Деформируемость металлов и сплавов

Обновлено: 21.09.2024

Деформа́ция (от лат. deformatio — «искажение») — изменение взаимного положения частиц тела, связанное с их перемещением друг относительно друга. Деформация представляет собой результат изменения межатомных расстояний и перегруппировки блоков атомов. Обычно деформация сопровождается изменением величин межатомных сил, мерой которого является упругое механическое напряжение.

Деформации разделяют на обратимые (упругие) и необратимые (неупругие, пластические, ползучести). Упругие деформации исчезают после окончания действия приложенных сил, а необратимые — остаются. В основе упругих деформаций лежат обратимые смещения атомов тела от положения равновесия (другими словами, атомы не выходят за пределы межатомных связей); в основе необратимых — необратимые перемещения атомов на значительные расстояния от исходных положений равновесия (то есть выход за рамки межатомных связей, после снятия нагрузки переориентация в новое равновесное положение).

Пластические деформации — необратимые деформации, вызванные изменением напряжений.

Деформации ползучести — необратимые деформации, происходящие с течением времени.

Способность веществ пластически деформироваться называется пластичностью. При пластической деформации металла одновременно с изменением формы меняется ряд свойств — в частности, при холодном деформировании повышается прочность.

Наиболее простые виды деформации тела в целом:

В большинстве практических случаев наблюдаемая деформация представляет собой совмещение нескольких одновременных простых деформаций. В конечном счёте, любую деформацию можно свести к двум наиболее простым: растяжению (или сжатию) и сдвигу.

Деформация физического тела вполне определяется, если известен вектор перемещения каждой его точки.

Деформация твёрдых тел в связи со структурными особенностями последних изучается физикой твёрдого тела, а движения и напряжения в деформируемых твёрдых телах — теорией упругости и пластичности. У жидкостей и газов, частицы которых легкоподвижны, исследование деформации заменяется изучением мгновенного распределения скоростей.

Деформация называется упругой, если она исчезает после удаления вызвавшей её нагрузки (то есть тело возвращается к первоначальным размерам и форме), и пластической, если после снятия нагрузки деформация не исчезает (или исчезает не полностью).

Все реальные твёрдые тела при деформации в большей или меньшей мере обладают пластическими свойствами. При некоторых условиях пластическими свойствами тел можно пренебречь, как это и делается в теории упругости. Твёрдое тело с достаточной точностью можно считать упругим, то есть не обнаруживающим заметных пластических деформаций, пока нагрузка не превысит некоторого предела (предел упругости).

Природа пластической деформации может быть различной в зависимости от температуры, продолжительности действия нагрузки или скорости деформации. При неизменной нагрузке, приложенной к телу, деформация изменяется со временем; это явление называется ползучестью. С возрастанием температуры скорость ползучести увеличивается. Частными случаями ползучести являются релаксация и упругое последействие. Одной из теорий, объясняющих механизм пластической деформации, является теория дислокаций в кристаллах.

Измерение деформации производится либо в процессе испытания материалов с целью определения их механических свойств, либо при исследовании сооружения в натуре или на моделях для суждения о величинах напряжений. Упругие деформации весьма малы, и их измерение требует высокой точности. Измерение деформаций называется тензометрией; измерения обычно производятся с помощью тензометров. Кроме того, широко применяются резистивные тензодатчики, поляризационно-оптический метод исследования напряжения, рентгеноструктурный анализ. Для суждения о местных пластических деформациях применяют накатку на поверхности изделия сетки, покрытие поверхности легко растрескивающимся лаком или хрупкими прокладками и т. д.

ОТВЕТИТЬ НА КОНТРОЛЬНЫЕ ВОПРОСЫ:

1. Что назывется деформацией?

2. Какие типы деформаций вы знаете?

3. Что такое деформация ползучести?

4. Пластические деформации это?

5. Что является частными случаями ползучести?

6. Что такое теория дислокаций в кристаллах?

7. Как производится измерение деформаций?

Домашнее задание: составить опорный конспект и выучить его.

МАТЕРИАЛОВЕДЕНИЕ

Дата 08.04.2020

УРОК №14

ТЕМА: «ВЛИЯНИЕ НАГРЕВА НА СТРУКТУРУ И СВОЙСТВА ДЕФОРМИРОВАННОГО МЕТАЛЛА»

ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ

Около 10…15 % всей энергии, затраченной на пластическую деформацию, поглощается металлом и накапливается в нем. Остальная часть энергии идет на нагрев металла.

Деформированный металл находится в неравновесном, неустойчивом состоянии, и в нем могут протекать процессы, направленные на достижение устойчивого состояния. Этот переход связан с уменьшением искажений в кристаллической решетке и снятием напряжений, что в свою очередь определяется возможностью перемещения атомов.

С повышением температуры подвижность атомов увеличивается и начинают развиваться процессы, приводящие металл к равновесному состоянию. По мере нагрева деформированный металл проходит стадии возврата и рекристаллизации, в результате чего изменяются его структура и свойства (рисунок 20).

В области возврата (при нагреве до 0,3 Тпл) происходит повышение структурного совершенства металла в результате уменьшения плотности дефектов строения. При этом не наблюдается заметных изменений структуры, видимой в оптический микроскоп. Механические свойства металла изменяются незначительно, порядка на 5…7 %.

При низких температурах (ниже 0,2 Тпл) протекает первая стадия возврата — отдых, когда происходит уменьшение точечных дефектов (вакансий) и перераспределение дислокаций без образования субграниц. При нагреве вакансии поглощаются дислокациями, которые двигаются к границам зерен. Часть дислокаций противоположного знака уничтожается.

Вторая стадия возврата — полигонизация, под которой понимают дробление (фрагментацию) кристаллов на субзерна (полигоны). При нагреве беспорядочно распределенные дислокации одного знака выстраиваются в дислокационные стенки, что приводит к образованию в монокристалле или в зерне поликристалла субзерен (полигонов), свободных от дислокаций и отделенных дислокационными границами.

Стадия первичной рекристаллизации в деформированном металле происходит при его нагреве выше 0,3Тпл. При высоких температурах подвижность атомов возрастает и образуются новые равноосные зерна.

Образование новых, равноосных зерен вместо ориентированной волокнистой структуры деформированного металла называется первичной рекристаллизацией.

В деформированном металле на участках с повышенной плотностью дислокаций образуются и растут зародыши. Образуется совершенно новое зерно, по размерам отличающееся от исходного до деформации. Наклеп практически полностью снимается, и свойства приближаются к их исходным значениям.

Температура, при которой начинается процесс рекристаллизации называется температурным порогом рекристаллизации.

Температурный порог рекристаллизации (Тр) связан с температурой плавления металла зависимостью А.А.Бочвара:

Тр = а∙Тпл , где Тпл — абсолютная температура плавления, К; а — коэффициент, зависящий от чистоты металла.

Для металлов высокой чистоты а = 0,1…0,2; для технически чистых металлов а=0,4; для сплавов твердых растворов а = 0,5…0,6.

Рекристаллизационный отжиг малоуглеродистых сталей проводят при 600…700 0 С, латуней и бронз при 560…700 0 С, алюминиевых сплавов при 350…450 0 С, титановых сплавов при 550…750 0 С.

Собирательная рекристаллизация проходит после завершения первичной рекристаллизации в процессе дальнейшего нагрева. Она заключается в росте образовавшихся новых зерен. Движущей силой собирательной рекристаллизации является поверхностная энергия зерен. При укрупнении зерен общая протяженность их границ становится меньше, что соответствует переходу металла в более равновесное состояние.

Большая Энциклопедия Нефти и Газа

Деформируемость металла , в известной степени характеризующаяся твердостью, имеет важное значение для оценки технологических свойств металлических порошков, главным образом их прессуемости. Удобной мерой пластичности порошка является микротвердость его частиц, определение которой осуществляется измерением диагонали отпечатка при вдавливании алмазной пирамидки ( угол при вершине 136) под действием небольших нагрузок ( 0 5 - 200 г) в шлифованную поверхность зерна. Исследуемый порошок смешивают с бакелитом или орще-ментом типа АКР. Смесь прессуют под давлением 1 - 2 т / см2 в небольшие брикеты, которые затем нагревают при температуре 100 - 140 С для полимеризации наполнителя. Затем брикеты с одного из торцов шлифуют и полируют. [1]

Деформируемость металлов определяется при технологических испытаниях. Некоторые методы технологических испыта - ] ий на деформируемость материалов ( технологические пробы) стандартизованы. [2]

Проблема деформируемости металлов без разрушения приобретает большое значение в связи с увеличением объема производства труднодеформируемых сплавов и повышением требований к качеству продукции и ее эксплуатационной долговечности. В то же время, как показал анализ [95], технология деформирования некоторых металлов и сплавов имеет в ряде случаев большие резервы пластичности. [3]

При оценке деформируемости металла в горячем состоянии применительно к стыковой сварке следует учитывать как пластичность, так и сопротивляемость деформации. [4]

При определении деформируемости металлов в условиях горячей и теплой деформации важно учитывать взаимное влияние температуры и скорости деформации на их пластические характеристики. [5]

Некоторые методы технологических испытаний на деформируемость металлов ( технологические пробы) стандартизованы. [6]

Некоторые методы технологических испытаний на деформируемость металлов ( технологические пробы) стандартизованы. Технологические пробы не дают численных даниых. Оценка качества металла при этих испытаниях производится визуально по состоянию поверхности металла после испытания. [7]

Как видим, задача оценки деформируемости металлов при их обработке обладает целым рядом особенностей, и нет оснований для оптимистичных прогнозов относительно развития методов ее решения аппаратом механики разрушения. [9]

В главе описана гипотетическая теория деформируемости металла при его обработке давлением. Математический аппарат этой теории позволяет определить допустимые пластические деформации, не приводящие к растрескиванию. Он основан на экспериментальных данных о зависимости пластичности от показателя напряженного состояния или на так называемых диаграммах пластичности. Описаны диаграммы пластичности некоторых сталей и цветных металлов. [10]

Знание пластических характеристик необходимо для анализа деформируемости металлов и сплавов, оценки склонности материалов к разрушению и прогнозирования качества металлопродукции. [11]

Вопросы пластичности и разрушения являются определяющими как в теории деформируемости металлов , так и для решения практических задач обработки металлов давлением. [12]

В книге излагаются методы исследования устойчивости пластического деформирования, оценки деформируемости металлов при их механической обработке, вопросы, связанные с технологической наследственностью, некоторые экспериментальные методы определения напряжений и кинематики пластического деформирования. [13]

В сборник включены материалы по исследованию влияния различных факторов, действующих при высокоскоростном деформировании, а также материалы по определению деформируемости металла . Рассмотрены и определены исходные данные для проведения энергетического расчета высокоскоростных молотов. [14]

Старение меняет механизм разрушения сталей, при этом имеет место вязкохрупкий переход, так как изменяется структура металла, а следовательно, изменяются пластичность, прочность, деформируемость металла . [15]

Наложение ультразвука в процессе кристаллизации сплава в изложнице способствует росту числа зародышей кристаллизации и измельчению кристаллитов слитка, уменьшает степень дендритной ликвации и в ряде случаев повышает деформируемость металла . Большой эффект дает ультразвук на сплавах железа с хромом, кремнием и алюминием, особенно склонными к росту зерна. Обработка ультразвуком устраняет столбчатую структуру слитка, что также сопровождается увеличением предела прочности более чем в 1 5 раза, а относительного сужения и удлинения - в 4 - 13 раз. При этом понижается критический интервал хрупкости. [16]

Смазочно-охлаждающие технологические среды используются практически на всех операциях металлообработки с целью улучшения качества обработанной поверхности, стойкости инструмента, снижения энергозатрат, увеличения скоростей металлообработки, охлаждения инструмента и заготовки, обеспечения требуемой деформируемости металла . [17]

Наивысшая пластичность у сталей различного класса и состава наблюдается при 1000 - 1200 С ( см. фиг. Для оценки деформируемости металла и возможного изменения его структуры могут использоваться диаграммы рекристаллизации, полученные при статической горячей осадке ( фиг. [18]

Лучшие результаты штамповки дает сталь, имеющая ферритную структуру или ферритную с небольшим содержанием пластинчатого перлита. Зернистый перлит обеспечивает хорошую деформируемость металла . Пластинчатый перлит снижает пружинение стали и способствует получению точных размеров у штампуемых деталей. [19]

Некоторые методы технологических испытаний на деформируемость металлов ( технологические пробы) стандартизованы. [20]

Поверхностно-активная среда снижает и - у, и 7i - Однако в хрупких телах 7i во много раз меньше, чем в пластичных металлах, что определяет их прочность. В пластичных металлах уг может значительно превышать 7 и поэтому с уменьшением под влиянием поверхностно-активной среды величины 7i увеличивается деформируемость металла в вершине трещины. Таким образом, адсорбционное понижение прочности более опасно для высокопрочных, но хрупких материалов, имеющих на поверхности трещиноподобные дефекты. [21]

Жидкотекучесть улучшается с ростом содержания кремния. Однако положительное влияние на жидкотекучесть кремния используется только при литье кислотоупорной и жаростойкой стали, где содержание кремния доводят до 1 % добавками ферросилиция и силикокальция. При разливке металла в изложницы содержание кремния обычно ограничивается в связи с ухудшением деформируемости металла и повышением хрупкости. Введение марганца благотворно влияет на жидкотекучесть хромистой и хро-моникелевой стали. [22]

В результате изучения этого явления были открыты сплавы 3 - й группы. Свойства сплавов 2 - й группы ( содержащих немного углерода) в горячем состоянии определяются в зависимости от того, находятся ли карбиды хрома в твердом растворе или они выпали. Выпадение одной фазы в аустопите в виде мельчайших частиц, иногда невидимых в микроскоп, делает металл более прочным и менее деформируемым. Если выпавшие мелкие частицы коагулируют в более крупные, деформируемость металла возрастает. [23]

Представление об идеальном скольжении, обусловленном перемещением дислокаций, может быть совместимо со случаем деформации кристалла, не ограниченной и не стесненной дополнительными связями. Если же по тем или иным причинам плоскости кристаллической решетки могут перемещаться только на часть межатомного расстояния, то возникает плоскостный дефект кристаллической решетки, называемый дефектом упаковки. Некоторые из дефектов этого типа неустойчивы и не сохраняются в кристалле. Другие такие дефекты могут иметься в кристалле и оказывать существенное влияние на деформируемость металла . Дефекты упаковки могут возникать в процессе скольжения или при введении в кристаллическую решетку слоя атомов с другим расположением. [25]

В последнее время резко возросла роль расчетов в проектировании технологических процессов. В связи с быстрым развитием техники, появлением новых методов обработки металлов технологи уже не располагают временем для накопления данных практики. Реализация проектируемых процессов в лабораторных условиях оказывается подчас весьма дорогостоящей, тем более, когда она не подкреплена соответствующими расчетами. В связи с автоматизацией технологических процессов остро встала проблема их оптимизации. Поэтому от технолога, проектирующего процесс, который связан с пластическим деформированием металла, часто требуется не только расчетная оценка энергосиловых параметров, знание которых необходимо для подбора и расчета на прочность и жесткость технологического оборудования, но и оценка деформируемости металла , устойчивости его пластического деформирования. Важное значение придается вопросам технологической наследственности: остаточные напряжения, механические свойства материала, точность изделия в значительной мере определяют его качество. Перечисленные задачи объединяет то, что они решаются методами механики деформируемых твердых тел. Цель книги - изложение методов решения такого рода технологических задач аппаратом механики деформируемы твердых тел. Для решения указанных задач требуется знание напряженно-деформированного состояния в процессе пластического деформирования обрабатываемого металла. Теоретическим методам его определения посвящена обширная литература, экспериментальные и экспериментально-расчетные методы освещены в литературе сравнительно слабо. Между тем в связи с серьезными математическими и вычислительными трудностями при использовании теоретических методов, недостаточным знанием граничных условий роль экспериментальных методов остается весьма важной. В связи с этим одна из глав книги посвящена экспериментально-расчетным методам определения напряженно-деформированного состояния в пластической области. [26]

Деформация и разрушение металлов - виды и описание процессов с примерами

Наиболее эффективные технологические процессы обработки металлов и сплавов происходят при их пластическом формоизменении в горячем или холодном состояниях. Для этого необходимо создать внешние силы, под действием которых происходит деформация металла.

Наиболее эффективные технологические процессы обработки металлов и сплавов происходят при их пластическом формоизменении в горячем или холодном состояниях. Для этого необходимо создать внешние силы, под действием которых происходит деформация металла.

Все металлы и сплавы имеют кристаллическое строение. Прикладываемые к кристаллу/кристаллам внешние силы вызывают упругую и – далее - пластическую деформацию. В последнем случае потребуется нагрузить кристалл таким усилием, чтобы происходящие внутри него изменения приобрели необратимый характер. Для каждого металла момент перехода упругих деформаций в пластические строго индивидуален, и определяется соотношением значений предела временного сопротивления к пределу пластичности/текучести.

Физическая природа деформации металлов

Этот процесс включает в себя упругую и остаточную стадии. Возникающие при этом деформации подразделяются на три группы:

Упругие, т.е., такие, которые полностью исчезают при снятии приложенных внешних сил. Тело при этом приобретает свои первоначальные размеры. Изучением упругих деформаций занимаются теория упругости и сопротивление материалов. Связь между напряжениями и деформациями в этом случае линейна и подчиняется закону Гука.

Упругопластические, которые возникают тогда, когда упругая и пластическая (остаточная) составляющие соизмеримы между собой. Изучение упругопластических деформаций имеет значение для всесторонней оценки запаса прочности металла, поскольку в практике металлообработки такой вид деформации не используется.

Пластические/конечные, при которых упругие изменения формы незначительны, и ими можно пренебречь. Здесь зависимость напряжений и деформаций не носит линейного характера, и зависит от множества факторов.

Любой реальный металл представляет собой совокупность анизотропных кристаллов, ориентация которых произвольна. Поэтому предполагается, что во всех направлениях имеется приблизительно одинаковое количество одинаково ориентированных зёрен. Именно поэтому свойства металла во всех направлениях одинаковы и определяются некоторыми средними значениями. Квазиизотропность металлов облегчает изучение физических основ их деформирования.

Деформация металлов

Основой для любого изменения формы металла является наличие дефектов в его структуре, прежде всего – дислокаций. С помощью теории дислокаций объясняются механизмы разрушения металла, его кристаллизация, упрочнение/разупрочнение и пр. Ключевым положением теории дислокации является то, что любое изменение формы представляет собой результат перемещения и размножения дефектов в кристаллической решётке. При этом механизм деформации рассматривается на уровне отдельных атомов. Такое представление позволяет анализировать многие физические явления, происходящие в деформируемом теле под нагрузками, при повышенных температурах и т.д.

Упругая деформация

Как уже указывалось, такой вид деформации представляет собой изменение формы материала во времени, которая самопроизвольно снимается после снятия силы или внешней нагрузки. Форма материала изменяется при приложении силы в пределах предела упругости металла, иначе называемого модулем Юнга. Это физическое свойство гарантирует, что эластичные материалы возвращают свои первоначальные размеры после снятия приложенной нагрузки. Здесь деформация обратимая и непостоянная. Упругая деформация металлов обычно наблюдается при малых формоизменениях; их упругое поведение, как правило, линейно.

Упругая деформация включает временное растяжение или искривление связей между атомами кристаллической решётки. Например, при изгибе стального листа все имеющиеся в металле дислокации и связи изгибаются (либо растягиваются) только на несколько процентов, но относительного перемещения атомов при этом не наблюдается. Такая деформация может быть вызвана приложением внешних сил сдвига, которые вызывают соответствующие напряжения растяжения/сжатия.

Наличие упругой деформации материала позволяет всем связям восстанавливаться после напряжения. Но со временем эти свойства ухудшаются, а в некоторых условиях металл может стать хрупким и потерять пластичность. Примером могут служить изменения, которые происходят в олове. При резких температурных колебаниях этот металл становится менее пластичным (известны аллотропические превращения β-олова в α-олово и наоборот, которые в Средние Века именовали оловянной чумой). Часто изменения вызываются воздействиями определённых химикатов, снижающих эластические характеристики металлов.

Деформация стали

Эластичность (пружинистость) стали повышается при увеличении процентного содержания углерода в ней. Не случайно для производства автомобильных рессор принимают специальные марки сталей, количество углерода в которых не должно быть менее 0,62…0,70 % (ГОСТ 14959-2016). Упругость таким сталям придаёт также повышенный процент марганца и кремния.

Пластическая деформация

Теория дислокаций утверждает, что с приложением нагрузки к реальным кристаллам металла смещение одной части кристалла относительно другой происходит не одновременно по всей площади скольжения. Начинается оно в точке дефекта кристалла и распространяется при значительно меньшем внешнем усилии, чем при одновременном скольжении целого блока атомов. Значительное расхождение между теоретическими и фактическими значениями напряжений (например, для меди оно составляет 1540 МПа и 1 МПа, для железа – 2300 МПа и 29 МПа) объясняется наличием в стали структурных дефектов, около которых сдвиг вначале локализуется, а затем распространяется вместе с самим дефектом с некоторой скоростью.

Дислокации располагаются в наиболее плотноупакованных плоскостях кристаллической решётки. При возрастании нагрузки первыми начинают двигаться дислокации той плоскости скольжения, в которых касательные напряжения максимальны. Для начала пластического течения необходимо, чтобы касательное напряжение превышало критическое значение, величина которого зависит от исходной структуры деформируемого металла. Данное обстоятельство предопределяет необходимость учёта истории деформирования материала, что позволяет определять количественные и качественные параметры процесса пластической деформации.

Разрушение металлов

Виды пластической деформации металлов определяются характером перемещения кристаллов во время приложения усилия. Такое перемещение может происходить скольжением и двойникованием.

Скольжение

Скольжение является основным видом пластической деформации идеального кристалла. Обычно в качестве плоскостей скольжения выступают плоскости с наибольшей плотностью расположения атомов, а направлениями скольжения являются направления, по которым межатомные расстояния имеют минимальное значение.

В гексагональной решётке можно провести только одну плоскость, в которой расположено наибольшее число атомов – это плоскость основания. В решётках кубической формы таких плоскостей больше. Поэтому при прочих равных условиях металлы с гексагональной решёткой менее пластичны, чем металлы с кубической решёткой.

Пластическое деформирование начинается, прежде всего, в тех плоскостях скольжения, и по тем направлениям, которые расположены под оптимальным углом по отношению к внешней силе. Так, при сжатии и растяжении пластическая деформация возникает в первую очередь в плоскостях, расположенных под углом 45 0 к линии действия внешней силы.

Скольжение является сдвиговым деформационным процессом. Известно, что если отполированный образец из моно- или поликристалла подвергнуть нагружению, то при определённой нагрузке на поверхности образца появляются сетки линий скольжения, называемые линиями Чернова-Людерса. Эти линии качественно характеризуют сдвиг одних частей образца относительно других.

Двойникование

В некоторых металлах – магнии, цинке, золоте, железе – наряду со скольжением наблюдается двойникование. При двойниковании происходит поворот деформированной части кристалла в положение, зеркальное по отношению к деформированному. Однако и в этом случае происходит сдвиг атомов в новые положения устойчивого равновесия на расстояния, которые пропорциональны основному параметру решётки.

Двойникование часто возникает при ударном деформировании и распространено для металлов и сплавов, кристаллизация которых происходила с образованием кристаллитов в форме многогранников.

Деформация металлов и сталей

Как происходит разрушение металлов

Процесс разрушения металлов адекватно описывается методами специальной механики разрушения. Исходное положение теории заключается в том, что разрушение элементов конструкций связано с возникновением и развитием трещин, которые проявились:

В процессе изготовления деталей (сварка, шлифовка, закалка);

В период их эксплуатации вследствие превышения допустимых нагрузок;

Как следствие коррозионных явлений.

Механика разрушения учитывает влияние дефектных участков при анализе напряжённого состояния конструктивных элементов и при определении реальных характеристик материала во время испытаний. Такие испытания должны проводиться с образцами, в которых имеются искусственно наведенные трещины.

В результате испытаний устанавливаются количественные связи между номинальными напряжениями, формой и размерами дефекта, с одной стороны, и сопротивлением материала в условиях стабильного и нестабильного варианта развития трещины – с другой. Именно в этом заключается принципиальная основа использования методов механики разрушения при выборе материала, определения размера и установления срока службы деталей машин и элементов металлоконструкций.

Установлено, что при оценке вероятности и времени разрушения металла следует рассматривать изотропную пластину бесконечной длины и конечной толщины, внутри которой имеется трещина. Критерием развития трещины принимают параметр интенсивности поля напряжений в зоне одного из концов трещины (критерий Ирвина), при этом радиусные переходы между участками равны 0. Раскрытие трещины (после чего и наступает разрушение) происходит при максимальном уровне растягивающих напряжений у её краёв.

Пластическая деформация металлов

Деформацией называется изменение размеров и формы тела под действием приложенных сил. Деформация делится на упругую и пластическую.

Упругая деформация. Упругой деформацией называют деформацию, влияние которой на форму, структуру и свойства те­ла полностью устраняется после прекращения действия внешних сил. Упругая деформация не вызывает заметных остаточных из­менений в структуре и свойствах металла; под действием приложенной нагрузки происходит только незначительное относи­тельное и полностью обратимое смещение атомов.

Пластическая деформация. При возрастании касательных напряжений выше определенной величины (предел или порог упругости) деформация становится необратимой. При снятии нагрузки устраняется лишь упругая составляющая деформации. Часть же деформации, которую называют пластической, остается.

Пластическая деформация в кристаллах может осущест­вляться скольжением и двойникованием. Скольжение (смеще­ние) отдельных частей кристалла относительно друг друга про­исходит под действием касательных напряжений, когда эти напряжения в плоскости и в направлении скольжения достигают определенной критической величины (τк).

Схема упругой и пластической деформаций металла с куби­ческой структурой, подвергнутого действию касательных напряжений, показана на рис. 18. Эта схема дает наглядное представление о смещении атомов в соседних плоскостях при сдви­ге на одно межатомное расстояние.

Скольжение в кристаллической решетке протекает по плос­костям, и направлениям с наиболее плотной упаковкой атомов где величина сопротивлению сдвигу (τк) наименьшая, а сама величина τ значительна. Это объясняется тем, что расстояние между соседними атомными плоскостями наибольшее, т. е. связь между ними наименьшая.

Чем больше в металле возможных плоскостей и направлений скольжения, тем выше его способность к пластической дефор­мации. Металлы, имеющие кубическую кристаллическую ре­шетку, обладают высокой пластичностью, так как скольжение в них происходит во многих направлениях. Металлы с гексаго­нальной плотноупакованной структурой менее пластичны и поэтому труднее, чем металлы с кубической структурой, подда­ются прокатке, штамповке и другим способам деформации.

Процесс скольжения не следует, однако, представлять как одновременное передвижение одной части кристалла относи­тельно другой. Такой жесткий или синхронный сдвиг потребовал бы напряжений, в сотни или даже тысячи раз превышающих те, при которых в действительности протека­ет процесс деформации.


Рис. 18. Схема упругой и пластической деформации металла под действием напряжения сдвига:

а – первоначальный кристалл; б – упругая деформация; в – увеличение упругой и пластической деформации, вызванных скольжением, при нагружении, большем предела упругости; г – напряжения, обусловившие появление сдвига (после сдвига сохранилась остаточная деформация); д – образование двойника.


Рис. 19. Движение краевой дислокации, приводящее к образованию ступеньки единичного сдвига на поверхности кристалла:

а – схема движения дислокации; б – краевая дислокация в кристаллической структуре; в – дислокация переместилась на дно; г – на два межатомных расстояния в решетке под влиянием приложенного напряжения; д – выход дислокации на поверхность и появление сдвига.

Скольжение осуществляется в результате перемещения в кристалле дислокаций, что показано на рис. 19. Чтобы дислокация из исход­ного положения 1 переместилась в соседнее положение 14, не нужно сдвигать всю верхнюю половину кристалла на одно меж­атомное расстояние.

Достаточно, чтобы произошли следующие перемещения атомов: атом 1 в положение атома 2, атом 3 — в 4, атом 5 — в 6, атом 7 — в 8, атом 9 — в 10, атом 11 — в 12, атом 13 — в 14, атом 15 — в 16 и атом 17 — в 18. Также смещаются атомы не только в плоскости чертежа, но и во всех атомных слоях, параллельных этой плоскости.

Незначительные перемещения атомов в области дислокации приводят к перемещению дислокаций на одно межатомное расстояние.

Следует иметь в виду, что перемещение дислокаций, образовавшихся в процессе кристаллизации, ограничено. Большие деформации возможны только вследствие того, что движение этих дислокаций вызыва­ет появление или размножение большого количества новых дислокаций в процессе пластической деформации.

Двойникование. Пластическая деформация некоторых метал­лов, имеющих плотноупакованные решетки К12 и Г12, помимо скольжения, может осуществляться двойникованием, которое сводится к переориентировке части кристалла в положение, симметричное по отношению к первой части относительно плоскости, называемой плоскостью двойникования. Двойникование подобно скольжению сопровождается прохождением дислокаций сквозь кристалл.

При большой деформации в результате процессов скольжения зерна (кристаллиты) меняют свою форму. До деформации зерно имело округлую форму, после дефор­мации в результате смещений по плоскостям скольжения зерна вытягиваются в направлении действующих сил τ, образуя во­локнистую или слоистую структуру. Одновременно с изменением формы зерна внутри него происходит дробление блоков и увеличение угла разориентировки между ними.

Текстура деформации. При большой степени деформации возникает преимущественная кристаллографическая ориенти­ровка зерен. Закономерная ориентировка кристаллитов относи­тельно внешних деформирующих сил получила название тек­стуры (текстура деформации).

Наклеп. С увеличением степени де­формации свойства, характеризующие сопротивление деформации (σв, σт, НВ и др.), повышаются, а способность к пластической деформации — пластич­ность (δ и φ) уменьшается. Это явление роста упрочнения получило название наклепа. Упрочнение металла в процессе пластической деформации (наклеп) объясняется увеличением числа де­фектов кристаллического строения (дислокаций, вакансий, межузельных атомов).

Все дефекты кристалличе­ского строения затрудняют движение дислокаций, а следовательно, повышают сопротивление дефор­мации и уменьшают пластичность. Наибольшее значение имеет, увеличение плотности дислокаций, так как возникающее при этом взаимодействие между ними тормозит дальнейшее их перемещение. В результате деформации уменьшается плотность, сопротивление коррозии и повышается электросопротивление. Холодная деформация ферромагнитных металлов, например железа, повышает коэрцитивную силу и уменьшает магнитную про­ницаемость.

Свойства пластически деформированных металлов.

В результате холодного пластического деформирования металл упрочняется и изменяются его физические свойства — электросопро­тивление, магнитные свойства, плотность. Наклепанный металл за­пасает 5-10% энергии, затраченной на деформирование. Запасенная энергия тратится на образование дефектов решетки (например, плот­ность дислокаций возрастает до 10 9- 10 12 см -2 ) и на упругие искажения решетки. Свойства наклепанного металла меняются тем сильнее, чем больше степень деформации (рис. 20).

При деформировании увеличиваются проч­ностные характеристики (твердость;σв; σ0,2; σупр) и понижаются пластичность и вязкость (δ; φ; ан). Металлы интенсивно наклепываются в начальной стадии деформи­рования, после 40%-ной дефор­мации механические свойства меняются незначи­тельно. С увеличением степени деформации пре­дел текучести растет быстрее предела прочности (временного сопротивления).

Обе характери­стики у сильно наклепанных металлов сравниваются, а удлинение становится равным нулю. Такое со­стояние наклепанного металла яв­ляется предельным, при попытке про­должить деформирование металл разрушается.

Путем наклепа твердость и временное сопротивле­ние (предел прочности) удается повысить в 1,5-3 раза, а предел текучести — в 3-7 раз при максимально возможных де­формациях. Металлы с ГЦК-решеткой упрочняются силь­нее металлов с ОЦК-решеткой. Среди сплавов с ГЦК-решеткой сильнее упрочняются те, у которых энергия дефектов упаковки минимальна (например, интенсивно наклепываются аустенитная сталь; алюминиевая бронза с 7% А1; никель; а алюминий упрочняется незначительно).

Упрочнение при наклепе широко используют для повышения ме­ха­нических свойств деталей, изготовленных методами холодной обра­ботки давлением. В частности, наклеп поверхностного слоя деталей повышает сопротивление усталости. Понижение пластичности при наклепе исполь­зуют для улучшения обрабатываемости резанием вяз­ких и пластичных материалов (сплавов алюминия, латуней и др.).

Влияние нагрева на структуру и свойства холоднодеформированных металлов.

Неравновесная структура, созданная холодной деформацией у боль­шинства металлов устойчива при комнатной температуре. Переход металла в более стабильное состояние происходит при нагреве. Процессы, происходящие при нагреве подразделяют на две основ­ные стадии: возврат и рекристаллизацию; обе стадии сопровождаются выделением теплоты и уменьшением свободной энергии. Возврат про­исходит при относительно низких температурах, рекристаллизация — при более высоких.

Возвратом называют все изменения тонкой структуры и свойств, которые не сопровождаются изменением микроструктуры деформированного металла, т. е. размер и форма кристаллов при возврате не изменяются.

Рекристаллизацией называют зарождение и рост новых кристал­лов с меньшим количеством дефектов строения; в результате рекри­сталлизации образуются совершенно новые, чаще всего, равноосные кристаллы.

Возврат. Стадию возврата, в свою очередь, разделяют на две возможные стадии: отдых и полигонизацию. Отдых при нагреве деформи­рованных металлов происходит всегда, а полигонизация развивается лишь при определенных условиях.

Отдыхом холоднодеформированного металла называют стадию воз­врата, при которой вследствие перемещения атомов уменьшается коли­чество точечных дефектов, в основном вакансий; в ряде металлов, таких как алюминий и железо, отдых включает также переползание дислокаций, которое сопровождается взаимодействием дислокаций разных знаков и приводит к заметному уменьшению их плотности. Перераспределение дислокаций сопровождается также уменьшением остаточных напряжений.

Отдых вызывает значительное уменьшение удельного электросопротивления и повышение плотности металла. Если при отдыхе уменьшается плотность дислокаций, то наблюдается уменьшение твердости и прочности металла (алюминий, железо); если плотность дислокаций при отдыхе не меняется, то отдых не сопровож­дается изменением механических свойств (медь, латунь, никель).

Полигонизация — это процесс разделения деформиро­ванных зерен металла на полигоны — области с малой плотностью дислокаций. Эти области называются бло­ками. Процесс полигонизации протекает в интервале температур отдых — рекристаллизация и заканчивается созданием блочной структуры.

Полигонизация приводит к дальнейшему снятию упру­гих искажений кристаллической решетки и более полно­му восстановлению физических свойств металла. Меха­нические свойства его при этом изменяются незначитель­но. Текстура сохраняется, хотя и становится блочной.

Вслед за возвратом протекает рекристаллизация, за­ключающаяся в зарождении и росте новых неискажен­ных равноосных зерен (рис. 21).

При первичной рекристаллизациив деформированной среде зарождаются и растут равноосные зерна до тех пор, пока полностью не исчезнет текстура, созданная деформацией. Зародышами зерен являются отдельные энергетически выгодные блоки (центры рекристаллиза­ции). После исчезновения текстуры металл приобретает равновесную мелкозернистую структуру.

Суммарная протяженность границ мелких зерен ве­лика. Граничные зоны зерен представляют собой тонкие (в несколько атомных слоев) сильно искаженные облас­ти, так как здесь сопрягаются кристаллические решетки различно ориентированных стыкующихся зерен, сюда стекаются точечные дефекты и дислокации. Поэтому граничные зоны зерен и характеризуются высокими зна­чениями энергии (поверхностной энергии), которая уменьшается за счет округления зерен и дальнейшего их роста путем фронтального перемещения граничных зон растущих зерен и поглощения мелких.

Атомы из мелких зерен диффундируют через границу в растущие зерна, отчего первые постепенно исчезают, а вторые разраста­ются. В результате число зерен структуры металла умень­шается, а их размеры увеличиваются. Рост одних равно­осных зерен за счет исчезновения других представляет собой собирательную рекристаллизацию.

Температура начала рекристаллизации зависит от многих факторов и прежде всего от степени деформации материала и содержания примесей в нем. Определено, что

где Трекр— абсолютная минимальная температура рекри­сталлизации; α — коэффициент, учитывающий вышепере­численные факторы; Тпл — абсолютная температура плав­ления данного вещества.

Минимальная температура рекристаллизации железа и других металлов технической чистоты определяется по формуле А. А. Бочвара:

Термическая операция, заключающаяся в нагреве де­формированного (текстурованного) материала до темпе­ратуры выше Трекр, выдержке и последующем медленном охлаждении (в печи), называется рекристаллизационным отжигом.


Рис. 21. Влияние нагрева на механические свойства и структуру металла, упрочненного деформацией.

Практически температура рекристаллизационного от­жига выбирается выше расчетной (обычно на 200. 300°С), так как чем выше температура нагрева, тем быстрее про­текает рекристаллизация, характеризующаяся, в частно­сти, уменьшением твердости металла. Для же­леза и низкоуглеродистой стали температура рекристал­лизационного отжига принимается равной 650. 700°С.

Для того чтобы в металле при нагреве протекала ре­кристаллизация, необходима его хотя бы минимальная предварительная холодная обработка (критическая сте­пень деформации εкр для железа равна 5. 6 %, для мало­углеродистой стали — 7. 15, для меди — около 5, для алюминия — 2. 3 %).

При рекристаллизации после де­формирования материала с εкр зерно растет в нем особен­но сильно и может увеличиться по сравнению с исходным во много раз. Выбирая степень деформации и температу­ру рекристаллизационного отжига, можно получить в металле зерно нужного размера. Рекристаллизационный отжиг широко используют для управления формой и раз­мерами зерен, текстурой и свойствами металлов и сплавов.

Создание текстуры и наклеп возможны только в слу­чае холодного деформирования металла. Обработка дав­лением называется холодной, если она совершается при температурах ниже температуры рекристаллизации, горячей — при температу­рах выше температуры рекристаллизации.

При горячей обра­ботке давлением одно­временно с пластиче­ской деформацией ме­талла протекает рекри­сталлизация, которая продолжается и после деформации до тех пор, пока температура ме­талла не станет ниже Трекр. При этом в металлах не возникает текстура и они не наклепываются. Такая обработка широко используется при производстве горячекатаного стального полуфабриката различного профиля.

Читайте также: