Электрохимическая коррозия металлов реферат

Обновлено: 05.07.2024

Окислительно-восстановительные процессы играют исключительно важную роль в современной технике. Например, получение электрической энергии с помощью химических источников тока, металлургические процессы, электролиз. Однако некоторые окислительно-восстановительные процессы приносят вред человечеству. Одним из них является коррозия. Коррозия разрушает различные наземные и подземные металлические сооружения, турбинные и ракетные двигатели, подводные части судов, паровые котлы, проложенные в земле трубопроводы, линии электропередач, железные дороги, нефтепроводы. В результате коррозии ухудшаются электрические и магнитные свойства металлов, изменяются размеры сделанных из них деталей, нарушается герметичность аппаратов. Коррозионный процесс может полностью вывести из строя точные приборы - часы, аналитические весы и другие. Ежегодно потери металлов от коррозии составляют 10-15% от их выпуска и исчисляются миллиардами рублей. Гибнет труд людей, затраченный на обработку металла и создание тех или иных машин и механизмов. Кроме того, снижается производительность и срок работы оборудования, повышается его аварийность, нарушаются технологические процессы. В связи с этим исследование механизма процесса коррозии и разработка методов защиты от неё имеют больше значение.

Также мы обратили внимание, что ржавые изделия, детали, конструкции и прочие промышленные материалы встречаются и в повседневной жизни. Так, нами был замечен эффект коррозии на автомобилях (приложение 1), металлических заборах (приложение 2), дорожных знаков (приложение 3). Кроме того, мы наблюдали содержание ржавчины в водопроводной воде (приложение 4).

Проблемы коррозии постоянно обостряются из-за непрерывного роста производства металлов и ужесточения условий их эксплуатации. Среда, в которой используются металлические конструкции, становится все более агрессивной, в том числе и за счет ее загрязнения . Металлические изделия, используемые в технике, работают в условиях все более высоких температур и давлений, мощных потоков газов и жидкостей. Поэтому вопросы защиты металлических материалов от коррозии становятся все более актуальными. Полностью предотвратить коррозию металлов невозможно, поэтому единственным путем борьбы с ней является поиск способов ее замедления. Поэтому, изучив процесс коррозии, условия его появления и последствия для окружающего мира, мы решили выяснить, как его можно предотвратить или замедлить.

Цель работы: узнать, что такое коррозия, понять сущность данного процесса и влияние его на окружающий мир, и попытаться выявить методы защиты от коррозии.

Гипотеза: если изучить процессы коррозии и разобраться в причинах её возникновения, то данное явления можно предотвратить и взять под контроль.

1. Ознакомиться с историей открытия и исследования коррозии.

2. Изучить виды коррозии и причины ее возникновения.

3. Провести ряд опыты по наблюдению появления ржавчины и способам защиты от неё.

Для решения поставленных задач были использованы следующие методы исследования:

· изучение и обобщение

· фото- и видеосъемка

1. Теоретическая часть

Коррозия металлов - физико-химическое воздействие металлических материалов и окружающей среды, которое приводит к понижению выносливости и прочности материала, вплоть до его разрушения. При коррозии железа и сталей во влажной атмосфере обычно образуются оксиды железа в виде ржавчины.

Пример — кислородная коррозия железа в воде:

Гидроксид железа Fe(OH)3 и является тем, что называют ржавчиной .

1.1. История изучения коррозии металлов

Люди издавна интересовались вопросами защиты от коррозии. Древнегреческий историк Геродот (5 век до нашей эры) и древнеримский ученый Плиний Старший (1 век до нашей эры) упоминают о применении олова для защиты железа от ржавчины.

Средневековые алхимики мечтали о получении нержавеющего железа. Уже в двадцатых годах 19 века электролитическую коррозию изучают химик Гемфри Дэви и физик Майкл Фарадей. С тех пор во многих странах мира было выполнено очень много работ по коррозии различных металлических материалов. Однако правильной, научно обоснованной теории электрохимической коррозии не было. Существовала лишь теория, выдвинутая в 1830 году швейцарским ученым Де ла Ривом, оказавшаяся неверной, согласно которой подвергаться коррозии может лишь такой материал, в котором есть инородные включения. В начале тридцатых годов 20 века, советский ученый Александр Наумович Фрумкин, изучая амальгамы металлов, показал, что активный металл амальгамы растворяется в кислотах, хотя амальгама – это однородное вещество.

В 1935 году Алексей Иванович Шултин объяснил коррозию как индивидуальных металлов, так и сплавов. Он рассмотрел механизм протекания процесса коррозии и факторы, влияющие на его скорость. В том же 1935 году Ярослав Васильевич Дурдин так же высказал обоснованную им мысль о растворении металлов в кислотах без наличия инородных включений в них. Таким образом, советские ученые, в первую очередь Шултин А.И. и Дурдин Я.В., сформулировали теорию электрохимической коррозии металлических материалов.

1.2. Причины и виды коррозии

По характеру взаимодействия металла и среды коррозию принято делить на химическую и электрохимическую. В обоих случаях протекает окислительно-восстановительная реакция, в ходе которой металл окисляется, а присутствующий в агрессивной среде окислитель восстанавливается.

Но при химической коррозии электроны переходят от металла к окислителю непосредственно, при электрохимической коррозии окислительно-восстановительная реакция разбивается на полуреакции окисления и восстановления и электроны переходят по металлу от восстановителя к окислителю.

Химическая коррозия протекает в средах не проводящих электрический ток (в газах, нефти, бензине, керосине и т. д.) при высоких температурах. когда не возможна конденсация водяного пара. Ей подвергается арматура печей, детали двигателей внутреннего сгорания, лопатки газовых турбин, аппаратура химической отрасли промышленности

Электрохимическая коррозия протекает в присутствии влаги. Распространена она значительно шире, чем химическая. Ей подвергаются подводные части судов в морской и пресной воде, паровые котлы, металлические сооружения и конструкции под водой и в атмосфере, проложенные в грунте трубопроводы, оболочки кабелей.

Рассмотрение механизмов действия химической и электрохимической коррозии показывает, что большого различия между ними не существует. Иногда возможен постепенный переход химической коррозии в электрохимическую и, наоборот.

1.3. Методы защиты металлов от коррозии

1) Анодная защита - покрытие металла более активным металлом. Например, в гальванической паре Zn – Fe (оцинкованное железо) защищено железо, в паре Zn –Cu защищена медь. К днищам кораблей прикрепляют протекторы – слитки металла более активного, чем обшивка днища корабля. Чаще всего это – протекторная защита с помощью цинка.

Катодная защита – защита менее активным металлом (луженое железо). Например, покрытие железа оловом (луженое железо).

2) Отделение металла от агрессивной среды (окраска, смазка, покрытие лаками, эмалями). Ученые создали новое стеклокристаллическое покрытие, которое отличается стойкостью и способностью работать при более высокой, чем металлы, температуре

3) Использование замедлителей коррозии – ингибиторов. Чаще это органические вещества или неорганические соли (нитрат натрия, хроматы стронция, свинца, цинка).

4) Электрозащита – нейтрализация тока, возникающего при коррозии, постоянным током, пропускаемым в противоположном направлении. Защищаемую конструкцию присоединяют к катоду внешнего источника тока, а анод заземляют.

Так обычно защищают трубы нефтепровода, газопровода, ни в коем случае нельзя перепутать полюса тока, ошибки должны быть исключены.

5) Пассивация металлов – это образование на поверхности металла плотно прилегающего оксидного слоя, защищающего от коррозии. Например, железо пассивируют погружением изделия в концентрированную азотную кислоту. Пассивированное железо перестает взаимодействовать с кислотами с выделением водорода. Устранить пассивацию можно разрушением пленки.

6) Изготовление сплавов, стойких к коррозии. В результате снижения содержания углерода в нержавеющей стали до 0,1% стало возможным изготовлять из неё листовой прокат (коррозийнно-стойкая сталь).

2. Практическая часть

Изучив сущность коррозии и её основные свойства, мы решили провести несколько опытов по выявлению причин и условий появления ржавчины, а также по изучению способов защиты от воздействия коррозии.

2.1. Получение эффекта коррозии (опыт с гвоздём)

Опыт проводился в хорошо проветриваемом помещении. Для его проведения нам понадобился металл (железный гвоздь). С помощью распылителя опрыскиваем его значительным количеством перекиси водорода. Затем посыпаем металл солью. Делать это необходимо, пока перекись еще влажная. Процесс ржавления начинается практически сразу. После этого гвоздю нужно высохнуть естественным образом, на свежем воздухе. Таким образом, с помощью искусственной коррозии нами был получен ржавый гвоздь. Результат опыта представлен в приложении 5.

2.2. Исследование способов защиты металла от коррозии

Опыт проводился с целью изучить народные средства по удалению ржавчины, которые безопасны и могут быть использованы в быту.

По результатам опыта (приложение 6), самыми эффективными средствами оказались: средство от ржавчины (в состав которого входят различные сильные кислоты: соляная, ортофосфорная, серная, кремниевая и другие), уксус (за счёт содержания в нём концентрированной уксусной кислоты, разъедающей ржавый налет), кетчуп (благодаря разбавленной уксусной кислоте, входящей в его состав).

3. Заключение

Таким образом, при выполнении исследовательской работы, мы выяснили, что коррозия - явление, приносящее не только экономический ущерб, но также отрицательно влияющее на здоровье человека, приносящее ему материальный ущерб и негативно отражающееся на состоянии окружающей среды.

Было обнаружено, что с процессом коррозии, то есть разрушением изделий из металла, мы сталкиваемся в повседневной жизни. В ходе исследований, выдвинутая нами гипотеза подтвердилась - коррозия действительно подконтрольна, зная процессы и причины её возникновения. Также, с помощью опытов выявилось, что защитить металлы от коррозии можно доступными народными средствами. В эпоху современной промышленности, проблема коррозии до сих пор остается актуальной.

Электрохимическая коррозия металлов

Поэтому цель работы состоит в обобщении знаний о коррозии и в частности об электрохимической коррозии металлов; в изучении сущности явлений электрохимической коррозии, ее распространенность в природе и жизнедеятельности человека, поиска оптимальных способов защиты металлов от коррозии

Содержание

Введение…………………………………………………………………………………3
Химический и электрохимический механизмы растворения метало в электролитах…………………………………………………………………………..4
1.1. Термодинамическая возможность электрохимической коррозии металлов………………………………………………………………………….……5
1.2. Катодные процессы при электрохимической коррозии металлов…………………………………………………………………….…………6
1.3. Гомогенный и гетерогенный пути протекания электрохимической коррозии металла………………………………………………………………………..……….8
1.4. Схема и особенности электрохимического коррозионного процесса………………………………………………………………………………11
Анодный процесс электрохимической коррозии металлов…………………………………………………………………..………….13
2.1. Анодная реакция ионизации металла…………………………………….……13
2.2. Анодные реакции, протекающие с участием металла и водного раствора………………………………………………………………………..……..15
Защита металлов от коррозии в различных средах………………………………..15
3.1. Защита металлов от коррозии в нейтральных электролитах……………. …15
3.2. Защита металлов от коррозии в растворах кислот……………………..…….16
Пассивность металлов………………………………………………………. ……..17
4.1. Определение пассивности металлов……………………………….…..………17
4.2. Пассиваторы и депассиваторы (активаторы)………………………. ………..18
4.3. Перепассивация металлов………………………………………………. …….19
4.4 Повышение коррозионной стойкости металлов и сплавов на основе повышения их пассивируемости…………………………………. ……………….20
Анодная электрохимическая защита металлов……………..……………………..22
Защитное электрохимическое действие несплошных катодных покрытий……..23
Заключение……………………………………………………………………….…….24
Список использованной литературы……………………………………….………25

Прикрепленные файлы: 1 файл

реферат.docx

ia = ik = 1/SMe

что значительно упрощает расчеты, но дает очень грубое приближение или вовсе не пригодно для оценки и расчета неравномерных и местных коррозионных разрушений металлов.

Согласно более ранней, имеющей почти полутора вековую историю, гетерогенной трактовке процессов электрохимической коррозии металлов (теории локальных элементов), участки анодной и катодной реакций пространственно разделены и для протекания коррозии необходим переток электронов в металле и ионов в электролите. Такое пространственное разделение анодной и катодной реакций энергетически более выгодно, так как они локализуются на тех участках, где их прохождение облегчено (энергия активации реакции меньше).

В большинстве практических случаев протекание электрохимической коррозии обычно характеризуется локализацией анодного и катодного процессов на различных (более или менее постоянных) участках корродирующей поверхности металла, что приводит к неравномерному или местному характеру коррозионного разрушения. Эти отличающиеся по своим физическим и химическим свойствам участки корродирующей поверхности металла, на которых происходят анодный или катодный процессы, являются в зависимости от их размеров короткозамкнутыми макрогальваническими или микрогальваническими элементами.

Таким образом, электрохимическая коррозия металлов напоминает работу гальванического элемента, в котором отрицательный электрод растворяется, когда он соединен проводником со вторым электродом, на котором восстанавливаются ионы водорода или другие вещества, и поэтому ее можно рассматривать как результат работы большого числа коррозионных гальванических элементов на корродирующей поверхности металла, соприкасающейся с электролитом.

Основателем теории микрогальванических (локальных) элементов принято считать де для Рива (1830 г.), хотя еще в 1813 г. аналогичная теория была сформулирована Ф.И. Гизе. Теория микрогальванических элементов получила признание и свое дальнейшее развитие в XX в. благодаря трудам многих ученых и прежде всего Н.А. Изгарышева, Г. В. Акимова и его школы. А.И. Голубевым и Г.В.Акимовым были исследованы реальные микроэлементы.

Эта теория в ее современном виде объясняет не только общую величину коррозии, но и влияние гетерогенности поверхности корродирующих металлов (включая и структурную гетерогенность) на характер и скорость (увеличение и уменьшение ее, равно как и отсутствие влияния в ряде случаев) коррозионного разрушения. Она была широко использована для объяснения коррозионного поведения конструкционных металлов и сплавов в различных условиях.

По этой теории, в стационарных условиях суммарные скорости анодного iа и катодного iк процессов при саморастворении (коррозии) металлов не равны, так как площади анодных и катодных участков, как правило, не равны, т.е. Sа ≠ Sк, поэтому

При этом скоростью собственно коррозии является только первая величина, т.е. анодная плотность тока iа.

Современная теория электрохимической коррозии металлов не противопоставляет два пути (гомогенный и гетерогенный) протекания процесса, полагая, что соответствующие теоретические положения, основанные в обоих случаях на использовании электрохимической термодинамики и кинетики, дополняют друг друга, так как каждое из них имеет свои границы применения. В связи с этим попытки необъективной критики одной из этих теорий являются ненужными.

1.4. Схема и особенности электрохимического коррозионного процесса

Электрохимическое растворение металла – сложный процесс, состоящий из трех основных процессов:

анодного процесса – образования гидратированных ионов металла в электролите и некомпенсированных электронов на анодных участках по реакции;

процесса протекания электронов по металлу от анодных участков к катодным и соответствующего перемещения катионов и анионов в растворе;

катодного процесса – ассимиляции электронов какими-либо ионами или молекулами раствора (деполяризаторами), способными к восстановлению на катодных участках по реакции

D + nе = [Dne]

Таким образом, электрохимическая коррозия на неоднородной (гетерогенной) поверхности металла аналогична работе короткозамкнутого гальванического элемента.

При замыкании в электролите двух обратимых электродов с разными потенциалами [(Vа) обр и (Vк) oбр] происходит перетекание электронов от более отрицательного электрода (анода) к менее отрицательному (или более положительному) электроду (катоду). Это перетекание электронов выравнивает значения потенциалов замкнутых электродов. Если бы при этом электродные процессы (анодный на аноде и катодный на катоде) не протекали, потенциалы электродов сравнялись бы, и наступила бы полная поляризация. В действительности анодный и катодный электронные процессы продолжаются, препятствуя наступлению полной поляризации вследствие перетекания электронов с анода к катоду, т.е. действуют деполяризующие. Отсюда, в частности, происходит и название ионов и молекул раствора, обеспечивающих протекание катодного процесса – деполяризаторы. Однако из-за отставания электродных процессов от перетока электронов в гальваническом элементе потенциалы электродов изменяются (сближаются) и короткозамкнутая система, в конечном итоге, полностью заполяризовывается.

Особенности электрохимического коррозионного процесса:

подразделение его на два одновременно протекающих, но в значительной степени независимых электродных процесса: анодный и катодный;

зависимость кинетики этих двух электрохимических процессов, а, следовательно, и скорости коррозии в соответствии с законами электрохимической кинетики от величины электродного потенциала металла: смещение потенциала металла в положительную сторону (например, в результате поляризации от внешнего источника тока) обычно облегчает анодный процесс и затрудняет катодный; смещение потенциала в отрицательную сторону, наоборот, ускоряет катодный процесс и тормозит анодный;

возможность локализации электродных процессов на различных участках поверхности корродирующего металла, где их протекание облегчено;

при локализации электродных процессов реализация материального эффекта коррозии (растворение металла) преимущественно на анодных участках поверхности корродирующего металла.

2. Анодный процесс электрохимической коррозии металлов

Как уже говорилось, электрохимическое саморастворение (коррозия) металла является сложным процессом, но собственно коррозия (растворение) реализуется в анодном процессе ионизации металла.

2.1. Анодная реакция ионизации металла

По Нернсту (1890г.) реакция ионизации металла в электролитах выглядит следующим образом:

Me = Ме n+ + nе

Нернст полагал, что электродный потенциал металла возникает в результате обмена ионами между металлом и раствором, но в качестве движущих сил этого обмена ионами Нернстом были приняты электролитическая упругость растворения металла Р и осмотическое давление растворенного вещества π. На этой основе им была создана качественная картинка возникновения скачка потенциала на границе металл-раствор и количественная зависимость величины скачка этого потенциала для металлических электродов первого рода от концентрации раствора.

В 1914 г. Писаржевским Л.В. было дано новое толкование электродных процессов, позволившее заменить формальную схему осмотической теории Нернста реальной физической картиной. Несколько позже (1926 г) аналогичные идеи высказаны Изгарышевым Н.А.и Бродским А.И. По Писаржевскому, причинами перехода ионов металла в раствор являются диссоциация атомов металла на ионы и электроны и стремление образовавшихся ионов сольватироваться, т.е. вступать в соединение с растворителем. Необходимо, следовательно, учитывать два равновесия: одно – между атомами металла и продуктами его распада (ионы и электроны) и другое – при сольватации (в водных растворах – гидратации). Таким образом, потенциал металла, погруженного в раствор, зависит от обоих процессов и состоит из двух слагаемых, одно из которых зависит от свойств металла, а второе — от свойств как металла, так и растворителя. Эти новые взгляды, основанные на электронных представлениях, качественно совпадают с современными представлениями, которые, таким образом, были предвосхищены Писаржевским задолго до квантовой механики, статистики, Ферми и других современных теоретических методов.

С учетом идей Писаржевского, Изгарышева и других реакция ионизации металла в электролитах в общем ее виде стала выглядеть применительно к водным растворам следующим образом:

Me + mH2О = Ме n + mH2О [или М е n+ (водн)] + nе

2.2. Анодные реакции, протекающие с участием металла и водного раствора

Все анодные реакции, протекающие с участием металла и водного раствора, не содержащего комплексообразующих или осаждающих анионов (за исключением иона гидроксила), можно представить в виде одного из следующих общих уравнений:

Me = Ме n+ (водн) + nе

Me + nH2O = Me(ОН)n (т) ↓ + nН + + nе

Me + nOH - = Me(ОН)n (т) ↓ + nе

Me + nH2O = MeOnn- (водн) + 2nН + + nе

Me + nOH - = MeOnn- (водн) + nН + + nе

где Ме n+ (водн.) и МеOnn- (водн.) — растворимые в воде катионы и соответственно оксианионы, ассоциированные с соответствующим числом молекул воды; Me(OH)n (т) — слаборастворимая твердая гидроокись, способная гидратироваться или терять молекулы воды с образованием мономерных или полимерных окислов или гидроокислов.

Для многих металлов электродные потенциалы полуэлементов, в которых осуществляются обратимые реакции, соответствующие процессам, измерены или вычислены из других термодинамических величин.

3. Защита металлов от коррозии в различных средах

3.1. Защита металлов от коррозии в нейтральных электролитах

Для защиты металлических конструкций от коррозии с кислородной деполяризацией в нейтральных электролитах (пресной и морской воде, водных растворах солей, грунтах) существуют следующие методы:

Электрохимическая коррозия

Механизм электрохимической коррозии. Виды местных разрушений: питтинги, межкристаллитная и щелевая коррозия. Причины возникновения местных гальванических элементов. Анодный и катодный электродные процессы. Поляризация как изменение разности потенциалов.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 17.12.2015
Размер файла 103,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Кафедра механизации и автоматизации строительства

1. Механизм электрохимической коррозии

2. Причины возникновения местных гальванических элементов

3. Анодный и катодный электродные процессы

4. Электродный потенциал

Электрохимическая коррозия - самый распространенный вид коррозии. Электрохимическая коррозия возникает при контакте металла с окружающей электролитически проводящей средой. При этом восстановление окислительного компонента коррозионной среды протекает не одновременно с ионизацией атомов металла и от электродного потенциала металла зависят их скорости. Первопричиной электрохимической коррозии является термодинамическая неустойчивость металлов в окружающих их средах. Ржавление трубопровода, обивки днища морского суда, различных металлоконструкций в атмосфере - это, и многое другое, примеры электрохимической коррозии.

К электрохимической коррозии относятся такие виды местных разрушений, как питтинги, межкристаллитная коррозия, щелевая. Кроме того процессы электрохимической коррозии происходят в грунте, атмосфере, море.

Механизм электрохимической коррозии может протекать по двум вариантам:

1) Гомогенный механизм электрохимической коррозии:

- поверхностный слой металла рассматривается как гомогенный и однородный;

- причиной растворения металла является термодинамическая возможность протекания катодного или же анодного актов;

- К и А участки мигрируют по поверхности во времени;

- скорость протекания электрохимической коррозии зависит от кинетического фактора (времени);

- однородную поверхность можно рассматривать как предельный случай, который может быть реализован и в жидких металлах.

2) Гетерогенный механизм электрохимической коррозии:

- у твердых металлов поверхность негомогенная, т.к. разные атомы занимают в сплаве различные положения в кристаллической решетке;

- гетерогенность наблюдается при наличии в сплаве инородных включений.

Электрохимическая коррозия имеет некоторые особенности: делится на два одновременно протекающих процесса (катодный и анодный), которые кинетически зависимы друг от друга; на некоторых участках поверхности электрохимическая коррозия может принять локальный характер; растворение основного мет. происходит именно на анодах.

Поверхность любого металла состоит из множества короткозамкнутых через сам металл микроэлектродов. Контактируя с коррозионной средой образующиеся гальванические элементы способствуют электрохимическому его разрушению.

Причины возникновения местных гальванических элементов могут быть самые разные:

1) неоднородность сплава

- неоднородность мет. фазы, обусловленная неоднородностью сплава и наличием микро- и макровключений;

- неравномерность окисных пленок на поверхности за счет наличия макро- и микропор, а также неравномерного образования вторичных продуктов коррозии;

- наличие на поверхности границ зерен кристаллов, выхода дислокации на поверхность, анизотропность кристаллов.

2) неоднородность среды

- область с ограниченным доступом окислителя будет анодом по отношению к области со свободным доступом, что ускоряет электрохимическую коррозию.

3) неоднородность физических условий

- облучение (облученный участок - анод);

- воздействие внешних токов (место входа блуждающего тока - катод, место выхода - анод);

- температура (по отношению к холодным участкам, нагретые являются анодами) и т.д.

При работе гальванического элемента одновременно протекает два электродных процесса:

Анодный - ионы металла переходят в раствор

Происходит реакция окисления

Катодный - избыточные электроны ассимилируются молекулами или атомами электролита, которые при этом восстанавливаются. На катоде проходит реакция восстановления.

Кислородная деполяризация в нейтральных, щелочных средах:

O2 + 2H2O + 4e > 4OH

Кислородная деполяризация в кислых средах:

O2 + 4H+ + 4e > 2H2O

При водородной деполяризации:

Торможение анодного процесса приводит к торможению и катодного.

Коррозия металла происходит именно на аноде.

питтинг межкристаллитный щелевой электродный

При соприкосновении двух электропроводящих фаз (например, мет. - среда), когда одна из них заряжена положительно, а другая отрицательно, между ними возникает разность потенциала. Это явление связано с возникновением двойного электрического слоя (ДЭС). Заряженные частицы располагаются несимметрично на границе раздела фаз.

Скачек потенциалов в процессе электрохимической коррозии может происходить из-за двух причин:

При достаточно большой энергии гидратации, ионы металла могут отрываться и переходить в раствор, оставляя на поверхности эквивалентное число электронов, которые определяют ее отрицательный заряд. Отрицательно заряженная поверхность притягивает к себе катионы мет. из раствора. Так на границе раздела фаз возникает двойной электрический слой.

На поверхности металла разряжаются катионы электролита. Это приводит к тому, что поверхность металл приобретает положительный заряд, который с анионами раствора образует двойной электрический слой.

Иногда возникает ситуация, когда поверхность не заряжена и, соответственно, отсутствует ДЭС. Потенциал, при котором это явление наблюдается - называется потенциалом нулевого заряда (цN). У каждого металла потенциал нулевого заряда свой.

Величина электродных потенциалов оказывает очень большое влияние на характер коррозионного процесса.

Скачок потенциала между двух фаз не может быть измерен, но при помощи компенсационного метода можно измерить электродвижущую силу элемента (ЭДС), который состоит из электрода сравнения (его потенциал условно принят за ноль) и исследуемого электрода. В качестве электрода сравнения берется стандартный водородный электрод. ЭДС гальванического элемента (стандартный водородный электрод и исследуемый элемент) называют электродным потенциалом. Электродами сравнения могут также выступать хлорсеребряный, каломельный, насыщенный медно-сульфатный.

Международной конвенцией в Стокгольме 1953г. решено при записях электрод сравнения всегда ставить слева. При этом ЭДС рассчитывать, как разность потенциалов правого и левого электродов.

Если положительный заряд внутри системы движется слева направо - ЭДС элемента считается положительной, при этом

где F - число Фарадея. Если положительные заряды будут двигаться в противоположном направлении, то уравнение будет иметь вид:

При коррозии в электролитах самыми распространенными и значимыми являются адсорбционные (адсорбция катионов или анионов на границе раздела фаз) и электродные потенциалы (переход катионов из металла в электролит или наоборот).

Электродный потенциал, при котором металл находится в состоянии равновесия с собственными ионами - называется равновесный (обратимый). Он зависит от природы металлической фазы, растворителя, температуры электролита, активности ионов мет.

Равновесный потенциал подчиняется уравнению Нернста:

E = Eп + (RT / nF) Ln бMen+

где, Eп - стандартный потенциал мет.;

R - молярная газовая постоянная; n - степень окисления иона мет.;

F - число Фарадея;

бMen+ - активность ионов мет.

При установленном равновесном потенциале электрохимическая коррозия не наблюдается.

5. Поляризация

Если по электроду проходит электрический ток - равновесное состояние его нарушается. Потенциал электрода изменяется в зависимости от направления и силы тока. Изменение разности потенциалов, приводящее к уменьшению силы тока, принято называть поляризацией. Уменьшение поляризуемости электродов называют деполяризацией.

Скорость электрохимической коррозии тем меньше, чем больше поляризация. Поляризация характеризуется величиной перенапряжения.

Поляризация бывает трех типов:

- электрохимическая (при замедлении анодного или катодного процессов);

- концентрационная (наблюдается, когда скорость подхода деполяризатора к поверхности и отвода продуктов коррозии мала);

- фазовая (связана с образованием на поверхности новой фазы).

Электрохимическая коррозия наблюдается также при контакте двух разнородных металлов. В электролите они образуют гальванопару. Более электроотрицательный из них будет анодом. Анод в процессе будет постепенно растворяться. При этом идет замедление или даже полное прекращение электрохимической коррозии на катоде (более электроположительном). Например, при контакте в морской воде дюралюминия с никелем интенсивно растворяться будет именно дюралюминий.

Подобные документы

Коррозия, возникающая при образовании микрогальванопар. Электрохимическая схема микрогальванического элемента. Активирующее действие ионов Cl на процессы коррозии. Анодные и катодные защитные покрытия. Протекторная и катодная защита, ход и данные опыта.

лабораторная работа [18,5 K], добавлен 25.12.2011

Термодинамическая возможность электрохимической коррозии металлов. Катодные процессы. Гомогенный и гетерогенный пути протекания электрохимической коррозии металлов. Коррозионные гальванические элементы и причины их возникновения. Методы защиты металлов.

курсовая работа [635,9 K], добавлен 14.04.2016

Процессы разрушения металлов в результате взаимодействия с окружающей средой, виды коррозионных разрушений. Процесс химической коррозии. Электрохимическая коррозия под действием внутренних макро- и микрогальванических пар. 3ащита металлов от коррозии.

реферат [303,4 K], добавлен 16.10.2011

Общие сведения о коррозии металлов, ее виды и типы. Причины возникновения химической и электрохимической коррозии и механизм ее протекания. Методы защиты металлических изделий от коррозионных процессов. Антикоррозийная защита неметаллическими покрытиями.

практическая работа [28,5 K], добавлен 03.11.2011

Основные закономерности процесса коррозии металла и исследование методов, защищающих автомобили от коррозии. Химическая коррозия металлов. Превращение гидроксида железа (III) в гидратируемый оксид железа (III) или "ржавчину". Межкристаллитная коррозия.

Коррозия металлов и сплавов

* Данная работа не является научным трудом, не является выпускной квалификационной работой и представляет собой результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала при самостоятельной подготовки учебных работ.

На тему:«Коррозия металлов

Процесс самопроизвольного разрушения металлов вследствие химич­еского или электрохимического взаимодействия их с окружаю­щей средой. Такое разрушение происходит под влиянием кислорода во­здуха, влаги, оксидов серы, азота и других химически активных ве­ществ. В солёной воде металлы разрушаются намного быстрее, чем в пресной. Самое известное проявление коррозии – ржавчина на поверх­ности стальных и чугунных изделий. Потери от коррозии исчисляются миллиардами гривен ежегодно. Ей подвержены не только металлы, их сплавы, но и строительные материалы, в частности бетон. Больше всего страдают от коррозии сплавы на основе железа(Fe) – главные материалы современной техники. «Ржа ест железо» - поговорка старая, но точная. Около 10% добытого металла теряется безвозвратно. Ржавчина (её состав Fe2O3 * nH2O) не прочна и рыхла. За коррозией следует эрозия-разрушение металлических изделий в результате механических воздействий, после чего металл уже не пригоден. Всё же 2/3 металлолома возвращаются в производство после переплавки в мартеновских печах и конвертерах. Вот почему необходимо собирать металлолом.

Скорость коррозии в технике измеряют в граммах разрушенного металла за 1час с 1кв.м металлической поверхности. Если эта величина не превышает 0,1г/кв.м, металл считается коррозионностойким, если же она достигает 3г/кв.м, и больше – малостойким. Металлы, теряющие с 1кв.м поверхности больше 10г в час, называют нестойкими.

Коррозионные разрушения бывают сплошными и местными, равномерными и неравномерными. Особенно опасна межкристаллическая коррозия, которая, не разрушая металл с поверхности, распространяется вглубь по границам составляющих металл частиц-кристаллитов. Известны случаи избирательной коррозии, например обесцинкование латуней, когда под действием внешних факторов сплав обедняется одним из важных компонентов, в данном случае цинком.

Коррозия считается химической, если после разрыва металлической связи атом металла вступает в непосредственное взаимодействие с окислителем, и электрохимической, если в результате взаимодействия с внешней средой образующийся ион (катион) вступает в связь не с окислителем, а с другими компонентами коррозионной среды. А в общем суть любого коррозионного процесса состоит в изменении состояния атома и удалении его из кристаллической решётки металла.

Существует много способов борьбы с коррозией. Можно защищать металл от неё, уменьшая агрессивность среды, в частности введением в эту среду ингибиторов – замедлителей коррозионных процессов. Разные металлы обладают различной химической стойкостью и, следовательно, неодинаковой устойчивостью к коррозии. В состав нержавеющей стали добавляют коррозионностойкий хром(Cr). Хромом и некоторыми другими не поддающимся коррозии металлами покрывают (обычно электрохимически) поверхность многих металлических изделий. Коррозии противодействуют и другие покрытия: лакокрасочные, эмалевые, плёночные.

Химиками разработаны также препараты, называющиеся преобразователями ржавчины. Под действием этих веществ рыхлая ржавчина преобразуется в твёрдый, устойчивый к механическим и химическим воздействиям грунтовой слой, на который можно наносить краску и эмаль.

Благодаря этому, что металлы легко отдают электроны, в природе они, как правило, находятся в связанном (окисленном) состоянии. чтобы получить металл из его соединений, нужно действовать более активным восстановителем. В окружении разных окислителей, в первую очередь кислорода(O2), свободное состояние для металлов нестабильное, и они со временем переходят в более стойкую окислительную форму. Этот процесс называется коррозией (от латинского слова corrode – разрушать). Исключения составляют некоторые неактивные (благородные) металлы – Au, Pt, Ir, которые находятся в природе в свободном состоянии. Следует различать химическую и электрохимическую коррозии.

Химическая коррозия имеет место при непосредственном взаимодействии металла с агрессивной средой, которая не проводит электрический ток (газы, неводные растворы, органические растворители и т.д.). Химическая коррозия протекает тем интенсивнее, чем наиболее активный металл, агрессивная среда и высокая температура. Наиболее расширена высокотемпературная или газовая коррозия на воздухе:

xMe + 0,5yO2 = MexOy.

Механизм её достаточно сложный, а скорость зависит от многих факторов. Сначала на поверхности металла появляется очень тонкая оксидная плёнка. Затем скорость окисления зависит от диффузии окислителя через эту плёнку, цельности и диффузийной способности самой плёнки. Цельность оксидной плёнки можно оценить, используя объёмный коэффициент ?, который отвечает отношению объёма оксида к объёму оксида металла, что используется на получение оксида:

V(MexOy)

Металлы, у которых ? 1,6, оксидные плёнки вследствии внутренних напряжений легко отделяются от поверзности металла, например, железная окалина. Важное значение имеет не только толщина и плотность металла, но и её механические ( твёрдость, упругость) и химические свойства.

При низких температурах окисление большинства металлических материалов идёт до тех пор, пока оксидная плёнка не достигнет некоторой граничной, при данных условиях, толщины, после чего коррозия существенно замедляется. При высоких температурах происходит дальнейшее окисление металла, что обусловлено ускорением диффузии окислителя сквозь оксидную плёнку.

Кроме кислорода, с металлами могут активно реагировать и другие газы: фтор(F), хлор(Cl), сероводород(H2S), оксид серы(IV), оксиды азота и т.д. Их агрессивность зависит от природы реагентов. Так, алюминий и нержавеющие стали стойкие к кислороду, но быстро разрушаются в атмосфере хлора; никель интенсивно коррозирует в атмосфере SO2, а медь, наоборот, стойкая к действию этого газа.

Электрохимическая коррозия – это разрушение металлов вследствие их контакта с растворителями электролитов. Причём такой раствор в своём составе должен содержать окислитель, а металл, который коррозирует (восстановитель), находиться в контакте с менее активным металлом или сплавом (гальваническая пара). Контактными парами могут быть активный металл и добавки с металлической проводимостью (карбиды, нитриты, силициды d-элементов). Чистые металлы (без добавок) стойкие против электрохимической коррозии (тут следует вспомнить про так называемые «индийские колонны», изготовленные из чистого железа(Fe) тысячелетия тому назад, которые прекрасно сохранились до наших дней).

Во время электрохимической коррозии имеет место перенесения электрических зарядов (электронов) от более активного металла к менее активному, которые контактируют с электролитом, где и протекают химические процессы окисления-восстановления (гальванический элемент). Главным отличием обычных гальванических элементов от коррозийных гальванических пар является отсутствие в последнем случае внешней электрической цепи, т.е. коррозионные гальванические элементы являются короткозамыкаемыми.

Так, когда активный металл, например цинк(Zn), загрязнённый примесями менее активных металлов (например, железом(Fe), контактирует со слабокислым электролитом, например водным раствором кислотных оксидов, которые всегда есть в воздухе, в раствор переходят катионы активного металла:

а электроны восстановителя перетекают к посредникам с более низким значением потенциала (примеси менее активных металлов) и снимаются поверхности металла ионами водорода(H2)(окислителя), который есть в растворе:

Суммарный процесс коррозии, который происходит в данном гальваническом элементе, выражается уравнением:

а сам гальванический элемент можно передать схемой:

(–) Zn / Zn (H2O)OH / O2(Fe) (+).

В отсутствии ионов Н (в нейтральной среде) функции окислителя использует растворённый в воде (Н2О) кислород (атмосферная коррозия):

O2 + 2H2O + 4e = 4OH ,

но этот процесс в энергетическом плане менее выгодный, чем восстановление ионов водорода, поскольку молекулярный кислород является хорошим окислителем при высоких температурах, когда ослабляются связи между атомами в молекуле. Гальванический элемент в случае атмосферной коррозии цинка можно передать схемой:

(–) Zn / Zn(OH)2,H2O / (Fe)O2(Fe) (+),

а суммарный процесс коррозии – уравнением:

2Zn + O2 + 2H2O = 2Zn(OH)2.

Электрохимическая коррозия протекает тем интенсивнее, чем большая разница окислительно-восстановительных потенциалов металлов, что находятся в гальванической паре, более агрессивная среда и большая концентрация окислителя в растворе электролита, высокая температура. Зная факторы, которые способствуют коррозии, можно разрабатывать научные подходы к проблемам защиты металлов от окисления и разрушения. Вот некоторые из них:

а) защита поверхности металла от контакта с агрессивной средой путём нанесения металлических и неметаллических (масла, лаки, краски) покрытий, а также пассивирование поверхности металла путём получения на них оксидных, карбидных, нитридных и других защитных плёнок;

б) введение в активный металл легирующих примесей для сближения потенциалов или пассивирования поверхности (получение сплавов с антикоррозийными свойствами, например, нержавеющий сталей);

в) электрозащита – изменение потенциалов поверхности активного металла от внешнего источника напряжения, или протекторная защита – получение надежного контакта более активным металлом, который будет разрушаться;

г) снижение агрессивности среды (замена на менее агрессивное или введение ингибиторов – соединений, которые замедляют процесс окисления металла);

д) применение наиболее чистых металлов (способы очищения: электрохимическое рафинирование, зонная плавка и др.);

Коррозия металлов и методы защиты от неё

Глава 1 Коррозия металла …………………………………………………. 1

Основы теории коррозии …………………………………………….…. 1

1,1 классификация коррозийных процессов……………………….…….….1

1,2 Показатель скорости коррозии ……………………………………..…. 2

2 Электрохимическая коррозия………………………………………….…..4

2,1 Термодинамика электрохимической коррозии металлов…………. ….4

2,2 Гомогенные и гетерогенные пути электрохимической коррозии……..5

2,3 Анодные процессы при электрохимической коррозии металлов …….6

2,4 Причины анодного растворения ………………………………….……..6

2,6 Анодная пассивность металлов……………………………….…………7

3,1 Термодинамические возможности кислородной депомеризации……..8

3,2 Перенапряжение ионизации кислорода ………………………….……10

Глава 2 Электрохимические методы защиты металлов от коррозии

Методы защиты металлов от коррозии ……………. …………………11

Анодная защита . Использования пассивности в практике от коррозии……………………..……………………………………………15

Покрытия , как методы защиты металлов от коррозии …………. ….18

Глава 3 Обработка резанием .

Сущность и схемы способов обработки…………………………………22

Параметры технологического процесса ………………………..………25

Глава 4 Коррозийное растрескивание.

Явление коррозийного растрескивания …………………….…………. 29

Предотвращение коррозионного растрескивания ……………..….……31

Механизм коррозийного растрескивания ……………………….….…..31

Начальная стадия локализованной коррозии………………….…. …..33

Система сплавов, подверженных межкриталлитному растрескиванию……………………………………………………. …..34

Системы сплавов , подвеженных внутрикристаллическому растрескиванию……………………………………………………. ……35

Общие закономерности явления коррозийного растрескивания ………………………………………………………………………..…….38

1. Основы теории коррозии

Термин коррозия происходит от латинского "corrosio", что означает разъедать, разрушать. Этот термин характеризует как процесс разрушения, так и результат.

Среда в которой металл подвергается коррозии (коррозирует) называется коррозионной или агрессивной средой.

В случае с металлами, говоря об их коррозии, имеют ввиду нежелательный процесс взаимодействия металла со средой. Физико-химическая сущность изменений, которые претерпевает металл при коррозии является окисление металла.

Любой коррозионный процесс является многостадийным:

1) Необходим подвод коррозионной среды или отдельных ее компонентов к поверхности металла.

2) Взаимодействие среды с металлом.

3) Полный или частичный отвод продуктов от поверхности металла (в объем жидкости, если среда жидкая).

Известно что большинство металлов ( кроме Ag,Pt,Cu,Au) встречаются в природе в ионном состоянии: оксиды, сульфиды, карбонаты и др., называемые обычно руды металлов.

Ионное состояние более выгодно, оно характеризуется более меньшей внутренней энергией. Это заметно при получение металлов из руд и их коррозии. Поглощенная энергия при восстановлении металла из соединений свидетельствует о том , что свободный металл обладает более высокой энергией, чем металлическое соединение. Это приводит к тому, что металл находящийся в контакте с коррозионно-активной средой стремится перейти в энергетически выгодное состояние с меньшим запасом энергии.

Коррозионный процесс является самопроизвольным, следовательно G=G-G (G и G относятся к начальному и конечному состоянию соответственно). Если G>G то G 0 коррозионный процесс невозможен; G=0 система металл-продукт находится в равновесии. То есть можно сказать, что первопричиной коррозии металла является термодинамическая неустойчивость металлов в заданной среде.

1.1 Классификация коррозионных процессов.

1. По механизму процесса различают химическую и электрохимическую коррозию металла.

Химическая коррозия - это взаимодействие металлов с коррозионной средой, при котором окисляется металл и восстанавливается окислительные компоненты коррозионной среды протекают в одном акте. Так протекает окисление большинства металлов в газовых средах содержащих окислитель (например, окисление в воздухе при повышении температуры)

Электрохимическая коррозия - это взаимодействие металла с коррозионной средой, при котором ионизация атомов металла и восстановление окислительной компоненты среды происходит не водном акте, и их скорости зависят от электродного потенциала

металла. По такому процессу протекают, например, взаимодействие металла с кислотами:

где m - убыль массы металла за время коррозии после удаления продуктов коррозии.

б) положительный показатель изменения массы

где m - увеличение массы металла за время вследствие роста пленки продуктов коррозии.

Если состав продуктов коррозии известен, то можно сделать пересчет от К к К и наоборот

где А и М - атомная и молекулярная масса Ме и окислителя соответственно; n и n валентность металла и окислителя в окислительной среде.

2) Объемный показатель коррозии

К - объем поглощенного или выделившегося в процессе газа V отнесенный к единице поверхности металла и единице времени (например, см/см ч).

объем газа обычно приводят к нормальным условиям.

Применительно к электрохимической коррозии когда процесс катодной деполяризации осуществляется за счет разряда ионов водорода, например, по схеме 2Н + 2е = Н, или ионизация молекул кислорода О + 4е +2НО = 4ОН; вводятся соответственно кислородный (К ) и водородный (К ) показатель соответственно.

Водородный показатель коррозии - это объем выделившегося Н в процессе коррозии, отнесенный к Su .

Кислородный показатель коррозии - это объем поглощенного в процессе О , отнесенный к Su .

3) Показатель сопротивления.

Изменение электрического сопротивления образца металла за определенное время испытаний также может быть использован в качестве показания коррозии (К).

Глубина коррозионного разрушения П может быть средней или максимальной. Глубинный показатель коррозии можно использовать для характеристики как равномерной., так и неравномерной коррозии (в том числе и местной) металлов. Он удобен для сравнения скорости коррозии металла с различными плотностями. Переход от массового, токового и объемного к глубинному возможен при равномерной коррозии.

2. Электрохимическая коррозия.

Электрохимическая коррозия является наиболее распространенным типом коррозии металлов. По электрохимическому механизму коррозируют металлы в контакте с растворами электролитов (морская вода, растворы кислот, щелочей, солей) . В обычных атмосферных условиях и в земле металлы коррозируют также по электрохимическому механизму , т.к. на их поверхности имеются капли влаги с растворенными компонентами воздуха и земли. Электрохимическая коррозия является гетерогенным и

многостадийным процессом. Ее причиной является термодинамическая неустойчивость металлов в данной коррозионной среде.

Учение о электрохимической коррозии ставит главный вопрос - вопрос о скорости коррозии и тех факторов, которые влияют на нее. С электрохимической точки зрения коррозия металла это не просто процесс окисления металла, т.к. этот переход должен

сопровождаться сопряженно идущим восстановительным процессом. В результате ионизации освобождаются электроны и роль второго восстановительного процесса состоит в их ассимиляции подходящим окислителем (Д), образующим устойчивое соединение.

Ионизация и процесс ассимиляции электронов каким либо элементом среды (обычно Н ионы или О )представляет собой В отличии химического, электрохимические процессы контролируются (зависят) не только от концентрации реагирующих веществ, но и, главным образом, зависят от потенциала поверхности металла.

На границе раздела двух разнородных фаз происходит переход заряженных частиц - ионов или электронов из одной фазы в другую, следовательно, возникает разность электрических потенциалов, распределения упорядоченных электрических зарядов, т.е.

образование двойного электрического слоя. Возникновение межфазового скачка потенциала можно объяснить следующими основными причинами; но рассмотрим только те, которые приводят к коррозии металлов, а точнее переход катионов металла из электролита на металл (электродный потенциал) адсорбция анионов электролита на металле (адсорбционный потенциал) возникновение ионно-адсорбционного потенциала за счет одновременной адсорбции поляризуемого атома кислорода и перехода

катионов из металла в электролит.

По известным причинам, абсолютное значение межфазовой разности потенциалов измерить нельзя, эту величину можно измерить относительно другой величины и за точку отсчета принимается стандартный водородный потенциал.

Наличие на межфазовой границе металл-раствор электролита двойного электрического слоя оказывает существенное влияние на процесс, а , в частности, на скорость коррозии металлов. При изменении концентрации (плотности) положительных или отрицательных частиц в растворе или металле может измениться скорость процесса растворения металла. Именно их этих соображений электродный потенциал является одной из важнейших характеристик, определяющих скорость коррозии металла.

2.1 Термодинамика электрохимической коррозии металлов.

Стремлением металлов переходить из металлического состояния в ионное для различных металлов различно. Вероятность такого перехода зависит также от природы коррозионной среды . Такую вероятность можно выразить уменьшением свободной энергии при протекании реакции перехода в заданной среде при определенных условиях.

Но прямой связи между термодинамическим рядом и коррозией металлов нет. Это объясняется тем, что термодинамические данные получены для идеально чистой поверхности металла, в то время как в реальных условиях коррозирующий металл покрыт слоем (пленкой) продуктов взаимодействия металла со средой.

Для расчетов изменения свободной энергии реакции при электрохимической коррозии металла используют величины электродных потенциалов. В соответствии с неравенством процесс электрохимической коррозии возможен, если

2.3 Анодные процессы при электрохимической коррозии металлов.

Для протекания коррозионного процесса существенным является состояние форма соединения , в котором находится катион металла в растворе. Ионизация металла с последующим переходом в раствор простых компонентов металла представляет лишь одно из возможных направлений анодных процессов. Форма их конкретного состояния во многом определяется как природой металла и контактирующей с ним средой , так и направлением и величиной поляризующего тока (или электродного потенциала). Переходя в раствор, коррозирующий металл вступает в связь либо с растворителем, либо с компонентами раствора. При этом могут образовываться простые и комплексные соединения с различной растворимостью и с различной адгезией к поверхности металла. При высоких положительных значениях потенциала на аноде возможен процесс окисления воды с выделением кислорода. В зависимости от того, какие процессы или их сочетания протекают на аноде, они могут в значительной мере (а иногда и полностью) контролировать суммарный процесс коррозии.

Причины анодного растворения металлов.

Простейшими анодными реакциями являются такие , в результате которых образуются растворимые гидратированные и комплексные катионы,. которые отводятся от анода путем диффузии, миграции (перенос за счет электрического поля) или конвекции.

Полярные молекулы жидкости электростатически взаимодействуют с заряженными ионами, образуют сольватные (в случае воды-гидратные) комплексы. Обладающие значительно меньшим запасом энергии чем ионы в кристаллической решетки металла. Величину этого понижения можно оценить, исходя из соображений предложенных Борном. Полный электрический заряд в вакууме обладает энергией, равной потенциальной энергии. Для определения величины энергии заряда представим, что проводящая сфера радиусом r имеет заряд q. Внесение еще одной части заряда dq в сферу должно быть встречено отталкивающими силами df=qdq/r. Поистине огромное уменьшение энергии иона в водном растворе указывает на устойчивость такого состояния в нем. Таким образом, причиной перехода атомов металла с поверхности и их ионизация является электростатическое взаимодействие (сольватация) ионов металла с полярными молекулами растворителя. Следовательно, схему реакции ионизации в контакте с растворителем правильнее записать в виде:

Me + mHO -> Me + mHO +ne.

2.6 Анодная пассивность металлов.

При значительном торможении анодной реакции ионизации металла скорость коррозионного процесса может понизится на несколько порядков. Такое состояние металла принято называть анодной пассивностью. Пассивность можно определить следующим образом: пассивность - состояние повышенной коррозионной устойчивости металла или сплава (в условиях, когда термодинамически он является реакционно способным), Вызванное преимущественным торможением анодного процесса т.е. может произойти так, что в реальных условиях скорость коррозии "активных" элементов оказывается весьма незначительной в следствии наступления пассивного состояния. Например, титан расположенный левее цинка, и хром, расположенный рядом с цинком, в следствии наступления пассивности оказываются более коррозионностойкими в большинстве водных сред, чем цинк. На склонность к пассивному состоянию влияет природа системы металл-раствор. Наибольшую склонность к переходу в пассивное состояние проявляют Ti,Ni,Al,Mg,Fe,Co и др.

Наступление пассивного состояния приводит к значительному изменению формы анодной поляризационной кривой. Кривая может быть разбита на несколько характерных участков:

Вначале скорость анодного растворения металлов возрастает в соответствии с уравнением Тафеля ( =a + blgi)-участок АВ.

Но начиная с В становится возможным процесс образования защитного слоя (фазового или адсорбционного), скорость которого растет при смещении потенциала в положительную сторону. Это приводит к торможению анодного растворения (BD). В точке D, соответствующей потенциалу ( потенциал начала пассивации) скорость образования защитного слоя равна скорости его растворения. Далее идет рост защитного слоя, экранирующего поверхность, скорость анодного растворения резко понижается (DE). В точке Е, соответствующей потенциалу полной пассивации металл оказывается в пассивном состоянии. На участке EF (область пассивного состояния) скорость анодного процесса не зависит от потенциала, а определяется скоростью химического растворения защитной пленки. Ток соответствующий области пассивного состояния, называется током пассивного состояния (i ). Положительнее F возможна ( -потенциал перепассивации) новая ветвь активного растворения с образованием катионов более высокой валентности.

При высоких положительных потенциалах возможен локализованный пробой оксидной пленки - металл начинает растворятся по типу питтинга (PP') называют потенциалом питтингообразования.

Металл запассивированный в данной среде, может сохраняться в пассивном состоянии некоторое время в непассивирующей среде.

При наличии в растворе газообразного кислорода и не возможностью протекания процесса коррозии с водородной деполяризацией основную роль деполяризатора исполняет кислород коррозионные процессы, у которых катодная деполяризация

осуществляется растворенным в электролите кислородом, называют процессами коррозии металлов с кислородной деполяризацией. Это наиболее распространенный тип коррозии металла в воде, в нейтральных и даже в слабокислых солевых растворах, в морской воде, в земле, в атмосфере воздуха.

Общая схема кислородной деполяризации сводится к восстановлению молекулярного кислорода до иона гидроокисла:

3.1 Термодинамические возможности кислородной деполяризации.

Протекание процесса коррозии металла с кислородной деполяризацией согласно уравнения возможно при условии:

Из последнего уравнения следует, что ( ) зависит от рН среды (а ) и парциального давления кислорода.

Читайте также: