Цветные металлы и их сплавы общие сведения

Обновлено: 28.04.2024

Цветными металлами называют алюминий, магний, цинк, медь и сплавы на их основе. Они подразделяются на деформируемые и литейные.

Алюминийобладает высокой удельной прочностью, коррозионной стойкостью, высокой теплопроводностью. Механические свойства алюминия могут быть повышены за счет введения в алюминиевый сплав легирующих элементов: кремния, цинка и марганца.

Кремний способствует повышению твердости алюминиевого сплава. Марганец вводят для повышения коррозионной стойкости алюминиевых сплавов. Цинк способствует упрочнению алюминиевых сплавов.

Сплавы алюминий-кремний называются силуминами. Силумин обладает наиболее высокими литейными свойствами среди литейных сплавов Сложные алюминиевые сплавы, легированные кремнием, обладают высокой текучестью в жидком состоянии. Однако эти сплавы алюминия дают отливки с пористостью и раковинами.

Эксплуатационные свойства алюминиевых сплавов делают их незаменимым материалом для авиационной промышленности (табл. 1 и 2).

Магний имеет минимальную плотность, но из-за горючести как конструкционный материал в чистом виде не применяется, а только в виде сплавов. Магниевые сплавы прочны, имеют малую плотность, высокую удельную прочность и удовлетворительную коррозионную стойкость.

Легирующими элементами в магниевых сплавах являются алюминий, цинк, марганец. Алюминий вводят для увеличения пластичности магниевого сплава. Цинк способствует повышению коррозионной стойкости магниевого сплава. Марганец вводят для увеличения прочности магниевого сплава (табл. 3).

Цинк и его сплавыобладают высокой коррозионной стойкостью к атмосферным воздействиям. Цинк используют для оцинковки стального листового проката. Цинковые алюминиево-магниевые сплавы применяют для литых деталей и для антифрикционных вкладышей (табл. 4).

Медь имеет высокую электро- и теплопроводность, высокую пластичность и достаточную прочность. Основная область применения чистой меди – электротехника. Также ее используют для омеднения поверхностей стальных изделий с целью защиты от коррозии.

Наибольшее применение меди изделиях машиностроения - в виде сплавов с цинком, оловом, алюминием и бериллием.

Медно-цинковые сплавы называют латунью,которая обладает высокой прочностью и хорошей пластичностью в зависимости от количества цинка. Наибольшую пластичность имеют латуни, содержащие 30. 32 % цинка, а наибольшую прочность - содержащие 42. 45% цинка. Детали из латуни чаще получают давлением (табл. 5).

Сплавы на медной основе с добавками олова, свинца, алюминия, кремния, бериллия называют бронзой. Оловянно-свинцовые бронзы обладают высокими антифрикционными свойствами и используются для изготовления подшипников скольжения. Безоловянные бронзы (с содержанием олова до 10 %) с добавлением фосфора и цинка обладают высокими механическими свойствами и имеют антифрикционные свойства.

Медные сплавы в целом обладают высокими литейными свойствами и достаточной технологической пластичностью, они обладают хорошей жидкотекучестью, но склонны к окислению, у них значительна линейная усадка - 2,0..3,0 %.

Таблица 1
Марка Назначение
Алюминиевые сплавы деформируемые
АМц Малонагруженные изделия и элементы конст­рукции, изготовляемые обработкой давлени­ем, обладающие высокой коррозионной стой­костью: бензо- и маслопроводы, патрубки, фланцы.
АМг, Средненагруженные детали и элементы свар­ных конструкций, обладающие высокой кор­розионной стойкостью.
АМг6 Детали авиационной техники.
Д1 Детали каркасов авиационной техники, штам­пованные узлы креплений, лопасти винтов, заклепки.
АК6 Детали сложной формы, изготовляемые обра­боткой давлением, обладающие средней прочностью.
Д16 Детали каркаса, об­шивки, шпангоутов, лонжеронов, нервюр са­молетов.


Сплавы алюминиевые литейные
АЛ2 (силумин) Детали агрегатов и приборов авиатехники.
АЛ9 (силумин) Детали сложной конфигурации при требова­ниях герметичности и коррозионной стойко­сти: кронштейны, качалки, педали.
АК5М Крупные и средние детали, подверженные значительным нагрузкам: корпуса форсунок, фермы, картеры головок цилиндров и другие детали.
АМ5 Детали агрегатов, эксплуатирующиеся при умеренных нагрузках и температурах не выше 175. 300°С.
АМг10(АЛ27) Силовые детали, эксплуатирующиеся при температурах от -60 до +60 °С в морской воде и под действием водяного тумана.

Сплавы магниевые деформируемые
МА5 Изготовление высоконагруженных деталей (кронштейнов, качалок и др.) обработкой давлением.
МА11 Детали, нагревающиеся в процессе эксплуатации.
МА14 Высоконагруженные детали.
Сплавы магниевые литейные
МЛ5 Высоконагруженные детали сложной конфи­гурации, корпуса приборов и аппаратуры.
МЛ9 Средненагруженные детали сложной конфи­гурации.
МЛ11 Средненагруженные детали, эксплуатирую­щиеся при температурах до 300 °С.

Сплавы цинковые литейные
ЦА4 Литые детали средней прочности со стабиль­ными размерами.
ЦАМ4-1 Литые детали средней прочности: корпусы карбюраторов, насосов
ЦАМ4-3 Детали повышенной прочности
Сплавы цинковые антифрикционные
ЦАМ10-5 Моно- и биметаллические детали в конструк­циях подшипников скольжения: вкладыши, втулки
ЦАМ9-1,5 То же, что и ЦАМ10-5, а также прокатаные полосы, предназначенные для направляющих скольжения металлорежущих станков

Латунь (сплав медно-цинковый), обрабатываемая давлением,
Л68 Радиаторы, шайбы, прокладки, втулки.
ЛС59-1 Трубы, корпуса кранов, заглушки, тройники, жиклеры и др.
Латунь литейная
ЛЦ40С Фасонное литье, втулки, сепараторы подшип­ников
ЛЦ30А3 Мелкие и средние, умеренно нагруженные детали, эксплуатирующиеся в коррозионно-активных средах
ЛЦ16К4 Детали арматуры и детали, эксплуатирую­щиеся в морской среде

Бронза безоловянная, обрабатываемая давлением
БрАМц9-2 Нагруженные детали: червяки, шестерни, втулки
БрАЖ9-4 Детали, работающие на изнашивание: втулки и вкладыши подшипников, червячные колеса, сопряженные с термически обработанными червяками; детали насосов.
БрБ2 Упругие элементы, эксплуатирующиеся при повышенной температуре: пружины, клеммы, контакты
БрАЖН10-4-4 Ответственные детали, эксплуатирующиеся в условиях интенсивного изнашивания: направ­ляющие, втулки, клапаны, шестерни
Бронза оловянная литейная
БрО8Ц4 Детали, изготовляемые из отливок, эксплуа­тирующиеся в пресной и морской воде, в па­ровоздушных и масляных средах
БрО3Ц12С5, Детали, эксплуатирующиеся в условиях ин­тенсивного изнашивания: подшипники шпин­делей, венцы червячных колес в сопряжении с незакаленным червяком, литые вкладыши подшипников

Лекция 6. Способы получения заготовок. Литье.

Различают следующие основные способы получения заготовок:

1) получаемые литьем (отливки);

2) получаемые обработкой давлением (кованые и штампован­ные заготовки);

3) заготовки из проката;

4) сварные и комбинированные заготовки;

5) получаемые методами порошковой металлургии.

Литьем получают заготовки практически любых размеров, как простой, так и очень сложной конфигурации практически из всех металлов и сплавов.

Качество отлитой заготовки характеризуют рядом показателей качества, важнейшими из которых являются:

1) точность размеров основных поверхностей;

2) отклонения пространственного расположения основных поверхностей;

3) шероховатость основных поверхностей;

4) глубина дефектного слоя основных поверхностей;

5) твердость основного материала.

Так, например, качество отливки зависит от условий кристаллизации металла в форме, определяемых способом литья. В некоторых случаях внутри стенок отливок возможно образование дефектов (усадочные рыхлоты, пористость, горячие и холодные трещины), которые обнаруживаются только после черновой механической обработки.

В литейном производстве для получения металлических отливок применяют более 50 разновидностей литья: литье в песчаные формы, в оболочковые формы, по выплавляемым моделям, литье в кокиль, центробежное литье, литье под давлением и др.

Литейная форма — это применяемая в литейном производстве форма для получения отливок, состоит из собственно формы для воспроизведения наружных контуров отливок и литейных стержней для образования внутренних полостей и отверстий. Литье в песчаные формы - это способ получения отливок в литейных формах, изготовленных из песчано-глинистых формовочных материалов и используемых для получения одной отливки Слайд 1

Рабочая часть литейной формы представляет собой полость, в которой материал, охлаждаясь, затвердевает и принимает требуемые конфигурацию и размеры.

Последовательность изготовления формы (формовка): а - эскиз детали; б - эскиз полу-модели; в - стержень (часть литейной формы, оформляющая внутренние полости отливки); г - изготовление нижней полу-формы; д - изготовление стержня; е - форма в сборе; 1 - базовый выступ; 2 - базовая впадина; 3 - знак; 4 - модельная плита; 5 - стержневой ящик; 6 - стержень; 7 - нижняя опока; 8 - зажимной болт; 9 - верхняя опока; 10 - вентиляционный канал; 11 - выпар; 12 - литниковая система; 13 - базовый штифт; 14 –полу-формы.

Заливка литейной формы заключается в равномерном заполнении литейной формы расплавленным металлом. Важное значение при заливке имеет обеспечение рациональной температуры заливки расплавленного металла, которая должна быть примерно на 100. 150° С выше температуры отвердения. Слайд 2

Для крупных отливок из серого чугуна температура заливки обычно находится в пределах 1230. 1300°С, для мелких и средних отливок из серого чугуна — 1320. I400°С, для тонкостенных отливок — 1360. 1450°С. Высокопрочный и белый чугун заливают при температуре 1320. 1450º С, углеродистую и низколегированную стали — при температуре 1520. 1560° С. Для тонкостенных отливок из легированной коррозионностойкой стали 12Х18Н9ТЛ температура заливки достигает 1620° С.

Бронзу и латунь обычно заливают при температуре 1000. 1100° С, алюминиевые и магниевые сплавы — при 680. 760° С, титановые сплавы — при 1800. 1860° С.

3.2 Примерная длительность охлаждения отливокХарактеристика отливок Длительность охлаждения, час
Масса отливок, кг Средняя толщина стенок, мм Стальные отливки Чугунные отливки
До 10 5. 15 0,2. 0,5 0,2. 0,4
10 . 50 15. 20 0,5. 0,8 0,4. 0,6
50. 100 15 . 30 2. 5 0,8. 2,0
100 . 500 20. 50 6. 8 4. 6
500. 2 000 30. 80 18. 24 18. 20
2000. 10000 50. 120 36. 50 24. 36

Небольшие отливки охлаждаются в форме в течение нескольких минут, а крупные, массой до 60 т — в течение нескольких суток и даже недель. Слайд 3

Литье по выплавляемым моделям это способ получения фасонных отливок из металлических сплавов в неразъемной обо­лочковой форме, рабочая полость которой образована удалением литейной модели выжиганием, растворением или выплавлением в горячей воде Слайд 4

Последовательность изготовления отливок литьем по выплавляемым моделям: а - чертеж отливки; б - изготовление модели; в - модель; г - блок; д - получение мягкой оболочки; е - форма в сборе: 1 - пресс-форма; 2 - стержень; 3 - модель; 4 - литниковая система; 5 - мягкая оболочка; 6 - контейнер; 7 - песок; 8 - керамическая оболочка.

Выплавляемую модель 3 получают путем заполнения (запрессовки) металлической пресс-формы 1 смесью парафина и стеарина в равных пропорциях. В пресс-формах модельный состав затвердевает и остывает. Затем отливки моделей 3 извлекают и объединяют в блоки путем соединения с отдельно изготовленными выплавляемыми моделями литниковой системы 4. За-тем на блок наносят несколько слоев огнеупорных материалов.

Полученная керамическая оболочка 8 имеет толщину стенок формы 2. 5 мм. После сушки последнего слоя модель выплавляют. Легкоплавкий состав удаляют в ваннах с горячей водой или перегретым паром под высоким давлением при температуре до 120º С. Затем оболочковую форму подсушивают на воздухе и помещают в контейнер 6. После этого форму помещают в печь для прокаливания при температуре 800. 1100° С в целях удаления остатков модельных составов, влаги, а также завершения процессов ее твердения.

Заливка металла осуществляется в горячие формы. Температура формы зависит от состава литейного сплава. При заливке стали она составляет 800. 900° С, сплавов на основе никеля — 900. 1000º С, меди — 600. 700° С, алюминия и магния — 200. 250° С.

Достоинствами литья по выплавляемым моделям являются возможность получения отливок сложной конфигурации из практически любых сплавов, высокие качество поверхности и точность размеров отливок.

Цветные металлы и сплавы. Марки, свойства и применение

Ценные свойства цветных металлов обусловили их широкое применение в различных машинах современного производства. Медь, алюминий, цинк, магний, титан и дру гие метадгы и их сплавы являются незаменимыми материалами для приборостроительной и электротехнической промышленности, самолетостроения и радиоэлектроники, ядерной и космической отраслей техники.

1. Медь и ее сплавы

В настоящее время медь широко используется в электромашиностроении, при строительстве линий электропередач, для изготовления оборудования телеграфной и телефонной связи, ради- и телевизионной аппаратуры. Из меди изготовляют провода, кабели, шины и другие токопроводящие изделия. Большое количество меди идет на производство бронзы, латуни и других медных, а также алюминиевых и железных сплавов.

ГОСТ 859-2001 предусматривает следующие марки меди:

  • катодная — МВ4к, МООк, МОку, МОк, М1к;
  • бескислородная — М006, М06, М1б;
  • катодная переплавленная — Mly, Ml;
  • раскисленная — М1р, М1ф, М2р, МЗр, М2, М3 (для раскисления используется фосфористая медь).

Обладая замечательными свойствами, медь в то же время как конструкционный материал не удовлетворяет требованиям машиностроения, поэтому ее легируют, т.е. вводят в ее состав такие металлы, как цинк, олово, алюминий, никель и др., за счет чего улучшаются ее механические и технологические свойства.

По химическому составу медные сплавы подразделяют на латуни, бронзы и медноникелевые, по технологическому назначению — на деформируемые, используемые для производства полуфабрикатов (проволоки, листа, полос, профиля), и литейные, применяемые для литья деталей.

2. Латунь

Латунь — сплав меди с цинком и другими компонентами. Латуни, содержащие кроме цинка другие легирующие элементы, называются сложными, или специальными, и именуются по вводимым, кроме цинка, легирующим компонентам. Например: железомарганцовая (ЛЖМц59-1-1), алюминиевоникелькремнистомарганцовая (ЛАНКМц75-2-2,5-0,5-0,5) и др.

В обозначении марок латуней принята буквенно-цифровая система. Первая буква означает «латунь», остальные буквы соответствуют условным обозначениям химических элементов, входящих в латунь; первая цифра указывает на содержание меди, остальные цифры — на содержание других легирующих элементов. Содержание цинка в обозначении марки не указывается. Для того чтобы определить содержание цинка в латуни, необходимо от 100% вычесть процентное содержание меди и других химических элементов, входящих в данную латунь. Например: томпак Л90 — это латунь, содержащая 90% меди, остальное — цинк; латунь алюминиевая ЛА77-2 — 77% меди, 2% алюминия, остальное — цинк; латунь алюминиевоникель- кремнистомарганцовая ЛАНКМц75-2-2,5-0,5-0,5 -75% меди, 2% алюминия, 2,5% никеля, 0,5% кремния, 0,5% марганца, остальное — цинк.

По сравнению с медью латуни обладают большей прочностью, коррозионной стойкостью и упругостью. Детали получают литьем, давлением и резанием. Латуни, обрабатываемые давлением, нормируются ГОСТ 15527-2004. Из них изготовляют полуфабрикаты (листы, ленты, полосы, трубы конденсаторов и теплообменников, проволоку, прутки, фольгу, поковки, штамповки), медали и значки, художественные изделия, музыкальные инструменты, сильфоны, гибкие шланги, застежки- молнии, подшипники скольжения и разную фурнитуру. В табл. 27 приводятся марки этих латуней, их основные свойства и области применения.

Таблица 27. Латуний, их основные свойства и применение

Литейные латуни поставляются в виде чушек ( ГОСТ 1020-97) и служат сырьем для получения латуней определенных марок для фасонных отливок (ГОСТ 17711-93) — это различная арматура, работающая при температурах до 250°С и подвергающаяся гидровоздушным испытаниям; детали, работающие в морской воде (при условии их протекторной защиты); подшипники и втулки неответственного назначения, гайки нажимных винтов, детали без притираемых поверхностей, сепараторы подшипников, шестерни, детали, подвергающиеся лужению или заливке баббитом; детали судо- и автомобилестроения и др. (табл. 28).

Таблица 28. Марки литейных латуней

ГОСТ 17711-80 кроме химического состава нормирует механические свойства медноцинковых сплавов: предел прочности σв — от 146 до 705 МПа (от 15 до 72 кгс/мм 2 ), относительное удлинение δ — от 6 до 20%, твердость — от 587 до 1600 МПа (от 60 до 165 кгс/мм 2 ).

Цветные металлы и сплавы. Cвойства, марки и их применение

Ценные свойства цветных металлов обусловили их широкое применение в различных машинах современного производства. Медь, алюминий, цинк, магний, титан и другие металлы и их сплавы являются незаменимыми материалами для приборостроительной и электротехнической промышленности, самолетостроения и радиоэлектроники, ядерной и космической отраслей техники.

В настоящее время медь широко используется в электромашиностроении, при строительстве линий электропередач, для изготовления оборудования телеграфной и телефонной связи, радио- и телевизионной аппаратуры. Из меди изготовляют провода, кабели, шины и другие токопроводящие изделия. Большое количество меди идет на производство бронзы, латуни и других медных, а также алюминиевых и железных сплавов.

В обозначении марок латуней принята буквенно-цифровая система. Первая буква означает «латунь», остальные буквы соответствуют условным обозначениям химических элементов, входящих в латунь; первая цифра указывает на содержание меди, остальные цифры — на содержание других легирующих элементов. Содержание цинка в обозначении марки не указывается. Для того чтобы определить содержание цинка в латуни, необходимо от 100% вычесть процентное содержание меди и других химических элементов, входящих в данную латунь. Например: томпак Л90 — это латунь, содержащая 90% меди, остальное — цинк; латунь алюминиевая ЛА77-2 – 77% меди, 2% алюминия, остальное — цинк; латунь алюминиевоникелькремнистомарганцовая ЛАНКМц75-2-2,5-0,5-0,5 – 75% меди, 2% алюминия, 2,5% никеля, 0,5% кремния, 0,5% марганца, остальное – цинк.

Детали получают литьем, давлением и резанием. Латуни, обрабатываемые давлением, нормируются ГОСТ 15527-2004. Из них изготовляют полуфабрикаты (листы, ленты, полосы, трубы конденсаторов и теплообменников, проволоку, прутки, фольгу, поковки, штамповки), медали и значки, художественные изделия, музыкальные инструменты, сильфоны, гибкие шланги, застежки-молнии, подшипники скольжения и разную фурнитуру.

3. Бронза

Бронза — сплав на основе меди, в котором в качестве добавок используются олово, алюминий, бериллий, кремний, свинец, хром и другие элементы. Как и латуни, бронзы подразделяются на литейные и деформируемые. В обозначении марок бронз принята та же система, что и у латуней, только в начале проставляются буквы Бр, означающие — «бронза».

Основные составы сплавов бронз, применяемых в качестве исходного материала для изготовления деталей:

Безоловянные литейные бронзы

  • БрА9Мц2Л, БрА10Мц2Л – антифрикционные детали и арматура, работающая в пресной воде, жидком топливе и паре при температурах до 250о С; и др.

Оловянные литейные бронзы

  • БрОЗЦ12С5 – арматура общего назначения;
  • БрОЗЦ7С5Н1 – детали, работающие в масле, паре и в пресной воде;
  • БрО4Ц7С5 – арматура и антифрикционные детали и др.
  • БрА5 – деформируется в холодном и горячем состояниях, коррозионностойкая, жаропрочная, стойкая к истиранию; предназначена для изготовления монет, деталей машин, работающих в морской воде и в химических средах;
  • БрА7 – деформируется в холодном состоянии, жаропрочная, стойкая к истиранию, коррозионностойкая к серной и уксусной кислотам; применяется для изготовления деталей химического машиностроения и скользящих контактов;
  • БрАЖМц10-3-1,5, БрАЖН10-4-4, БрАЖНМц9-4-4-1 – деформируются в горячем состоянии, обладают высокой прочностью при повышенных температурах, хорошей эрозионной, кавитационной и коррозионной стойкостью; из этих бронз производят трубные доски конденсаторов и детали химической аппаратуры; БрАМц9-2 – характеризуется высоким сопротивлением при знакопеременной нагрузке; рекомендуется для изготовления износостойких деталей, винтов, валов, деталей гидравлических установок и трубных досок конденсаторов;
  • БрАМц10-2 – имеет высокое сопротивление при знакопеременной нагрузке; пригодна для выполнения заготовок и фасонного литья в судостроении;
  • БрАЖ9-4 – обладает высокими механическими и антифрикционными свойствами, коррозионностойкая; рекомендуется для производства шестерен, втулок и седел клапанов для авиапромышленности, отливки массивных деталей для машиностроения.
  • БрБ2 ,БрБНТ1,7, БрБНТ1,9, БрБНТ1,9Мг – обладают высокой прочностью и износостойкостью, хорошими пружинящими и антифрикционными свойствами, средней электропроводностью и теплопроводностью, деформируются в закаленном состоянии. Из этих бронз изготовляют пружины и пружинящие детали ответственного назначения, износостойкие детали всех видов, неискрящий инструмент.
  • БрКМц3-1 — коррозионностойкая, жаропрочная, имеет высокое сопротивление сжатию, пригодна для сварки; применяется для изготовления деталей для химических аппаратов, пружин и пружинящих деталей, сварных конструкций и деталей для судостроения;
  • БрКШ-3 – обладает высокими механическими, технологическими и антифрикционными свойствами, коррозионностойкая; предназначена для производства ответственных деталей в моторостроении, а также направляющих втулок.
  • БрМц6 – имеет высокие механические свойства, хорошо деформируется в горячем и холодном состояниях, коррозионностойкая, жаропрочная. Из этой бронзы изготовляют детали, работающие при повышенных температурах.

Кадмиевая и магниевая бронзы

  • БрКд1 и БрМг0,3 – отличаются высокой электропроводностью и жаропрочностью. Их используют при производстве коллекторов электродвигателей и деталей машин контактной сварки.
  • БрСр0,1 – предназначена для изготовления коммутаторов, коллекторных колец и обмотки роторов турбогенераторов.
  • CuCrl – предназначена для производства сварочных электродов, электродеталей и оборудования сварочных машин.
  • CuFeP – выполняют детали, обрабатываемые на автоматах, элементы телетехнических, радиотехнических, электротехнических и электронных устройств.

4. Алюминий и его сплавы

Алюминий по распространенности в природе занимает третье место после кислорода и кремния и первое место среди металлов. По использованию в технике он занимает второе место после железа.

Алюминий представляет собой серебристо-белый пластичный металл. В воздушной среде он быстро покрывается окисной пленкой, которая надежно защищает его от коррозии. Алюминий химически стоек против азотной и органических кислот, но разрушается щелочами, а также соляной и серной кислотами. Важнейшее свойство алюминия — небольшая плотность — 2,7 г/см3, т.е. он в три раза легче железа. Температура плавления его 660°С, теплоемкость — 0,222 кал/г, теплопроводность при 20°С – 0,52 кал/(см·с·оС), удельное электрическое сопротивление при 0°С – 0,286 Ом/(мм2·м). Механические свойства алюминия невысоки: сопротивление на разрыв – 50– 90 МПа (5–9 кгс/мм2), относительное удлинение – 25–45%, твердость – 13–28 НВ. Высокая пластичность (максимальная пластичность достигается отжигом при температурах 350–410°С) этого металла позволяет прокатывать его в очень тонкие листы (фольга имеет толщину до 0,005 мм). Алюминий хорошо сваривается, однако трудно обрабатывается резанием, имеет большую линейную усадку – 1,8%. Для повышения прочности в алюминий вводят кремний, марганец, медь и другие компоненты. Кристаллическая решетка алюминия — куб с центрированными гранями, а=0,404 Нм (4,04 А).

Алюминий и его сплавы необходимы для самолето- и машиностроения, строительства зданий, линий электропередач, подвижного состава железных дорог. В металлургии алюминий служит для получения чистых и редких металлов, а также для раскисления стали. Из него изготовляют различные емкости и арматуру для химической промышленности. В пищевой промышленности применяется упаковочная фольга из алюминия и его сплавов (для обертки кондитерских и молочных изделий). Широкое применение получила алюминиевая посуда. Алюминий хорошо подвергается различным тонким покрытиям и окраске, поэтому его используют как декоративный материал.

Исходным материалом для получения алюминиевых сплавов является первичный алюминий. Марки первичного алюминия: особой чистоты — А999, высокой чистоты — А995, А99, А97, А95, технической чистоты — А85, А8, А7, А7Е, А6, А5 ,А5Е, А0.

Механические свойства сплавов зависят от их химического состава и способов получения. Химический состав основных компонентов, входящих в сплав, можно определить по марке. Например: сплав АК7М2п – 7% кремния, 2% меди, остальное – алюминий, АК21М2,5Н2,5 – 21% кремния, 2,5% меди, 2,5% никеля, остальное – алюминий.

Для изготовления фасонных отливок предусмотрено пять групп алюминиевых литейных сплавов:

  • на основе алюминий — кремний — АЛ2, АЛ4, АЛ4-1, АЛ9, АЛ9- 1, АЛ34, АК9, АК7;
  • на основе алюминий — кремний — медь — АЛЗ, АЛ5, АЛ5-1, АЛ6, АЛ32, АК5М2, АК5М7, АК7М2, АК4М4;
  • на основе алюминий — медь — АЛ7, АЛ19,АЛЗЗ;
  • на основе алюминий — магний — АЛ8, АЛ13, АЛ22, АЛ23, АЛ23- 1, АЛ27, АЛ27-1, АЛ28;
  • на основе алюминий — прочие компоненты — АЛ1, АЛ11, АЛ21, АЛ24, АЛ25, АЛЗ0, АК21М2,5Н2,5, АК4М2Ц6.

Сплав алюминия с кремнием — силумин (в чушках), используемый для производства литейных и обрабатываемых давлением алюминиевых сплавов.

Силумин изготовляется четырех марок — СИЛ-00, СИЛ-0, СИЛ-1 и СИЛ-2. Увеличение номера в обозначении марки сплава указывает на рост примесей в нем.

На поверхность чушек силумина несмываемой и невыцветаемой цветной краской наносится буква С, цвет которой соответствует определенной марке: синий – СИЛ-00, белый – СИЛ-0, красный – СИЛ-1, черный – СИЛ-2.

Алюминий и алюминиевые деформируемые сплавы, предназначенные для изготовления полуфабрикатов (листов, лент, полос, плит, профилей, панелей, прутков, труб, проволоки, штамповок и поковок) методом горячей и холодной деформации, а также слитков и слябов.

Алюминиевые антифрикционные сплавы, применяемые для изготовления монометаллических и биметаллических подшипников методом литья, а также монометаллических и биметаллических лент и полос путем прокатки с последующей штамповкой из них вкладышей, нормируются ГОСТ 14113-78. В зависимости от химического состава стандартом предусмотрены следующие марки этих сплавов с указанием назначения каждого сплава:

  • АОЗ-7, АО9-2 – отливки монометаллических вкладышей и втулок;
  • АО6-1, АО9-1, АО20-1 – биметаллические ленты и вкладыши; толщина антифрикционного слоя — 1 мм;
  • АН2-5 – отливки вкладышей, монометаллические и биметаллические ленты; толщина антифрикционного слоя — менее 0,5 мм;
  • АСМ, АМСТ – биметаллические ленты и вкладыши; толщина антифрикционного слоя — менее 0,5 мм.

5. Цинк и его сплавы

Сплав цинка с медью — латунь. Цинк — металл светло-сероголубоватого цвета, хрупкий при комнатной температуре и при 200°С, при нагревании до 100–150°С становится пластичным. В промышленности широко применяются цинковые сплавы: латуни, цинковые бронзы, сплавы для покрытия стальных изделий, изготовления гальванических элементов, типографские и др.

Цинковые сплавы используются в автомобиле- и приборостроении и других отраслях промышленности. Марки этих сплавов:

  • ЦАМ4-10 — особо ответственные детали;
  • ЦАМ4-1 — ответственные детали;
  • ЦАМ4-1в — неответственные детали;
  • ЦА4о — ответственные детали с устойчивыми размерами;
  • ЦА4 — неответственные детали с устойчивыми размерами.

Цинковые антифрикционные сплавы, предназначенные для производства монометаллических и биметаллических изделий. Марки этих сплавов:

  • ЦАМ9-1,5Л — отливка монометаллических вкладышей, втулок и ползунов; допустимые нагрузка — 10 МПа (100 кгс/см2), скорость скольжения — 8 м/с, температура 80 оС; если биметаллические детали получают методом литья при наличии металлического каркаса, то нагрузка, скорость скольжения и температура могут быть увеличены до 20 МПа (200 кгс/см2), 10 м/с и 100о С соответственно;
  • ЦАМ9-1,5 — получение биметаллической ленты (сплав цинка со сталью и дюралюминием) методом прокатки, лента предназначена для изготовления вкладышей путем штамповки; допустимые нагрузка — до МПа (250 кгс/см2), скорость скольжения — до 15 м/с, температура 100о С;
  • ЦАМ10-5Л — отливка подшипников и втулок; допустимыя нагрузка – 10 МПа (100 кгс/см2), скорость скольжения — 8 м/с, температура 80о С;
  • ЦАМ10-5 – прокатка полос для направляющих скольжения металлорежущих станков и других изделий; рабочие нагрузка до 20 МПа (200 кгс/см2), скорость скольжения — до 8 м/с, температура 80о С.

6. Титан и его сплавы

Титан — металл серебристо-белого цвета, один из наиболее распространенных в природе элементов. Среди других элементов по распространенности в земной коре (0,61%) он занимает десятое место. Титан легок (плотность его 4,5 г/см3), тугоплавок (температура плавления 1665°С), весьма прочен и пластичен. На поверхности его образуется стойкая окисная пленка, за счет которой он хорошо сопротивляется коррозии в пресной и морской воде, а также в некоторых кислотах. Титан устойчив против кавитационной коррозии и под напряжением. При температурах до 882°С он имеет гексагональную плотно упакованную решетку, при более высоких температурах — объемно-центрированный куб. Механические свойства листового титана зависят от химического состава и способа термической обработки. Предел прочности его – 300–1200 МПа (30–120 кгс/мм2), относительное удлинение – 4–30%. Предел прочности титановых сплавов – 350–1000 МПа (35–100 кгс/мм2), относительное удлинение – 4–10%.

Благодаря своим замечательным свойствам титан и его сплавы нашли широкое применение в самолето-, ракето- и судостроении. Из титана и его сплавов изготовляют полуфабрикаты: листы, трубы, прутки и проволоку. Двуокись титана применяется при производстве белил и эмалей.

Для изготовления полуфабрикатов предназначены титан и титановые сплавы, обрабатываемые давлением. В зависимости от химического состава предусмотрены следующие марки: ВТ1-00, ВТ1-0, ОТ4-0, ОТ4-1, ОТ4, ВТ5, ВТ5-1, ВТ6, ВT3-1, ВТ9, ВТ14, ВТ16, ВТ20, ВТ22, ПТ-7М, ПТ-ЭВ, ПT-1M. Железо, кремний и цирконий в зависимости от марки сплава могут быть основными компонентами или примесями.

7. Припои

Припои — металл или сплав, предназначенный для соединения деталей пайкой. Температура плавления припоев должна быть ниже температуры плавления материалов паяемых деталей.

Припои разделяют на мягкие (tпл≤400 °С) и твердые (tпл >400 °С). Основные материалы мягких припоев — сплавы олова и свинца. Их обозначение (например, ПОС 61) расшифровывается так: П — припой, ОС — оловянно-свинцовый, 61 — содержание олова в процентах. Твердые припои выполняют на серебряной основе (например, ПСр 72, где 72 — содержание серебра, %) или на медно-латунной и медно-никелевой основах. Серебряные припои применяют для пайки черных и цветных металлов, кроме сплавов алюминия и магния, а припои на медной основе — для пайки углеродистых и легированных сталей, никеля и его сплавов.

Таблица 4. Области применения оловянно-свинцовых припоев

Цветные металлы и сплавы

1. Общие сведения о цветных металлах и сплавах. Классификация цветных металлов.

2. Алюминий, его свойства, применение и технология производства. Торговые сорта алюминия. Сплавы на основе алюминия. Маркировка.

3. Титан, свойства, применения и технология производства. Торговые сорта титана и титановых сплавов. Маркировка.

4. Медь, ее свойства, применение и технология производства. Торговые сорта меди. Медные сплавы. Маркировка.

5. Благородные (драгоценные, ювелирные) цветные металлы и сплавы. Свойства и маркировка.

6. Контроль качества цветных металлов и сплавов

Общие сведения о цветных металлах и сплавах. Классификация цветных металлов.

Цветные металлы применяются в технике реже, чем черные. Причины:

- незначительное содержание многих цветных металлов в земной коре,

- сложность процесса их выплавки,

Во многих случаях, когда это возможно, их заменяют черными металлами, пластмассами и другими материалами. Однако цветные металлы имеют ценные свойства, которые делают их применение в технике неизбежным. Например, Cu и Al обладают высокой электро- и теплопроводность и применяются в электропромышленности.

В технике широко применяются не только чистые цветные металлы, но и их сплавы, которые нашли широкое применение в качестве продукции технического, бытового и специального назначения.

Из большого числа цветных металлов и сплавов наибольшее распространение получили сплавы на основе алюминия, титана, меди, которые широко применяются в химической промышленности, авиа- и ракетостроении, в космической технике.

Цветные металлы и сплавы условно принято делить на четыре группы:

К легким металлам относят: алюминий, магний и титан, литий, бериллий, которые имеют более низкую относительную плотность по сравнению с железом.

К тяжелым металлам из числа широко применяющихся относят: медь, никель, кобальт, относительная плотность которых выше чем у железа и температура плавления достаточно высокая.

К тяжелым легкоплавким металлам относят: цинк, свинец, олово, сурьма, кадмий, которые имеют высокую относительную плотность, но температура плавления их существенно ниже, чем у железа.

К благородным металлам относят: золото, серебро, платина и металлы платиновой группы (палладий, осмий и др.); они отличаются от всех прочих металлов высокой химической стойкость и красивым внешним видом.

Дополнительно выделяют еще следующие группы металлов:

- тугоплавкие – вольфрам, молибден, ниобий, ванадий, имеющих температуру плавления более высокую, чем железо;

- урановые металлы – актиноиды, используемые в атомной технике;

- редкоземельные (РЗМ) – скандий, иттрий, лантан и лантоноиды, применяемые в качестве присадок к сплавам других элементов;

- щелочноземельные – натрий, калий, литий, которые не находят применения в свободном состоянии из-за химической активности.

ЦВЕТНЫЕ МЕТАЛЛЫ И ИХ СПЛАВЫ

Многие цветные металлы и их сплавы обладают рядом ценных ка­честв: хорошей пластичностью, вязкостью, высокой электропровод­ностью и теплопроводностью, коррозионной стойкостью и др. Благо­даря этим качествам цветные металлы и сплавы наряду с пластмассами в авиационной, электротехнической и радиотехнической промышлен­ности являются основными материалами. Из цветных металлов в чистом виде и в виде сплавов широко исполь­зуются медь, свинец, алюминий, магний, цинк.

4.1. Алюминий и его сплавы

Алюминий — легкий металл серебристо-белого цвета, плотность 2,7 г/см 3 , температура плавления 660° С. Механические свойства алю­миния невысокие, поэтому в качестве конструкционного материала применяется редко.

Алюминиевый сплав характеризуется высокой пластичностью, хорошо штампуется, легко прокатывается и прессуется, хорошо сва­ривается газовой и контактной сваркой, литейные свойства его низкие, обрабатываемость резанием плохая.

Важнейшим свойством алюминия является устойчивость против кор­розии благодаря образованию на его поверхности прочной защитной пленки — окиси алюминия.

Алюминий обладает высокой электро- и теплопроводностью (но не­сколько худшей, чем медь), поэтому наибольшее применение он нашел в электротехнической промышленности для изготовления проводов, кабелей, обмоток и т. п. Кроме этого, алюминий используется в хими­ческой промышленности, в приборостроении, а также для получения алюминиевых сплавов.

Основная часть алюминия используется для изготовления сплавов, которые можно разделить на две группы: деформируемые и литейные.

Деформируемые алюминиевые сплавы срав­нительно легко обрабатываются в горячем и холодном состоянии (про­каткой, прессованием, волочением, ковкой, штамповкой и др.). Из них изготовляют прутки, листы, проволоку, прессованные профили, по­ковки и т. д.

Деформируемые алюминиевые сплавы делятся на неупрочняемые и упрочняемые термической обработкой.

К неупрочняемым термической обработкой относят сплавы алю­миния с марганцем — АМц и алюминия с магнием — АМг, АМгЗ, АМг5, АМг6. Эти сплавы обладают высокой пластичностью, коррозионной стойкостью, хорошо свариваются и штампуются, но имеют невысокую прочность, которую можно повысить нагартовкой; из них изготовляет бензиновые баки, проволоку, заклепки и другие детали путем гибки и глубокой вытяжки, а также сварные резервуары для жидкостей и газов.

К деформируемым алюминиевым сплавам относятся дюралюмины — это сплавы, имеющие сложный химический состав, основу которого составляют алюминий, медь и магний; для повышения коррозионной стойкости добавляют марганец. Дюралюми­ны характеризуются небольшим удельным весом, высокой прочностью, достаточной твердостью и вязкостью; для повышения механических свойств их подвергают термической обработке.

Дюралюмины не обладают достаточной стойкостью против корро­зии, поэтому их подвергают плакированию (покрытие поверхности) тонким слоем алюминия.

К деформируемым алюминиевым сплавам относятся также сплавы АК2, АК4, АК6, АК8, в состав которых входят, кроме алюминия, медь, марганец, магний, кремний и в небольшом количестве никель. Из этих сплавов ковкой и штамповкой изготовляют крупные фасонные и высоконагруженные детали — поршни, лопасти винтов, крыльчатки насосов и т. д.

Высокопрочные алюминиевые сплавы обла­дают более высокой прочностью, чем дюралюмины повышенной проч­ности. Основу этих сплавов составляют цинк, медь, магний. Наиболее широко применяется сплав В95, прочность его после термической работки выше, а пластичность и коррозионная стойкость ниже, чем у дюралюмина Д16, хорошо обрабатывается резанием и поддается точечной сварке. Из сплава В95 изготовляют высоконагруженные эле-менты конструкции — детали каркасов, обшивку и т. д.

Ли т ейные алюминиевые сплавы применяются при производстве деталей методом литья. Такие сплавы обладают высокой жидкотекучестью, позволяющей получать тонкостенные, плотные отливки со сравнительно малой усадкой, без трещин, с высокой прочностью, коррозионной стойкостью, тепло- и электропроводностью, хорошей обрабатываемостью резанием.

Наибольшее распространение получили литейные сплавы алюминия с кремнием — АЛ2, АЛ4, АЛ9, называемые силуминами. Они обладают высокой жидкотекучестью, хорошей герметичностью, достаточно высокой прочностью, хорошо обрабатываются резанием, хорошо свариваются, сопротивляются коррозии и при изготовлении отливовок не дают горячих трещин. Сплав АЛ2 применяется для изготовлений деталей агрегатов, приборов, тонкостенных деталей сложной формы при литье в землю; сплав АЛ4 — для изготовления высоконагружен­ных деталей ответственного назначения; сплав АЛ9 — для изготовле­ния деталей средней нагруженности, но сложной конфигурации, а также для деталей, подвергающихся сварке. Недостатком сплава АЛ9 является склонность к газовой пористости.

Сплавы на основе алюминия и м а г н и я обладают наиболее высокой коррозионной стойкостью и более высокими механическими свойствами после термической обработки по сравне­нию с другими алюминиевыми сплавами, но литейные свойства их низ­кие. Наиболее распространены марки АЛ8 и А13. Из них изготовляют подверженные коррозионным воздействиям детали (для морских судов), а также детали, работающие при высоких температурах (головки ци­линдров мощных двигателей воздушного охлаждения).

Сплавы на основе алюминия и меди (АЛ7, АЛ12, АЛ19) обладают невысокими литейными свойствами и понижен­ной коррозионной стойкостью, но высокими механическими свойства­ми. Эти сплавы применяются для изготовления отливок несложной формы, работающих с большими напряжениями (АЛ7).

Сплавы на основе алюминия, меди и крем­ния характеризуются хорошими литейными свойствами, но коррозионная стойкость их невысокая. Эти сплавы широко применяют для изготовления отливок корпусов, арматуры и мелких деталей (сплав АЛЗ), отливок ответственных деталей, обладающих повышенной теплоустойчивостью и твердостью (сплав АЛ4), отливок карбюраторов арматуры двигателей (сплав АЛ6).

К сплавам на основе алюминия, цинка и кремния относится сплавы АЛ 11 (цинковый силумин), обладающий высокими литейными свойствами, а для повышения механических свойств подвергающийся модифицированию; плотность его сравнительно высокая — 2,9 г/см 3 . Из этого сплава изготовляют отливки сложной конфигурации — кар­теры, блоки двигателей.

К жаропрочным сплавам относится литой сплав АЛ1, предназначенный для изготовления головок цилиндров, поршней, работающих при высоких температурах — до 300° С.

4.2. Медь и ее сплавы

Медь по своему значению в машиностроении является наиболее цен­ным техническим материалом. Она хорошо сплавляется с большинст­вом металлов. Медь в чистом виде имеет красный цвет; чем больше в ней примесей, тем грубее и темнее излом. Температура плавления ме­ди 1083° С, плотность 8,92 г/см 3 .

Медь хорошо проводит электричество и тепло, уступая в этом от­ношении только серебру, ее используют для изготовления электричес­ких проводов, деталей электрооборудования, холодильных установок и т. д.; отличается хорошей коррозионной стойкостью, поэтому широ­ко применяется в химическом машиностроении и теплотехнике. Медь— очень вязкий металл, трудно поддается обработке резанием, так как стружка налипает на режущий инструмент. Для изготовления деталей машин чистая медь почти не применяется из-за низкой механической прочности.

В зависимости от чистоты предусмотрено пять марок меди: МО, М1, М2, МЗ, М4. В наиболее чистой меди (марка, МО) общее ко­личество примесей не превышает 0,1 и 0,05%. Наибольшее количество примесей (до 1%) содержит медь М4.

Медь МО (электролитическая) предназначается для изготовления проводников тока и сплавов высокой чистоты, МЗ — для проката и литейных медных сплавов (кроме бронзы), а медь М4 — для литей­ных бронз и паяния.

Значительная часть меди используется для изготовления сплавов на медной основе: латуни, бронзы, медно-никелевых сплавов. Эти сплавы прочнее чистой меди, их часто применяют в технике.

Латунь представляет собой сплав меди с цинком. Процентное содержание цинка в сплаве может колебаться в широких пределах и оказывает влияние как на механические свойства, так и на цвет лату­ни. С увеличением содержания цинка до 45% механические свойства латуни улучшаются, предел прочности возрастает до 32—65 кг/мм 2 , а относительное удлинение — до 65%. Температура плавления лату­ни составляет 800—1099° С. Чем больше в латуни цинка, тем ниже температура ее плавления.

В состав латуней, кроме меди и цинка, вводят алюминий, никель, железо, марганец, олово и кремний. Такие латуни называются специ­альными; эти добавки сообщают сплавам латуни повышенную проч­ность, твердость, антикоррозионную стойкость, улучшают литейные свойства.

Приняты следующие буквенные обозначения: Л—латунь, С — свинец, А — алюминий, Ж — железо, Н —никель, Мц — марганец, О — олово, К — кремний. Цифрами обозначается среднее процентное содержание меди; например в латуни Л96содержится 96% меди; в латуни ЛО62-1 содержится 62 % меди и примерно 1% олова, остальное цинк.

Свинцовистые латуни ЛС59-1, ЛС60-1, ЛС63-3, ЛС64-2, ЛС74-3 обладают высокими механическими свойствами, хорошо обрабатыва­ются резанием и штампуются; ЛС62-1, ЛС70-1 обладают высокими антикоррозионными свойствами в морской воде, хорошо обрабатыва­ются в горячем состоянии. Эти латуни находят широкое применение в судостроении.

Бронзы представляют собой сплавы меди с любым другим ме­таллом — свинцом, алюминием, кремнием, оловом, марганцем, ни­келем, железом, кроме цинка.

Бронзы обладают хорошими литейными и антифрикционными свойствами, высокой прочностью и твердостью, коррозионной стой­костью и хорошо обрабатываются резанием; при небольшом содержа­нии легирующих элементов бронзы обрабатываются давлением.

Маркировка бронз та же, что и для латуней: буквы Бр. — бронза, дальше начальные буквы названий тех основных элементов, кото­рые входят в состав сплава, а цифры, стоящие за буквами, соответст­венно обозначают их процентное содержание в бронзе. Например, Бр.ОФ6 -4 обозначает марку оловянисто-фосфористой бронзы, со­держащей 6—7% олова и около 4% фосфора. Фосфористая бронза применяется для изготовления вкладышей подшипников, червячных колес, а также деталей, находящихся в соприкосновении с морской водой.

Бронза Бр.ОЦС 6-6-3 применяется для изготовления машинной, водяной и паровой арматуры, а также гаек, втулок, поршней и т. д.

4.3. Магний и его сплавы

Магний представляет собой легкий металл серебристого цвета, плотность его 1,74 г/см 3 , температура плавления 650° С. При температу­ре, несколько превышающей температуру плавления, легко воспламе­няется и горит ярко-белым пламенем.

В связи с малой прочностью и слабой стойкостью против коррозии магний в качестве конструкционного материала не применяется, в основном он используется для получения магниевых сплавов.

Магниевые сплавы являются весьма легкими конструкционными материалами, поэтому их широко применяют в авиационной и других отраслях промышленности.

По технологическому признаку магниевые сплавы делятся на де­формируемые и литейные.

Деформируемые магниевые сплавы МА1, МА2, МАЗ, МА5, МА8 применяют для изготовления полуфабрикатов — прутков, полос, труб, листов и т. д., а также штамповок и поковок.

Литейные магниевые сплавы нашли широкое применение для производства фасонного литья. Плотность этих сплавов составляет 1,75—1,83 г/см 3 , они хорошо обрабатываются резанием, но литейные свойства их ниже литейных свойств алюминиевых спла­вов.

К недостаткам литейных магниевых сплавов следует отнести пониженную коррозионную стойкость во влажной среде, поэтому литейные,как и деформируемые магниевые сплавы, защищают оксидными пленками и лакокрасочными покрытиями. Марки литейных магниевых сплавов: МЛ1, МЛ2, МЛЗ, МЛ4, МЛ5, МЛ6.

Маркировка магниевых сплавов состоит из буквы, обознчающей соответствующий сплав, буквы, указывающей способ получения (А—для деформируемых, Л — для литейных) и цифры, обозначающей порядковый номер сплава.

Температура плавления титана 1660° С, относительная плотность 4,5 г/см 3 . С углеродом титан образует очень твердые карбиды. Титан удовлетворительно куется, прокатывается и прессуется, обладает высокой стойкостью против коррозии в пресной и морской воде, также в некоторых кислотах.

Наибольшее значение имеют сплавы титана с хромом, алюминием, (в небольшом количестве) при малом содержании углерода (десятые доли процента). Например сплав ВТ2, содержащий 1—2% алюминия и 2—3% хрома, а также сплав ВТ5, содержащий 5% алю­миния, имеют высокую прочность и пластичность, применяются для изготовления листового материала. Сплав ВТЗ, содержащий 5% алю­миния, 3% хрома, имеет жаропрочность до 400° С. Многие сплавы ти­тана подвергаются термической обработке, чем достигается еще большая прочность, соответствующая прочности высоколегированных сталей.

Читайте также: