратный отпечаток. Специальным микроскопом твердомера измеряют величину диагонали отпечатка (рис. 16). Зная нагрузку на пирамиду и величину диагонали отпечатка, по таблицам определяют твердость металла, обозначаемую как HV.

Этот метод универсальный. Его можно использовать для определения твердости деталей малой толщины и тонких поверхностных слоев большой твердости (после азотирования, нитроцементации и т. п.). Чем тоньше металл, тем меньше должна быть нагрузка на пирамиду, но чем больше нагрузка, тем точнее получаемый результат.

Прочность при динамическом нагружении(испытания на ударную вязкость – на удар).В процессе эксплуатации многие детали машин испытывают динамические (ударные) нагрузки. Для определения стойкости металла к удару и одновременной оценки его склонности к хрупкому разрушению проводят испытания на ударный изгиб. В результате определяют ударную вязкость – характеристику динамической прочности.

Для определения ударной вязкости применяют 20 типов образцов (обычно размером 10 ´ 10 ´ 55 мм) с U- или V-образным надрезом. Надрез посередине образца называется концентратором. Испытания проводят на маятниковом копре 1 (рис. 17, а). Маятник 2, падая с определенной высоты, разрушает образец 3, свободно установленный на двух опорах копра (рис. 17, б). Работа удара К (Дж или кгс×м), затраченная на излом (разрушение) образца, фиксируется стрелкой на шкале копра и определяется из разности энергии маятника в положении его до и после удара. Ее можно определить по формуле:

К = G (h1h2), (6)

где G – вес маятника, Н;

h1 – высота подъема маятника до разрушения образца, м;

h2 – высота подъема маятника после разрушения, м.

Ударная вязкость обозначается КС (прежнее обозначение – aн) и подсчитывается как отношение работы, затраченной на разрушение образца К, к площади поперечного сечения образца в месте надреза F, МДж/м 2 :

КС (aн) = К / F. (7)

Если образец имеет U-образный надрез, то в обозначение ударной вязкости добавляется буква U (КСU), а если V-образный, то добавляется буква V (КСV). Например, KCU = 1 кгс×м/см 2 = 98 кДж/м 2 .



Определение ударной вязкости является наиболее простым и показательным способом оценки способности металлов, имеющих объемно центрированную кубическую решетку, к хрупкости при работе в условиях низких температур, называемой хладноломкостью.

Практически хладноломкость определяют при испытании на удар серии образцов при нескольких понижающихся значениях температуры (от комнатной до минус 100°С). Результаты испытаний наносят на график в координатах «ударная вязкость – температура испытания». Температура, при которой происходит падение ударной вязкости, называется критической температурой хрупкости, или порогом хладноломкости. Порог хладноломкости – отрицательная температура, при которой металл переходит из вязкого состояния в хрупкое.

Прочность при циклическом нагружении(испытания на усталость). Многие детали (валы, рессоры, рельсы, шестерни) в процессе работы подвергаются повторно-переменным нагрузкам. Разрушение таких деталей при эксплуатации происходит в результате циклического нагружения при напряжении, значительно меньшем, чем временное сопротивление металла. Процесс постепенного накопления напряжения в металле при действии циклических нагрузок, приводящий к образованию трещин и разрушению, называется уста-лостью. Свойство металла выдерживать большое число циклов переменных напряжений, т. е. противостоять усталости, называется выносливостью, или циклической (усталостной) прочностью.

Усталостная прочность – способность металла сопротивляться упругим и пластическим деформациям при переменных нагрузках. Она характеризуется наибольшим напряжением s-1, которое выдерживает металл при бесконечно большом числе циклов нагружения не разрушаясь и называется пределом усталости, или пределом выносливости. Для углеродистой конструкционной стали предел усталости принимается равным (0,4 – 0,5) sв.

Значение предела выносливости зависит от целого ряда факторов: степени загрязненности металла неметаллическими включениями, макро- и микроструктуры металла, состояния поверхности, формы и размеров детали и др.


Разрушение металлов при усталости отличается от разрушения при однократных нагрузках особым видом излома. При знакопеременной нагрузке происходит постепенное накопление напряжения, обусловленное движением дислокаций. Поверхность детали, как наиболее нагруженная часть сечения, претерпевает микродеформацию, и в наклепанной (упрочненной деформацией) зоне возникают микротрещины. Из множества микротрещин развитие получает только та, которая имеет наиболее острую вершину и наиболее благоприятно расположена по отношению к действующему напряжению.

Пораженная трещиной часть сечения детали не несет нагрузки, и она перераспределяется на оставшуюся часть, которая непрерывно уменьшается, пока не произойдет мгновенное разрушение. Таким образом, для усталостного излома характерно, как минимум, наличие зоны прогрессивно растущей трещины 1 и зоны долома 2 (рис. 18).

Важной характеристикой конструктивной прочности (надежности) металла является живучесть при циклическом нагружении.

Живучесть – это способность металла работать в поврежденном состоянии после образования трещины. Она измеряется числом циклов нагружения до разрушения или скоростью развития трещины усталости при данном напряжении. Живучесть является самостоятельным свойством, которое не зависит от других свойств металла. Живучесть имеет важное значение для оценки работоспособности деталей, работа которых контролируется различными методами дефектоскопии. Чем меньше скорость развития трещины усталости, тем легче ее обнаружить.

Для повышения усталостной прочности деталей желательно в поверхностных слоях металла создавать напряжение сжатия методами поверхностного упрочнения (механическими, термическими или химико-термическими).

3. металлические сплавы

Чистые металлы в большинстве случаев не обеспечивают требуемого комплекса механических и технологических свойств, поэтому для изготовления деталей машин наибольшее распространение получили металлические сплавы – вещества, обладающие металлическими свойствами, представляющие собой сочетание какого-либо металла (основа сплава) с другими металлами или неметаллами. Например, латунь – сплав меди (металл) с цинком (металл), сталь – сплав железа (металл) с углеродом (неметалл). Большинство сплавов получают путем сплавления, т. е. соединения компонентов сплава в жидком состоянии. Есть и другие способы образования сплавов. Так, металлокерамические сплавы образуются путем спекания из порошков.

Механические свойства металлов и сплавов

К основным механическим свойствам металлов относятся прочность , вязкость , пластичность , твердость , выносливость, ползучесть, износостойкость. Они являются главными характеристиками металла или сплава .

Рассмотрим некоторые термины, применяемые при характеристике механических свойств. Изменения размеров и формы, происходящие в твердом теле под действием внешних сил, называются деформациями, а процесс, их вызывающий,— деформированием. Деформации, исчезающие при разгрузке, называются упругими, а не исчезающие после снятия нагрузки — остаточными или пластическими.

Напряжением называется величина внутренних сил, возникающих в твердом теле под влиянием внешних сил.

Под прочностью материала понимают его способность сопротивляться деформации или разрушению под действием статических или динамических нагрузок. О прочности судят по характеристикам механических свойств, которые получают при механических испытаниях. К статическим испытаниям на прочность относятся растяжение, сжатие, изгиб, кручение, вдавливание. К динамическим относятся испытания на ударную вязкость, выносливость и износостойкость. Эластичностью называется способность материалов упруго деформироваться, а пластичностью — способность пластически деформироваться без разрушения.

Вязкость — это свойство материала, которое определяет его способность к поглощению механической энергии при постепенном увеличении пластической деформации вплоть до разрушения материала. Материалы должны быть одновременно прочными и пластичными.

Твердость — это способность материала сопротивляться проникновению в него других тел.

Выносливость — это способность материала выдерживать, не разрушаясь, большое число повторно-переменных нагрузок.

Износостойкость — это способность материала сопротивляться поверхностному разрушению под действием внешнего трения.

Ползучесть — это способность материала медленно и непрерывно пластически деформироваться (ползти) при постоянном напряжении (особенно при высоких температурах).

Поведение некоторых металлов (например, отожженной стали) при испытании на растяжение показано на рис. 3 . При увеличении нагрузки в металле сначала развиваются процессы упругой деформации, удлинение образца при этом незначительно. Затем наблюдается пластическое течение металла без повышения напряжения, этот период называется текучестью. Напряжение, при котором продолжается деформация образца без заметного увеличения нагрузки, называют пределом текучести. При дальнейшем повышении нагрузки происходит развитие в металле процессов наклепа (упрочнения под нагрузкой). Наибольшее напряжение, предшествующее разрушению образца, называют пределом прочности при растяжении.

Рис. 3. Диаграмма деформации при испытании металлов на растяжение.

Напряженное состояние — это состояние тела, находящегося под действием уравновешенных сил, при установившемся упругом равновесии всех его частиц. Остаточные напряжения — это напряжения, остающиеся в теле, после прекращения действия внешних сил, или возникающие при быстром нагревании и охлаждении, если линейное расширение или усадка слоев металла и частей тела происходит неравномерно.

Внутренние напряжения образуются при быстром охлаждении или нагревании в температурных зонах перехода от пластического к упругому состоянию металла. Эти температуры для стали соответствую 400—600°. Если образующиеся внутренние напряжения превышают предел прочности, то в деталях образуются трещины, если они превышают предел упругости, то происходит коробление детали.

Предел прочности при растяжении в кг/мм2 определяется на разрывной машине как отношение нагрузки Р в кГ, необходимой для разрушения стандартного образца ( рис. 4, а ), к площади поперечного сечения образца в мм 2 .

Рис. 4. Методы испытания прочности материалов: а - на растяжение; б - на изгиб; в - на ударную вязкость; г - на твёрдость

Предел прочности при изгибе в кГ/мм2 определяется разрушением образца, который устанавливаете» на двух опорах ( рис. 4, б ), нагруженного по середине сосредоточенной нагрузкой Р.

Для установления пластичности материала определяют относительное удлинение δ при растяжении или прогиб ƒ при изгибе.

Относительное удлиненней δ в % определяется на образцах, испытуемых на растяжение. На образец наносят деления (рис. 4, а) и измеряют между ними расстояние до испытания (l0) и после разрушения (l) и определяют удлинение

δ = l-l o / l o · 100%

Прогиб при изгибе в мм определяется при помощи прогибомера машины, указывающего прогиб ƒ, образующийся на образце в момент его разрушения (рис. 4, б).

Ударная вязкость в кГм/см 2 определяется на образцах ( рис. 4, в ), подвергаемых на копре разрушению ударом отведенного в сторону маятника. Для этого работу деформации в кГм делят на площадь поперечного сечения образца в см 2 .

Твердость по Бринелю (НВ) определяют на зачищенной поверхности образца, в которую вдавливают стальной шарик ( рис. 4, г ) диаметром 5 или 10 мм под соответствующей нагрузкой в 750 или 3000 кГ и замеряют диаметр d образовавшейся лунки. Отношение нагрузки в кГ к площади лунки πd2 / 4 в мм 2 дает число твердости.

Показатели для механических свойств для основных сплавов приведены в табл. 1 .

Характеристики основных механических свойств металлов и сплавов и способы их определения

Любое вещество, будь то газ, жидкость или твердое тело, обладает рядом специфических, только ему присущих свойств. Однако эти свойства позволяют не только индивидуализировать элементы, но и объединять их в группы по принципу схожести.


Посмотрите на металлы: с обывательской точки зрения это блестящие элементы, с высокой электро- и теплопроводностью, не восприимчивые к внешним физическим воздействиям, ковкие и легко свариваемые при высоких температурах. Достаточен ли этот перечень. чтобы объединить металлы в одну группу? Конечно же нет, металлы и их производные (сплавы) гораздо сложнее и обладают целым набором химических, физических, механических и технологических свойств. Сегодня мы поговорим лишь об одной группе: механических свойствах металлов.

Основные механические свойства металлов

Что это за свойства? Под механическими понимают такие свойства субстанции, которые отражают ее умение противостоять действиям извне. Известно девять основных механических свойств металлов:


- Прочность - означает, что приложение статической, динамической или знакопеременной нагрузки не приводит к нарушению внешней и внутренней целостности материала, изменению его строения, формы и размеров.


- Твердость (часто путают с прочностью) - характеризует возможность одного материала противостоять прониканию другого, более твердого предмета.

Металл

- Упругость - означает способность к деформированию без нарушения целостности под действием определенных сил и возвращению первоначальной формы после освобождения от нагрузки.


- Пластичность (часто путают с упругостью и наоборот) - также способность к деформации без нарушения целостности, однако в отличие от упругости, пластичность означает, что объект способен сохранить полученную форму.


- Стойкость к трещинам - под воздействием внешних сил (ударов, натяжений и пр.) материал не образует трещин и сохраняет наружную целостность.


- Вязкость или ударная вязкость - антоним ломкости, то есть возможность сохранять целостность материала при возрастающих физических воздействиях.


- Износостойкость - способность к сохранению внутренней и внешней целостности при длительном трении.

Механические свойства металлов

- Жаростойкость - длительная возможность противостоять изменению формы, размера и разрушению при воздействии больших температур.


- Усталость - время и количество циклических воздействий, которые материал может выдержать без нарушения целостности.


Часто, говоряо тех или иных свойствах, мы путаем их названия: технологические свойства относим к физическим, физические к механическим и наоборот. И это неудивительно, ведь несмотря на глубинные отличия, лежащие в основе той или иной группы свойств, механические свойства не только крайне тесно связаны с другими характеристиками металлов, но и напрямую зависят от них.

Физические свойства металлов

Наиболее взаимозависимы между собой механические и химические свойства металлов, ведь именно химический состав металла или сплава, его внутреннее строение (особенности кристаллической решетки) диктуют все остальные его параметры. Если говорить о механических и физических свойствах металлов, то их чаще других путают между собой, что обусловлено близостью данных определений.


Физические свойства часто неотделимы от механических. К примеру, тугоплавкие металлы еще и самые прочные. Главное же отличие лежит в природе свойств. Физические свойства - те что проявляется в покое, механические - только под воздействием извне. Не хуже других связаны механические и технологические свойства металлов. Например, механическое свойство металла "прочность" может быть результатом его грамотной технологической обработки (с этой целью нередко используют "закалку" и "старение"). Обратная взаимосвязь не менее важна, к примеру, ковкость проявление хорошей ударной вязкости.

Физические свойства металлов

Делая вывод, можно сказать, что зная некоторые химические, физические или технологические свойства можно предугадать, как будет вести себя металл под воздействием нагрузки (т.е. механически), и наоборот.


В чем отличия механических свойств металлов и сплавов?


Различаются ли механические свойства металлов и сплавов? Безусловно. Ведь любой металлический сплав изначально создается с целью получения каких-либо конкретных свойств. Некоторые сочетания легирующих элементов и основного металла в сплаве способны мгновенно преобразить легируемый элемент. Так алюминий ( не самый прочный и твердый металл в мире) в сочетании с цинком и магнием образует сплав по прочности сравнимый со сталью. Все это дает практически неограниченные возможности в получении веществ наиболее близких к требуемым.

Отдельное внимание следует уделить механическим свойствам наплавленных металлов. Наплавленным считается металл, с помощью которого производилась сварка двух или более частей какого-то металлического элемента или конструкции. Этот металл словно нитки соединяет разорванные части. От того, как будет вести себя "шов" под нагрузкой, будет зависеть безопасность и надежность всей конструкции. Исходя из этого, крайне важно, чтобы свойства наплавленного металла были не хуже, чем у главного металла.

Как определить механические свойства?

Экспериментальным путем. Среди основных методов определения механических свойств металлов можно выделить:


- испытания на растяжение;


- метод вдавливания по Бринеллю;

Металлопрокат

- определение твердости металла по Роквеллу;


- оценка твердости по Виккерсу;


- определение вязкости с помощью маятникового копра;


Механические свойства имеют весьма серьезное значение. Их знание позволяет использовать металлы и их сплавы с наибольшей эффективностью и отдачей.

Механические свойства материалов

совокупность показателей, характеризующих сопротивление материала воз действующей на него нагрузке, его способность деформироваться при этом, а также особенности его поведения в процессе разрушения. В соответствии с этим М. с. м. измеряют напряжениями (обычно в кгс/мм 2 или Мн/м 2 ), деформациями (в %), удельной работой деформации и разрушения (обычно в кгсм/см 2 или Мдж/м 2 ), скоростью развития процесса разрушения при статической или повторной нагрузке (чаще всего в мм за 1 сек или за 1000 циклов повторений нагрузки, мм/кцикл). М. с. м. определяются при механических испытаниях образцов различной формы.

В общем случае материалы в конструкциях могут подвергаться самым различным по характеру нагрузкам (рис. 1): работать на Растяжение, сжатие, Изгиб, Кручение, срез и т. д. или подвергаться совместному действию нескольких видов нагрузки, например растяжению и изгибу. Также разнообразны условия эксплуатации материалов и по температуре, окружающей среде, скорости приложения нагрузки и закону её изменения во времени. В соответствии с этим имеется много показателей М. с. м. и много методов механических испытаний. Для металлов и конструкционных пластмасс наиболее распространены испытания на растяжение, Твёрдость, ударный изгиб; хрупкие конструкционные материалы (например, керамику, металлокерамику) часто испытывают на сжатие и статический изгиб; механические свойства композиционных материалов важно оценивать, кроме того, при испытаниях на сдвиг.

Диаграмма деформации. Приложенная к образцу нагрузка вызывает его деформацию (См. Деформация). Соотношения между нагрузкой и деформацией описываются т. н. диаграммой деформации (рис. 2). Вначале деформация образца (при растяжении — приращение длины Δl ) пропорциональна возрастающей нагрузке Р, затем в точке n эта пропорциональность нарушается, однако для увеличения деформации необходимо дальнейшее повышение нагрузки Р; при Δl > Δlв деформация развивается без приложения усилия извне, при постепенно падающей нагрузке. Вид диаграммы деформации не меняется, если по оси ординат откладывать напряжение

Сопротивление материалов измеряется напряжениями, характеризующими нагрузку, приходящуюся на единицу площади поперечного сечения образца

при котором нарушается пропорциональный нагрузке рост деформации, называется пределом пропорциональности. При нагрузке Р 0; (σ2 = σ3 = 0) напряжённому состоянию соответствует трёхосное деформированное состояние (приращение длины в направлении действия приложенных сил и уменьшение линейных размеров в двух других взаимно перпендикулярных направлениях): δ1>0; δ2 = δ3 Рв наряду со всё возрастающей упругой деформацией появляется заметная необратимая, не исчезающая при разгрузке пластическая деформация. Напряжение, при котором остаточная относительная деформация (при растяжении — удлинение) достигает заданной величины (по ГОСТ — 0,2 %), называется условным пределом текучести и обозначается

Практически точность современных методов испытания такова, что σп и σе определяют с заданными допусками соответственно на отклонение от закона пропорциональности [увеличение ctg(90 — α) на 25—50 %] и на величину остаточной деформации (0,003—0,05 %) и говорят об условных пределах пропорциональности и упругости. Кривая растяжения конструкционных металлов может иметь максимум (точка в на рис. 2) или обрываться при достижении наибольшей нагрузки Рв. Отношение

характеризует временное сопротивление (предел прочности) материала. При наличии максимума на кривой растяжения в области нагрузок, лежащих на кривой левее в, образец деформируется равномерно по всей расчётной длине l0, постепенно уменьшаясь в диаметре, но сохраняя начальную цилиндрическую или призматическую форму. При пластической деформации металлы упрочняются, поэтому, несмотря на уменьшение сечения образца, для дальнейшей деформации требуется прикладывать всё возрастающую нагрузку. σв, как и условные σ0,2, σn и σе, характеризует сопротивление металлов пластической деформации. На участке диаграммы деформации правее в форма растягиваемого образца изменяется: наступает период сосредоточенной деформации, выражающейся в появлении «шейки». Уменьшение сечения в шейке «обгоняет» упрочнение металлов, что и обусловливает падение внешней нагрузки на участке Рв — Pk.

У многих конструкционных материалов сопротивление пластической деформации в упруго-пластической области при растяжении и сжатии практически одинаково. Для некоторых металлов и сплавов (например, магниевые сплавы, высокопрочные стали) характерны заметные различия по этой характеристике при растяжении и сжатии. Сопротивление пластической деформации особенно часто (при контроле качества продукции, стандартности режимов термической обработки и в др. случаях) оценивается по результатам испытаний на твёрдость путём вдавливания твёрдого наконечника в форме шарика (твёрдость по Бринеллю или Роквеллу), конуса (твёрдость по Роквеллу) или пирамиды (твёрдость по Виккерсу). Испытания на твёрдость не требуют нарушения целостности детали и потому являются самым массовым средством контроля механических свойств. Твёрдость по Бринеллю (HB) при вдавливании шарика диаметром D под нагрузкой Р характеризует среднее сжимающее напряжение, условно вычисляемое на единицу поверхности шарового отпечатка диаметром d:

Характеристики пластичности. Пластичность при растяжении конструкционных материалов оценивается удлинением

(где h0 и hk — начальная и конечная высота образца), при кручении — предельным углом закручивания рабочей части образца Θ, рад или относительным сдвигом γ = Θr (где r — радиус образца). Конечная ордината диаграммы деформации (точка k на рис. 2) характеризует сопротивление разрушению металла Sk, которое определяется

Характеристики разрушения. Разрушение происходит не мгновенно (в точке k), а развивается во времени, причём начало в разрушения может соответствовать какой-то промежуточной точке на участке вк, а весь процесс заканчиваться при постепенно падающей до нуля нагрузке. Положение точки к на диаграмме деформации в значительной степени определяется жёсткостью испытательной машины и иннерционностью измерительной системы. Это делает величину Sk в большой мере условной.

Многие конструкционные металлы (стали, в том числе высокопрочные, жаропрочные хромоникелевые сплавы, мягкие алюминиевые сплавы и др.) разрушаются при растяжении после значительной пластической деформации с образованием шейки. Часто (например, у высокопрочных алюминиевых сплавов) поверхность разрушения располагается под углом примерно 45° к направлению растягивающего усилия. При определенных условиях (например, при испытании хладноломких сталей в жидком азоте или водороде, при воздействии растягивающих напряжений и коррозионной среды для металлов, склонных к коррозии под напряжением) разрушение происходит по сечениям, перпендикулярным растягивающей силе (прямой излом), без макропластической деформации.

Прочность материалов, реализуемая в элементах конструкций, зависит не только от механических свойств самого металла, но и от формы и размеров детали (т. н. эффекты формы и масштаба), упругой энергии, накопленной в нагруженной конструкции, характера действующей нагрузки (статическая, динамическая, периодически изменяющаяся по величине), схемы приложения внешних сил (растяжение одноосное, двухосное, с наложением изгиба и др.), рабочей температуры, окружающей среды. Зависимость прочности и пластичности металлов от формы характеризуется т. н. чувствительностью к надрезу, оцениваемой обычно по отношению пределов прочности надрезанного и гладкого образцов

(у цилиндрических образцов надрез обычно выполняют в виде круговой выточки, у полос — в виде центрального отверстия или боковых вырезов). Для многих конструкционных материалов это отношение при статической нагрузке больше единицы, что связано со значительной местной пластической деформацией в вершине надреза. Чем острее надрез, тем меньше локальная пластическая деформация и тем больше доля прямого излома в разрушенном сечении. Хорошо развитый прямой излом можно получить при комнатной температуре у большинства конструкционных материалов в лабораторных условиях, если растяжению или изгибу подвергать образцы массивного сечения (тем толще, чем пластичнее материал), снабдив эти образцы специальной узкой прорезью с искусственно созданной трещиной (рис. 3). При растяжении широкого, плоского образца пластическая деформация затруднена и ограничивается небольшой областью размером 2ry (на рис. 3, б заштрихована), непосредственно примыкающей к кончику трещины. Прямой излом обычно характерен для эксплуатационных разрушений элементов конструкций.

Широкое распространение получили предложенные американским учёным Дж. Р. Ирвином в качестве констант для условий хрупкого разрушения такие показатели, как критический коэффициент интенсивности напряжений при плоской деформации K1C и вязкость разрушения

При этом процесс разрушения рассматривается во времени и показатели K1C(G1C) относятся к тому критическому моменту, когда нарушается устойчивое развитие трещины; трещина становится неустойчивой и распространяется самопроизвольно, когда энергия, необходимая для увеличения её длины, меньше энергии упругой деформации, поступающей к вершине трещины из соседних упруго напряжённых зон металла.

Коэффициент интенсивности напряжений К учитывает не только значение нагрузки, но и длину движущейся трещины:

(λ учитывает геометрию трещины и образца), выражается в кгс/мм 3/2 или Мн/м 3/2 . По K1C или G1C можно судить о склонности конструкционных материалов к хрупкому разрушению в условиях эксплуатации.

Для оценки качества металла весьма распространены испытания на ударный о изгиб призматических образцов, имеющих на одной стороне надрез. При этом оценивают ударную вязкость (См. Ударная вязкость) (в кгсм/см 2 или Мдж/м 2 ) работу деформации и разрушения образца, условно отнесённую к поперечному сечению в месте надреза. Широкое распространение получили испытания на ударный изгиб образцов с искусственно полученной в основании надреза трещиной усталости. Работа разрушения таких образцов ату находится в целом в удовлетворительном соответствии с такой характеристикой разрушения, как K1C, и ещё лучше с отношением

Временна́я зависимость прочности. С увеличением времени действия нагрузки сопротивление пластической деформации и сопротивление разрушению понижаются. При комнатной температуре у металлов это становится особенно заметным при воздействии коррозионной (коррозия под напряжением) или др. активной (эффект Ребиндера) среды. При высоких температурах наблюдается явление ползучести (См. Ползучесть), т. е. прироста пластической деформации с течением времени при постоянном напряжении (рис. 4, а). Сопротивление металлов ползучести оценивают условным пределом ползучести — чаще всего напряжением, при котором пластическая деформация за 100 ч достигает 0,2 %, и обозначают его σ0,2/100. Чем выше температура t, тем сильнее выражено явление ползучести и тем больше снижается во времени сопротивление разрушению металла (рис. 4, б). Последнее свойство характеризуют т. н. пределом длительной прочности, т. е. напряжением, которое при данной температуре вызывает разрушение материала за заданное время (например, σ t 100, σ t 1000 и т. д.). У полимерных материалов температурно-временная зависимость прочности и деформации выражена сильнее, чем у металлов. При нагреве пластмасс наблюдается высокоэластическая обратимая деформация; начиная с некоторой более высокой температуры развивается необратимая деформация, связанная с переходом материала в вязкотекучее состояние. С ползучестью связано и др. важное механическое свойство материалов — склонность к релаксации напряжений, т. е. к постепенному падению напряжения в условиях, когда общая (упругая и пластическая) деформация сохраняет постоянную заданную величину (например, в затянутых болтах). Релаксация напряжений обусловлена увеличением доли пластической составляющей общей деформации и уменьшением её упругой части.

Если на металл действует нагрузка, периодически меняющаяся по какому-либо закону (например, синусоидальному), то с увеличением числа циклов N нагрузки его прочность уменьшается (рис. 4, в) — металл «устаёт». Для конструкционной стали такое падение прочности наблюдается до N = (2—5) ․10 6 циклов. В соответствии с этим говорят о пределе усталости конструкционной стали, понимая под ним обычно амплитуду напряжения

ниже которой сталь при повторно-переменной нагрузке не разрушается. При |σmin| = |σmax| предел усталости обозначают символом σ-1. Кривые усталости алюминиевых, титановых и магниевых сплавов обычно не имеют горизонтального участка, поэтому сопротивление усталости этих сплавов характеризуют т. н. ограниченными (соответствующими заданному N) пределами усталости. Сопротивление усталости зависит также от частоты приложения нагрузки. Сопротивление материалов в условиях низкой частоты и высоких значений повторной нагрузки (медленная, или малоцикловая, усталость) не связано однозначно с пределами усталости. В отличие от статической нагрузки, при повторно-переменных нагрузках всегда проявляется чувствительность к надрезу, т. е. предел усталости при наличии надреза ниже предела усталости гладкого образца. Для удобства чувствительность к надрезу при усталости выражают отношением

характеризует асимметрию цикла). В процессе уставания можно выделить период, предшествующий образованию очага усталостного разрушения, и следующий за ним, иногда довольно длительный, период развития трещины усталости. Чем медленнее развивается трещина, тем надёжнее работает материал в конструкции. Скорость развития трещины усталости dl/dN связывают с коэффициентом интенсивности напряжений степенной функцией:

Различают сопротивление термической усталости, когда появляющиеся в материале напряжения обусловлены тем, что в силу тех или иных причин, например из-за формы детали или условий её закрепления, возникающие при циклическом изменении температуры тепловые перемещения не могут быть реализованы. Сопротивление термической усталости зависит и от многих других свойств материала — коэффициентов линейного расширения и температуропроводности, модуля упругости, предела упругости и др.

Лит.: Давиденков Н. Н., Динамические испытания металлов, 2 изд., Л. — М., 1936; Ратнер С. И., Разрушение при повторных нагрузках, М., 1959; Серенсен С. В., Когаев В. П., Шнейдерович Р. М., Несущая способность и расчеты деталей машин на прочность, 2 изд., М., 1963; Прикладные вопросы вязкости разрушения, пер. с англ., М., 1968; Фридман Я. Б., Механические свойства металлов, 3 изд., М., 1974; Методы испытания, контроля и исследования машиностроительных материалов, под ред. А. Т. Туманова, т. 2, М., 1974.

Рис. 1. Схемы деформации при разных способах нагружения: а — растяжение, б — сжатие, в — изгиб, г — кручение (пунктиром показана начальная форма образцов).

Рис. 3. Образец со специально созданной в вершине надреза трещиной усталости для определения K1C. Испытания на внецентренное (а) и осевое (б) растяжение.

Рис. 4. Изменение механических свойств конструкционных материалов в функции времени (или числа циклов).

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Полезное

Смотреть что такое "Механические свойства материалов" в других словарях:

Механические свойства материалов — Механические свойства материалов, такие как прочность, сопротивление разрушению, твёрдость и др. являются во многих случаях определяющими для принятия решения о применении материала. Методы проверки механических свойств Следует отметить следующие … Википедия

МЕХАНИЧЕСКИЕ СВОЙСТВА — материалов реакция материала на приложенные механич. нагрузки. Осн. характеристиками механич. свойств являются напряжения и деформации. Напряжения характеристики сил, к рые относят к единице сечения образца материала или изделия, конструкции из… … Физическая энциклопедия

Механические свойства — материалов, такие как прочность, сопротивление разрушению, твёрдость и др. являются во многих случаях определяющими для принятия решения о применении материала. Методы проверки механических свойств Следует отметить следующие основные методы… … Википедия

Механические свойства — – отражают способность материала сопротивляться силовым, тепловым, усадочным или другим внутренним напряжениям без нарушения установившейся структуры. К механическим относят деформативные свойства: прочность, твердость, истираемость,… … Энциклопедия терминов, определений и пояснений строительных материалов

Механические свойства горной породы — – свойства, характеризующие возникновение, распределение и изменение механических напряжений и деформаций в горной породе при воздействии механических нагрузок. [ГОСТ Р 50544 93] Рубрика термина: Свойства горной породы Рубрики энциклопедии … Энциклопедия терминов, определений и пояснений строительных материалов

Свойства материалов — Термины рубрики: Свойства материалов Агрегация материала Активация материалов Активность вещества Анализ вещественный … Энциклопедия терминов, определений и пояснений строительных материалов

СВОЙСТВА МАТЕРИАЛОВ — совокупность показателей, характеризующих все стороны материала. Различают следующие свойства материалов (например, для металлов): механические, физические (плотность, тепловые, электрические, магнитные и тому подобные свойства), химические… … Металлургический словарь

МЕТАЛЛОВ МЕХАНИЧЕСКИЕ СВОЙСТВА — Когда на металлический образец действует сила или система сил, он реагирует на это, изменяя свою форму (деформируется). Различные характеристики, которыми определяются поведение и конечное состояние металлического образца в зависимости от вида и… … Энциклопедия Кольера

МЕХАНИЧЕСКИЕ СВОЙСТВА — материалов, определяют их поведение под действием мех. нагрузки. Основные М. с. твердых тел деформационные (жесткость, пластичность, ползучесть, твердость, предельные деформации при разрушении e), прочностные (предел прочности s, долговечность,… … Химическая энциклопедия

Механические свойства некоторых керметных материалов — Составные части Предел прочности на растяжение, МПа Относительное удлинение при 20 °С, % Металлическая Неметалл … Химический справочник

Механические свойства металлов

Изменение нагрузки потребителей в сети может быть различным . При малом изменении нагрузки требуется небольшой резерв мощности. В этих случаях автоматическое регулирование частоты одной так называемой частотно-регулируемой станцией.

При больших изменениях нагрузки, автоматическое регулирование частоты должно быть предусмотрено на значительном числе станций. Для этого составляются графики изменения нагрузок электростанций.

При отключении мощных линий электропередач в послеаварийных режимах, система может оказаться разделенной на отдельно не синхронно работающие части.

На электростанциях, на которых мощности может оказаться не достаточно, произойдет снижение производительности оборудования собственных нужд (питательных и циркуляционных насосов), следовательно вызовет значительное снижение мощности станции , вплоть до выхода ее из строя.

В подобных случаях для предотвращения аварий предусматриваются устройства АЧР, отключающие в таких случаях часть менее ответственных потребителей, а после включения резервных источников питания, устройства ЧАПВ включают отключенных потребителей.

Механические свойства характеризуют способность материала сопротивляться деформации (упругой и пластической) и разрушению. Для металлов и сплавов, работающих как конструкционные материалы, эти свойства являются определяющими. Выявляют их испытаниями при воздействии внешних нагрузок.

Количественные характеристики механических свойств: упругость, пластичность, прочность, твердость, вязкость, усталость, трещиностойкость, хладостойкость, жаропрочность. Эти характеристики необходимы для выбора материалов и режимов их технологической обработки, расчетов на прочность деталей и конструкций, контроля и диагностики их прочностного состояния в процессе эксплуатации.

Под действием внешней нагрузки в твердом теле возникают напряжение и деформация.

Напряжение - это нагрузка (сила) P, отнесенная к первоначальной площади поперечного сечения F0 образца:

Деформация - это изменение формы и размеров твердого тела под действием внешних сил или в результате физических процессов, возникающих в теле при фазовых превращениях, усадке и т.п. Деформация может быть упругая (исходные размеры образца восстанавливаются после снятия нагрузки) и пластическая (сохраняется после снятия нагрузки).

Напряжение s измеряют в паскалях (Па), деформацию e - в процентах (%) относительного удлинения (Dl/l)×100 или сужения площади сечения (DS/S)×100.

При все возрастающей нагрузке упругая деформация, как правило, переходит в пластическую, и далее образец разрушается (рис.1). В зависимости от способа приложения нагрузки методы испытания механических свойств металлов, сплавов и других материалов делятся на статические, динамические и знакопеременные.

Прочность - способность металлов оказывать сопротивление деформации или разрушению статическим, динамическим или знакопеременным нагрузкам. Прочность металлов при статических нагрузках испытывают на растяжение, сжатие, изгиб и кручение. Испытание на разрыв является обязательным. Прочность при динамических нагрузках оценивают удельной ударной вязкостью, а при знакопеременных нагрузках - усталостной прочностью.

Прочность при испытании на растяжение оценивают следующими характеристиками (рис.1).

Предел прочности на разрыв (предел прочности или временное сопротивление разрыву) sв - это напряжение, отвечающее наибольшей нагрузке Рmax, предшествующей разрушению образца:

Эта характеристика является обязательной для металлов.

Предел пропорциональности sпц - это условное напряжение Рпц, при котором начинается отклонение от пропорциональной зависимости между деформацией и нагрузкой:

Предел текучести sт - это наименьшее напряжение Рт, при котором образец деформируется (течет) без заметного увеличения нагрузки:

Условный предел текучести s0,2 - напряжение, после снятия которого остаточная деформация достигает величины 0,2 %.

Если же на кривой напряжение - деформация за пределом упругости образуется площадка текучести (рис.1), то за предел текучести sт принимают напряжение, отвечающее площадке текучести.

Если после того, как напряжение превысило sт, его снять, то деформация уменьшится по пунктирной линии. Отрезок ОО ¢ показывает остаточную пластическую деформацию.

Величина sт чрезвычайно чувствительна к скорости деформации (продолжительности действия нагрузки) и к температуре. Если прикладывать к материалу напряжение меньше sт в течение длительного времени, то оно может вызвать пластическую (остаточную) деформацию. Это медленное и непрерывное пластическое деформирование воздействием постоянной нагрузки называют ползучестью (криппом).

Пластичность - свойство металлов деформироваться без разрушения под действием внешних сил и сохранять измененную форму после снятия этих сил. Пластичность - одно из важных механических свойств металла, которое в сочетании с высокой прочностью делает его основным конструкционным материалом. Ее характеристиками являются относительное удлинение перед разрывом d и относительное сужение перед разрывом y. Эти характеристики определяют при испытании металлов на растяжение, а их численные значения вычисляют по формулам (в процентах):

где l0 и lр - длина образца до и после разрушения соответственно;

F0и Fр - площадь поперечного сечения образца до и после разрушения.

Упругость - свойство металлов восстанавливать свою прежнюю форму после снятия внешних сил, вызывающих деформацию. Упругость - свойство, обратное пластичности.

Твердость - способность металлов оказывать сопротивление проникновению в них более твердого тела. Испытания на твердость - самый доступный и распространенный вид механических испытаний. Наибольшее применение в технике получили статические методы испытания на твердость при вдавливании индентора: метод Бринелля, метод Виккерса и метод Роквелла. Твердость, согласно этим методам, определяют следующим образом.

По Бринеллю - в испытуемый образец с определенной силой вдавливается закаленный стальной шарик диаметром D под действием нагрузки P, и после снятия нагрузки измеряется диаметр отпечатка d (рис.2,а). Число твердости по Бринеллю - НВ, характеризуется отношением нагрузки P, действующей на шарик, к площади поверхности сферического отпечатка M:

Чем меньше диаметр отпечатка d, тем больше твердость образца. Диаметр шарика D и нагрузку P выбирают в зависимости от материала и толщины образца. Метод Бринелля не рекомендуется применять для материалов с твердостью более 450 HB, так как стальной шарик может заметно деформироваться, что внесет погрешность в результаты испытаний.

При испытании на твердость по методу Виккерса в поверхность материала вдавливается алмазная четырехгранная пирамида с углом при вершине a = 136° (рис.2,б). После снятия нагрузки вдавливания измеряется диагональ отпечатка d1. Число твердости по Виккерсу HV подсчитывается как отношение нагрузки Р к площади поверхности пирамидального отпечатка М:

Число твердости по Виккерсу обозначается символом HV с указанием нагрузки Р и времени выдержки под нагрузкой, причем размерность числа твердости (кгс/мм 2 ) не ставится. Продолжительность выдержки индентора под нагрузкой принимают для сталей 10-15 с, а для цветных металлов - 30 с. Например, 450 HV10/15 означает, что число твердости по Виккерсу 450 получено при Р = 10 кгс (98,1 Н), приложенной к алмазной пирамиде в течение 15 с.

Преимущество метода Виккерса по сравнению с методом Бринелля заключается в том, что методом Виккерса можно испытывать материалы более высокой твердости из-за применения алмазной пирамиды.

При испытании на твердость по методу Роквелла в поверхность материала вдавливается алмазный конус с углом при вершине 120° или стальной шарик диаметром 1,588 мм. Однако, согласно этому методу, за условную меру твердости принимается глубина отпечатка. Схема испытания по методу Роквелла показана на рис.2,в. Вначале прикладывается предварительная нагрузка Р0,под действием которой индентор вдавливается на глубину h0. Затем прикладывается основная нагрузка Р1, под действием которой индентор вдавливается на глубину h1. После этого снимают нагрузку Р1,но оставляют предварительную нагрузку Р0.

При этом под действием упругой деформации индентор поднимается вверх, но не достигает уровня h0. Разность (hh0) зависит от твердости материала; чем тверже материал, тем меньше эта разность. Глубина отпечатка измеряется индикатором часового типа с ценой деления 0,002 мм. При испытании мягких металлов методом Роквелла в качестве индентора применяется стальной шарик. Последовательность операций такая же, как и при испытании алмазным конусом. Число твердости, определенное методом Роквелла, обозначается символом HR. Однако в зависимости от формы индентора и значений нагрузок вдавливания к этому символу добавляется буква А, С, или В, обозначающая соответствующую шкалу измерений.

Числа твердости по Роквеллу определяют в условных единицах по формулам:

где 100 и 130 - предельно заданное число делений индикатора часового типа с ценой деления 0,002 мм.

Трещиностойкость - свойство материалов сопротивляться развитию трещин при механических и других воздействиях.

Трещины в материалах могут быть металлургического и технологического происхождения, а также возникать и развиваться в процессе эксплуатации. В случае возможности хрупкого разрушения для безопасной работы элементов конструкций необходимо количественно оценивать размеры допустимых трещиноподобных дефектов.

Количественной характеристикой трещиностойкости материала является критический коэффициент интенсивности напряжений в условиях плоской деформации в вершине трещины KIс.

Многие конструкции при эксплуатации испытывают ударные нагрузки. Для решения вопроса об их долговечности и надежности в этих условиях очень важными являются результаты динамических испытаний (нагрузка прилагается ударом с большой силой).

Переход от статических нагружений к динамическим вызывает изменение всех свойств металлов и сплавов, связанных с пластической деформацией.

Для оценки склонности материала к хрупкому разрушению применяют испытания на ударный изгиб образцов с надрезом, в результате которых определяют ударную вязкость.

Ударная вязкость - работа, затраченная при динамическом разрушении надрезанного образца, отнесенная к площади поперечного сечения в месте надреза.

Вязкость - свойство, обратное хрупкости. Ударная вязкость ответственных деталей должна быть высокой.

Кроме числовых значений, получаемых при испытании на удар, важным критерием является характер излома. Волокнистый матовый излом без характерного металлического блеска свидетельствует о вязком разрушении. Хрупкое разрушение дает кристаллический блестящий излом.

Ударная вязкость зависит от многих факторов. Наличие в изделиях резких переходов в сечении, надрезов, вырезов и т. п. вызывает неравномерное распределение напряжений по сечению и их концентрацию. Ударная вязкость зависит также и от состояния поверхности образца. Риски, царапины, следы механической обработки и другие дефекты снижают ударную вязкость.

Динамическое нагружение вызывает повышение предела упругости и предела текучести, не переводя материал в хрупкое состояние. Но при понижении температуры, сопротивление удару резко уменьшается. Это явление называется хладоломкостью.

К хладоломким металлам относятся металлы с объемноцентрированной кубической решеткой (например, a-Fe, Mo, Cr). Для этой группы металлов при определенной минусовой температуре наблюдается резкое снижение ударной вязкости. К нехладоломким металлам можно отнести металлы с гранецентрированной кубической решеткой (g-Fe, Al, Ni и др.). Хладоломкость у крупнозернистого материала наступает при более высокой температуре, чем у мелкозернистого.

Характер падения ударной вязкости напоминает порог, что привело к выражению «порог хладоломкости».

Температура, при которой происходит определенное падение ударной вязкости, называется критической температурой хрупкости Tкр.

Большинство разрушений деталей и конструкций при эксплуатации происходит в результате циклического нагружения. Причем в ряде случаев разрушение происходит при напряжениях, лежащих ниже предела упругости.

Усталость - процесс постепенного накопления повреждений в материале при действии циклических нагрузок, приводящий к образованию трещин и разрушению.

Термин «усталость» часто заменяют термином «выносливость», который показывает сколько перемен нагрузок может выдержать металл или сплав без разрушения. Сопротивление усталости характеризуется пределом выносливости s-1. Число циклов условно принято для сталей равным 10 7 , для цветных металлов - 10 -8 .

Явление усталости наблюдается при изгибе, кручении, растяжении-сжатии и при других способах нагружения.

Большое влияние на выносливость оказывают микроскопическая неоднородность, неметаллические включения, газовые пузыри, химические соединения, а также надрезы, риски, царапины, наличие обезуглероженного слоя и следов коррозии на поверхности изделий, которые приводят к неравномерному распределению напряжений и снижают сопротивление материала повторно-переменным нагрузкам.

Износостойкость - сопротивление металлов изнашиванию вследствие процессов трения. Износ заключается в отрыве с трущейся поверхности отдельных ее частиц и определяется по изменению геометрических размеров или массы детали.

Усталостная прочность и износостойкость дают наиболее полное представление о долговечности деталей в конструкциях, а ударная вязкость и трещиностойкость характеризует надежность этих деталей.

Жаропрочность - способность металлов и сплавов длительно сопротивляться началу и развитию пластической деформации и разрушению под действием постоянных нагрузок при высоких температурах. Предел кратковременной прочности, предел ползучести и предел длительной прочности - численные характеристики жаропрочности.

Читайте также: