Элементы металлических опор вл

Обновлено: 05.07.2024

В настоящий момент, помимо решетчатых опор из стального уголка, в России и в странах СНГ все большее применение получают стальные многогранные и гнутые опоры ВЛ.

История применения и эксплуатации металлических опор ЛЭП на территории постсоветского пространства насчитывает более половины века. Впервые 2-цепная ВЛ напряжением 110кВ с применением решетчатых опор из стального уголка появилась в России в 1925 году. В последующие годы, в связи с развитием электроэнергетики, потребовались опоры, способные максимально противостоять негативному влиянию окружающей среды, простые в монтаже и транспортировке, долговечные и легкие в обслуживании. Именно такими характеристиками обладают, внедряемые в последнее десятилетие, улучшенные многогранные стальные конструкции и опоры ЛЭП из гнутого профиля.

Классификация стальных опор

По назначению

  • Промежуточные опоры удерживают вес проводов и тросов и не рассчитаны на горизонтальные нагрузки. Используются внутри прямых участков ВЛ.
  • Анкерные опоры компенсируют разность тяжения проводов смежных пролетов в местах установки переходных опор, местах изменения сечений провода. Используются на прямых участках ВЛ.
  • Угловые опоры компенсируют боковые суммарные нагрузки от тяжения проводов при повороте трассы. Устанавливаются в местах поворота трассы ВЛ. Для угла поворота до 30° применяют промежуточные угловые опоры, для угла более 30° - анкерно-угловые опоры с соответствующим креплением проводов.
  • Концевые опоры компенсируют одностороннее тяжение проводов и тросов в конце линии. Устанавливаются на концах трассы ВЛ.
  • Переходные опоры используют для перехода ВЛ через естественные преграды и инженерные сооружения.
  • Транспозиционные опоры используют для смены расположения проводов на опорах ВЛ.
  • Ответвительные опоры используют для организации ответвлений от ВЛ.
  • Перекрестные опоры используют для реализации пересечения двух ВЛ.

По конструкции

  • Опоры ВЛ с оттяжками
  • Свободностоящие опоры
  • Повышенные и пониженные опоры

По количеству цепей

  • Одноцепные
  • Двухцепные
  • Многоцепные

Номенклатура поставляемых стальных опор ЛЭП

Наша компания поставляет стальные опоры, имеющие самые разные конструктивные особенности. Для размещения заказа на изготовление и поставку металлических опор ВЛ достаточно указать маркировку типовой опоры или передать чертежи КМ (КМД) для изготовления нетиповых опор. Все опоры производятся в заводских условиях согласно проектам, разработанными ведущими научными институтами страны. Цена на опоры ЛЭП будет зависеть от ее назначения, модификации, прочности и долговечности.

Стальные решетчатые опоры ЛЭП

Стальные решетчатые опоры ЛЭП

Металлические решетчатые опоры ЛЭП представляют собой пространственные решетчатые конструкции из стального проката и используются для строительства ВЛ напряжением 35-1150 кВ. Соединения таких элементов могут быть двух типов: болтовые или сварные. Тип соединения во многом определяется условиями последующей эксплуатации, и влияет на способ транспортировки на место строительства линии ВЛ. Так, сварные конструкции считаются более надежными и простыми в установке, но при этом, из-за габаритов, существенно затруднена их доставка на объект. Унифицированные опоры ЛЭП на болтовых соединениях – удобны для транспортировки и для горячего оцинкования, но более трудоемки в монтаже.

Решетчатые стальные опоры ВЛ производятся из низколегированного стального проката марки 09Г2С или углеродистой стали марки Ст3 в соответствии с требованиями ГОСТ 27772-88. Все поставляемые опоры ЛЭП, обрабатываются от коррозии горячей оцинковкой или покрываются специальным цинконаполненным композитом.

Стальные многогранные опоры ЛЭП

Стальные многогранные опоры ЛЭП

Многогранные опоры ЛЭП устанавливаются при прокладке линий электропередач напряжением 10-500 кВ. Могут эксплуатироваться в I-V гололедно-ветровых районах, а также в населенных пунктах и за их пределами при условии, что температура воздуха в этих районах опускается до 65 градусов.

Многогранные опоры ВЛ полые внутри, состоят из одной или нескольких стоек многогранного сечения в виде усеченных пирамид. Элементы стоек крепятся друг с другом при помощи фланцевого или телескопического соединения. Многогранные опоры проектируются и изготавливаются с различными траверсами. Конструкции траверс могут быть многогранными, решётчатыми или изолирующими. Опоры и траверсы производятся из металлопроката марки С345 в соответствии с ГОСТ 27772-88. Обработка от коррозии осуществляется путем горячего оцинкования или покрытия цинкосодержащим композитом.

Стальные опоры ЛЭП из гнутого профиля

Стальные опоры ЛЭП из гнутого профиля

Металлические опоры ВЛ из гнутого профиля применяются при прокладке линий с напряжением 6/10/35 кВ. Монтаж опор ЛЭП такого типа разрешается в I-VII гололедно-ветровых районах с давлением ветра до 1000 Па и толщиной обледенения до 25мм.

Изготовление опор ЛЭП из гнутого профиля для районов с расчетной температурой до -40°С осуществляется из углеродистой стали С245 или низколегированного металлопроката марки С345 для районов до -65°С. Все выпускаемые опоры из гнутого профиля одностоечные. Все конструкции стальных стоек, траверс, подкосов, подставок выполнены цельносварными для уменьшения сборочных единиц при монтаже. Крепление опор к трубным фундаментам производится с помощью фланцевого или цангового соединения.

Защита от коррозии проводится горячим оцинкованием или покрытием цинкосодержащим композитом.

Металлические опоры воздушных линий электропередачи (ЛЭП)

Область применения металлических опор воздушных линий электропередачи (ЛЭП), в основном, определяется рядом существенных преимуществ, выгодно отличающих опоры из металла от опор из дерева и железобетона.

Преимущества металлических опор по сравнению с деревянными следующие:

Больший срок службы ;

Способность противостоять огню и разрушениям от грозовых разрядов в опору ;

Возможность крепления значительно большего числа проводов и практически неограниченная высота опоры ;

Высокая эксплуатационная надежность и простота обслуживания ;

Лучшие условия для заземления и подвески защитных тросов ;

Лучшее архитектурное оформление опоры ;

Большая сборность, позволяющая изготовление целых основных элементов опор или отдельных секций на заводах, что существенно уменьшает трудоемкие работы на трассе. Кроме того, металлические опоры при одинаковых нагрузках и высоте примерно легче деревянных и железобетонных.

Недостатками металлических опор являются:

Необходимость их периодической окраски для предохранения от ржавления ;

Слабое использование грузоподъемности транспортных средств при перевозке опор ;

Необходимость выполнения на трассе специальных работ (сборка, рассверловка и иногда сварка металлических конструкций), что требует наличия квалифицированной рабочей силы разных специальностей и усложняет монтаж ;

Увеличение начальных затрат на сооружение линии.

Металлическая опора ЛЭП

Опоры из металла выполняются:

на линиях, где требуется высокая эксплуатационная надежность, большой срок службы опоры, а также при двухцепных линиях;

на больших переходах через различные инженерные сооружения или через реки;

в городских и промышленных местностях и в горных районах, где деревянные опоры не размещаются из-за больших размеров в плане.

Конструктивные элементы металлических опор

Металлическая опора состоит из следующих четырех основных конструктивных элементов:

основной колонны или ствола опоры ;

тросостоек или рогов опоры.

наиболее распространенные виды конструкций металлических опор

Фундамент опоры служит для закрепления ее в фунте и обеспечивает устойчивость опоры. В отдельных случаях фундаменты опор выполняются металлическими.

Основная колонна, являясь опорой для прикрепления траверс и тросостоек на определенной высоте от земли, воспринимает все внешние нагрузки от проводов и тросов и передает их на фундамент.

По конструкции основная колонна, или ствол опоры, представляет собой легкую решетчатую пространственную ферму прямоугольного или квадратного сечения. Почти во всех типах опор размеры поперечного сечения колонны опоры уменьшаются по направлению от низа к верху.

Пространственная ферма, служащая стволом опоры, состоит из:

четырех основных стержней (ребер), называемых поясами, несущими большую часть нагрузки;

системы вспомогательных стержней, или решеток, расположенных в четырех гранях опоры и связывающих между собой пояса;

нескольких систем горизонтальных связей, располагаемых в отдельных поперечных сечениях опоры и называемых диафрагмами.

Места соединения стержней решетки с поясом или между собой называются узлами. Центром узла называют точку пересечения продольных осей стержней, сходящихся в данном узле.

Металлическая промежуточная двухцепная опора

Металлическая промежуточная двухцепная опора

Часть пояса, расположенная между двумя соседними узлами, называется панелью, а расстояние между центрами этих узлов — длиной панели.

Решетки и грани колонны различают по их положению относительно оси линии.

Поперечными или фасадными гранями (решетками) называют грани опоры, располагаемые поперек оси линии, а продольными или боковыми — грани, параллельные оси линии.

Часто решетки двух граней колонны, или даже всех четырех, имеют одинаковую конфигурацию (схему).

Траверсы опоры предназначаются для прикрепления к опоре проводов при помощи изоляторов с арматурой на определенном расстоянии между собой и от ствола опоры.

В большинстве конструкций 35 и 110 кВ опор траверсы выполняются из уголков в виде небольших консольных конструкций треугольной формы, прикрепляемых к стволу опоры. Реже траверсы делаются из швеллеров. Часто траверсы имеют форму длинных пространственных ферм квадратного или прямоугольного сечения.

Тросостойки, или рога, служат для крепления защитных тросов па определенном расстоянии над проводами. Они выполняются в виде легких конструкций, образующих верхнюю часть опоры.

Пространственные фермы, образующие основные части опор, отличаются от обычных строительных металлических ферм:

легкостью осей конструкции, состоящей из стержней, выполняемых почти исключительно из одиночных уголков, часто мелких и средних профилей;

увеличенной в 1,5 — 2 раза гибкостью как отдельных стержней, так и всей фермы в целом;

значительными поперечными размерами фермы и большой ее высотой.

Вследствие отмеченных особенностей металлические конструкции опор воздушных линий электропередачи имеют малый объемный вес, что создает при перевозке низкий коэффициент использования грузоподъемности транспортных средств. Кроме того, наличие в конструкции мелких уголков, с повышенным коэффициентом гибкости, создает значительные трудности сохранения их от повреждений при погрузке, разгрузке и перевозке.

Линия электропередачи с металлическими опорами

В процессе изготовления и монтажа металлических опор способ соединения стержней имеет не меньшее производственное значение, чем тип конструкции. Как в заводских, так и к монтажных узлах металлических опор применяются следующие соединения стержней:

Способ соединения выбирается в техническом проекте, а при рабочем проектировании опор разрабатываются соответствующие конструкции узлов. Это обстоятельство строительствам следует учитывать и своевременно решать вопрос о способе соединений, наиболее отвечающем условиям сооружения данной линии.

Заклепочные соединения ранее были одним из основных способов соединения стержней в опорах, а в настоящее время, по производственным соображениям, полностью заменены сваркой или болтами не только на монтаже, но даже при заводском изготовлении.

Сварку является одним из распространенных способов соединения стержней при сооружении металлических опор. Небольшая стоимость сварки в заводских условиях, значительное упрощение процесса изготовления сварных конструкций и некоторое снижение их веса обуславливают широкое применение этого способа соединений, имеющего существенные преимущества перед другими.

При изготовлении металлических опор соединение стержней производится почти исключительно электродуговой сваркой. Значительные затруднения с доставкой на пикеты линии сварочных агрегатов, затраты жидкого горючего и обслуживание агрегата квалифицированным персоналом, а также необходимость кантовки при сварке конструкций ограничивают возможность применения сварки на монтаже.

Болтовые соединения используются при монтаже опор на линиях из-за затруднений с производством клепки и электросварки на пикетах.

Портальные металлические опоры линии электропередачи

Использование болтовых соединений в монтажных узлах опор обусловлено рядом следующих преимуществ их перед клепкой и сваркой:

большое упрощение процесса монтажа опор, при котором не требуется кантовки конструкций, специальных инструментов, оборудования или механизмов ;

возможность выполнения болтовых соединений без применения квалифицированной рабочей силы (клепальщиков или сварщиков) ;

существенное уменьшение затраты времени на сборку опор.

К недостаткам соединений на черных болтах относятся:

некоторое снижение надежности болтового соединения против сварного или клепаного, за счет неравномерного распределения усилий между болтами;

значительная затрата метизов (болты, гайки и шайбы), количество и размеры которых больше, чем в равнопрочных клепаных соединениях.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Виды и типы опор воздушных линий электропередачи

В зависимости от способа подвески проводов опоры воздушных линий (ВЛ) делятся на две основные группы:

а) опоры промежуточные , на которых провода закрепляются в поддерживающих зажимах,

б) опоры анкерного типа , служащие для натяжения проводов. На этих опорах провода закрепляются в натяжных зажимах.

Расстояние между опорами воздушных линий электропередачи (ЛЭП) называется пролетом , а расстояние между опорами анкерного типа — анкерованным участком (рис. 1).

Виды и типы опор воздушных линий электропередачи

В соответствии с требованиями ПУЭ пересечения некоторых инженерных сооружений, например железных дорог общего пользования, необходимо выполнять на опорах анкерного типа. На углах поворота линии устанавливаются угловые опоры, на которых провода могут быть подвешены в поддерживающих или натяжных зажимах. Таким образом, две основные группы опор - промежуточные и анкерные - разбиваются на типы, имеющие специальное назначение.

Схема анкерованного участка воздушной линии

Рис. 1. Схема анкерованного участка воздушной линии

Промежуточные прямые опоры устанавливаются на прямых участках линии. На промежуточных опорах с подвесными изоляторами провода закрепляются в поддерживающих гирляндах, висящих вертикально, на промежуточных опорах со штыревыми изоляторами закрепление проводов производится проволочной вязкой. В обоих случаях промежуточные опоры воспринимают горизонтальные нагрузки от давления ветра на провода и на опору и вертикальные — от веса проводов, изоляторов и собственного веса опоры.

Линия электопередачи высокого напряжения (рисунок из книги 1950 года)

При необорванных проводах и тросах промежуточные опоры, как правило, не воспринимают горизонтальной нагрузки от тяжения проводов и тросов в направлении линии и поэтому могут быть выполнены более легкой конструкции, чем опоры других типов, например концевые, воспринимающие тяжение проводов и тросов. Однако для обеспечения надежной работы линии промежуточные опоры должны выдерживать некоторые нагрузки в направлении линии.

Линия электопередачи высокого напряжения (рисунок из книги 1950 года)

Промежуточные угловые опоры устанавливаются на углах поворота линии с подвеской проводов в поддерживающих гирляндах. Помимо нагрузок, действующих на промежуточные прямые опоры, промежуточные и анкерные угловые опоры воспринимают также нагрузки от поперечных составляющих тяжения проводов и тросов.

При углах поворота линии электропередачи более 20° вес промежуточных угловых опор значительно возрастает. Поэтому промежуточные угловые опоры применяются для углов до 10 - 20°. При больших углах поворота устанавливаются анкерные угловые опоры .

Промежуточные опоры ВЛ

Рис. 2. Промежуточные опоры ВЛ

Анкерные опоры . На линиях с подвесными изоляторами провода закрепляются в зажимах натяжных гирлянд. Эти гирлянды являются как бы продолжением провода и передают его тяжение на опору. На линиях со штыревыми изоляторами провода закрепляются на анкерных опорах усиленной вязкой или специальными зажимами, обеспечивающими передачу полного тяжения провода на опору через штыревые изоляторы.

При установке анкерных опор на прямых участках трассы и подвеске проводов с обеих сторон от опоры с одинаковыми тяжениями горизонтальные продольные нагрузки от проводов уравновешиваются и анкерная опора работает так же, как и промежуточная, т. е. воспринимает только горизонтальные поперечные и вертикальные нагрузки.

Опоры ВЛ анкерного типа

Рис. 3. Опоры ВЛ анкерного типа

В случае необходимости провода с одной и с другой стороны от анкерной опоры можно натягивать с различным тяжением, тогда анкерная опора будет воспринимать разность тяжения проводов. В этом случае, кроме горизонтальных поперечных и вертикальных нагрузок, на опору будет также воздействовать горизонтальная продольная нагрузка. При установке анкерных опор на углах (в точках поворота линии) анкерные угловые опоры воспринимают нагрузку также от поперечных составляющих тяжения проводов и тросов.

Концевые опоры устанавливаются на концах линии. От этих опор отходят провода, подвешиваемые на порталах подстанций. При подвеске проводов на линии до окончания сооружения подстанции концевые опоры воспринимают полное одностороннее тяжение проводов и тросов ВЛ.

Помимо перечисленных типов опор, на линиях применяются также специальные опоры: транспозиционные , служащие для изменения порядка расположения проводов на опорах, ответвительные - для выполнения ответвлений от основной линии, опоры больших переходов через реки и водные пространства и др.

Основным типом опор на воздушных линиях являются промежуточные, число которых обычно составляет 85 -90% общего числа опор.

По конструктивному выполнению опоры можно разделить на свободностоящие и опоры на оттяжках . Оттяжки обычно выполняются из стальных тросов. На воздушных линиях применяются деревянные, стальные и железобетонные опоры. Разработаны также конструкции опор из алюминиевых сплавов.
Конструкции опор ВЛ

  1. Деревянная опора ЛОП 6 кВ (рис. 4) - одностоечная, промежуточная. Выполняется из сосны, иногда лиственницы. Пасынок выполняется из пропитанной сосны. Для линий 35—110 кВ применяются деревянные П-образные двухстоечные опоры. Дополнительные элементы конструкции опоры: подвесная гирлянда с подвесным зажимом, траверса, раскосы.
  2. Железобетонные опоры выполняются одностоечными свободностоящими, без оттяжек или с оттяжками на землю. Опора состоит из стойки (ствола), выполненной из центрифугированного железобетона, траверсы, грозозащитного троса с заземллителем на каждой опоре (для молниезащиты линии). С помощью заземляющего штыря трос связан с заземлителем (проводник в виде трубы, забитой в землю рядом с опорой). Трос служит для защиты линий от прямых ударов молнии. Другие элементы: стойка (ствол), тяга, траверса, тросостойка.
  3. Металлические (стальные) опоры (рис. 5) применяются при напряжении 220 кВ и более.

Деревянная одностоечная промежуточная опора ЛЭП 6 кВ

Рис. 4. Деревянная одностоечная промежуточная опора ЛЭП 6 кВ: 1 - опоры, 2 - пасынок, 3 - бандажа, 4 - крюка, 5 - штыревых изоляторов, 6 - провода

Металлическая опора ЛЭП 220-330 кВ

Рис. 5. Металлическая опора ЛЭП 220-330 кВ: 1 - стойка (ствол) опоры, 2 - фундамент сборный железобетонный иди монолитный, 3 - раскосы, 4 - пояс опоры, 5 - траверса (тяга и пояс траверсы), 6 - гирлянда изоляторов натяжная или подвесная в зависимости от назначения опоры, 7 - провод, S - тросостойка, 9 - трос грозозащитный, 10 - заземлитель, 11 - заземляющий стержень

На первых ВЛ 110 - 500 кВ широкое распространение имели металлические сварные конструкции опор, устанавливавмые на монолитных, набивных или металлических подножниках. В настоящее время на таких ВЛ широко применяются металлические опоры с антикоррозионной защитой металла методами горячего оцинкования, устанавливаемые на фундаментах из сборного железобетона.

Опоры ВЛ

Не менее важным при реконструкции, модернизации и строительстве линий становятся и вопросы снижения транспортного веса опор, простота монтажа, высокая удельная прочность опор, долговечность, вандалоустойчивость, устойчивость к воздействию климатических нагрузок, экологичность. Поэтому, на современном этапе необходимо активно проводить работы по реализации внедрения новых форм опор и модификации существующих конструкций опор и их элементов с применением новых материалов и технологий.

Композитные опоры ВЛ

Композитные опоры ВЛ

Композитные опоры ВЛ представляют собой модульную конструкцию из последовательно собранных конусооборазних композитных модулей на основе стекловолокна (стеклоровинг) и применяются для одноцепных и двухцепных промежуточных опор линий электропередач классов напряжения 110 и 330 кВ. Для композитных опор рекомендуется применять изолированные траверсы.

Виды и конструкция опор ЛЭП

Опоры воздушных линий электропередач являются неотъемлемой частью энергетических систем, в которых испытывают потребность все виды гражданских, военных, а также промышленных объектов. В комплексе жилого малоэтажного и многоэтажного строительства, при возведении промышленных объектов планируется и возводится инфраструктура, которая включает в себя линии электропередач, подстанции и опоры. От выбора типа и вида опор зависит долговечность конструкции ЛЭП, ее прочность, устойчивость к целому ряду внешних механических и природных факторов. Надежные опоры в свою очередь гарантируют безаварийную подачу электроэнергии к объектам инфраструктуры, исключая перебои и возникновение внештатных, аварийных ситуаций. Современные унифицированные опоры позволяют сооружать в короткие сроки надежные воздушные линии электропередач в различных климатических поясах, на грунтах различной несущей способности.

Виды и конструкция опор ЛЭП

Разновидности и назначение опор ЛЭП

Все существующие виды конструкционных изделий, которые служат в качестве опор, выполняют функцию поддержания проводов воздушных линий электропередач. В зависимости от напряжения линии различают опоры, рассчитанные на 220В, а также 0.4, 6, 10, 35, 110, 150, 220, 330, 400, 500, 750 и 1150 кВ. При этом воздушные линии делятся на три категории:

  • от 0,4 до 10 кВ;
  • от 35 до 110 кВ;
  • от 220 до 330 кВ.

Расстояние между опорными элементами конструкции ЛЭП называется пролетом. Чем выше рабочее напряжение высоковольтной линии, тем длиннее ее траверсы, больше габариты и вес конструкции.

При этом конструкции опорных стоек должны обеспечивать возможность установки:

  • кабельных концевых муфт;
  • защитных выключателей и аппаратов;
  • щитков и шкафов с целью подключения отдельных электроприемников;
  • коммутационных и секционирующих аппаратов;
  • светильников уличного освещения любой конструкции.

По способу крепления различают опоры, которые могут устанавливаться непосредственно на грунт, а также элементы, для монтажа которых необходимо сооружение специального фундамента. Последние разделяются на классические и узкобазовые. В обычном виде ширина базы крепления имеет площадь более 4 м2, предусматривая рамные, каркасные или заливные фундаменты. К категории узкобазовых относят все основания, площадь которых составляет менее 4 м2. Часто такие крепления предусматривают установку железобетонной или винтовой сваи, стальной трубы и используются на местности с дефицитом пространства.

В зависимости от вида крепления опоры можно дифференцировать на прямостоячие и конструкции с оттяжками. Последние являются наиболее устойчивыми и прочными, требуя при этом дополнительных работ по монтажу оттяжек и их креплению, каждая из которых должна иметь свой отдельно сформированный фундамент.

Металлические, железобетонные, деревянные и композитные опоры – достоинства и недостатки

В зависимости от используемого материала различают опоры выполненные из:

В настоящее время также встречаются опоры композитного типа, которые включают в себя элементы из различных материалов. К примеру, железобетон может компоноваться металлическими наконечниками, ребрами, стойками, для формирования необходимой конфигурации и размера.

Каждый вид опорных элементов обладает набором индивидуальных характеристик, которые необходимо учитывать при проектировании и установке на местности.

Железобетонные опоры изготавливают из бетона, который для усиления прочности армируется металлом. С целью повышения надежности для линий от 35 до 110 кВ при изготовлении находит применение технология центрифугирования, с помощью которой бетонная смесь максимально уплотняется с устранением воздушных прослоек снижающих прочность. В процессе производства раствор разливается по специальным металлоформам, внутри которых располагается созданный заранее армированный каркас из поперечных и продольных стержней. Железобетонные изделия являются устойчивыми к внешним воздействиям и появлению коррозии. Химическая инертность бетона не позволяет ему вступать в действие с химическими элементами, допуская эксплуатацию в условиях агрессивных сред и реагентов, которыми может быть насыщен воздух. Одним из главных недостатков таких опор является их высокая масса, которая затрудняет доставку, выдвигает требования к процессу проведения монтажных работ и качеству подготовленного основания. При этом железобетон отличается высокой степенью долговечности, которая гарантирует безаварийную работу опор в течение длительного срока службы, который составляет не менее 60 – 80 лет.


Деревянные опоры для ЛЭП изготавливаются из цельных бревен. Чаще всего их использование актуально для низковольтных воздушных линий с напряжением 220 или 380 В. В качестве материала, используемого при производстве опор, преимущественно задействуются хвойные породы древесины, реже лиственные. Одним из главных достоинств применения деревянных элементов крепления проводов является доступная стоимость. при наличии местных сортов древесины это позволяет создать существенную экономию при сооружении и прокладке электролиний. При этом такие опоры уступают в долговечности металлическим, железобетонным и композитным изделиям. В процессе эксплуатации древесина разрушается под воздействием солнечных лучей, влаги, паразитного влияния насекомых, вследствие сезонного перепада температур и прочих естественных факторов. С целью повышения срока службы деревянные бревна обрабатываются специальными составами. Мастики и смолы позволяют продлить долговечность изделий до 20 – 25 лет в наиболее благоприятных условиях. Деревянные опоры используются для сооружения А- и П-образных конструкций.


Металлические опорные изделия для линий электропередач изготавливают и стальных сплавов установленных марок. Отдельные компоненты конструкции, представляющие несущие элементы и ребра жесткости в виде балок и уголков соединяют между собой воедино. Дл этой цели используют сварное жесткое соединение, которое обеспечивает соединение поверхностей на молекулярном уровне или сборно-разборное соединение при помощи болтов и гаек. С целью недопущения снижения прочности металлических опор по причине коррозии часто задействуется оцинкованный стальной прокат. Некоторые конструкции окрашивают специальными защитными составами. В зависимости от особенности конструкции различают следующие виды стальных опор:

Помимо этого разделяют конструкции опор из закрытого и открытого профиля. К первым относятся шести- и восьмигранники, ко вторым треугольники и изделия квадратного сечения. Также нередко в качестве основы для сооружения стальных опор для ЛЭП находят применение трубы.


Композитные типы опорных элементов – новый вид конструкций, которые вкачают в себя отдельные узлы, выполненные из различных материалов.

Маркировка и обозначение

Для обозначения опор линий электропередач используется буквенная маркировка, которая позволяет присвоить каждой конструкции отдельное наименование: Для стальных, композитных и железобетонных видов опор, рассчитанных на прокладку воздушных линий с рабочим значением напряжения от 35 до 330 кВ, приняты следующие обозначения:

  • «А» - анкерные изделия;
  • «УС», «У» и «АУ» - обозначение изделий анкерно-углового типа;
  • «ПС» и «П» - промежуточные конструкции;
  • «ПУС» и «ПУ» - угловые промежуточные элементы;
  • «ПВС» - промежуточные опоры с внутренними связями;
  • «Б» - изделия из железобетона (за исключением опор рассчитанных на 500 кВ);
  • «КС» и «К» - изделия концевого типа;
  • «ПК» - композитные промежуточные опорные конструкции;
  • «ПП» - переходные промежуточные изделия.

Цифровой индекс, который приводится после буквенного обозначения, отражает класс напряжения. Наличие буквенного указателя с литерой «т» указывает на наличие тросостойки с 2-мя тросами. Если приводится буква «п», то изделие предусматривает изменение взаимного расположения проводников в конструкции опоры. В большинстве изделий для реализации этой цели провода переносятся на соседний ярус, где формируется необходимая последовательность.

Цифра, которая указывается через дефис определяет число цепей: если значение нечётное, то линия позиционируется как одноцепная, четное принадлежит многоцепным конструкциям. Помимо этого цифра может указывать на тип исполнения изделия. Дополнительно в некоторых элементах моет указываться цифровое значение со знаком «+», которое отражает высоту приставки к базовой опоре. Данная величина применима исключительно к опорам, выполненным из стали.

Классификация опор по функциональному назначению

По конструктивному исполнению и своему технологическому назначению опоры ЛЭП разделяются на следующие типы:

  • промежуточные – наиболее популярный и массово востребованный вид изделий, который предназначен для поддержания проводников на проектной высоте. При конструировании и строительстве высоковольтных линий промежуточные опорные элементы составляют 80 – 90% от общего числа используемых изделий. При этом промежуточные опоры предназначены исключительно для поддержания проводов и не несут нагрузки от натяжения проводов. Величина допустимой нагрузки зависит от модели опорных элементов, которые принимаются к установке при индивидуальном расчете. Установка промежуточных опор производится на прямых участках прокладки линии. Стальные и железобетонные изделия могут использоваться при низких значениях отрицательных температур до – 65 ºС, допуская применение элементов в северных регионах страны;
  • переходные или анкерные – находят применение в точках, узлах сетей, где наличие преград естественного происхождения ил инженерных сооружений требует изменение топологии. В числе таковых могут быть водоемы, реки, овраги, возвышенности, объекты инфраструктуры и т. д. Опоры отличаются повышенными габаритами, которые позволяют им выдерживать значительные нагрузки, вызванные тяжением проводов. Конструкция таких изделий отличается повышенным значением жесткости;
  • угловые – изделия установка которых производится в точках поворота высоковольтной линии. Угловые промежуточные элементы используются при малых углах поворота – до 30 градусов. Свыше задействуются полноценные угловые анкерные конструкции опорных изделий, позволяющие выдерживать силы постоянного натяжения проводов и тросов смежных пролетов;
  • концевые – изделия, монтаж которых производится в начальной и конечной точке согласно проекта прокладки линии электропередач. Провода от них уходят на порталы подстанций. Элементы такого типа, как правило, воспринимают одностороннюю нагрузку от натяжения проводников;
  • транспозиционные – опоры специального типа, которые используются в том случае, если появляется необходимость для организации ответвлений или изменения порядка проводников, проходящих в составе ВЛ. Также специальные изделия задействуются в том случае, когда линию необходимо усилить для повышения противоветровой нагрузки или при пересечении двух и более перекрестных линий электропередач.

Преимущества железобетонных опор

Одними из наиболее популярных и востребованных в наши дни являются железобетонные опоры линий электропередач. Представляя собой один из самых практичных и экономически эффективных видов для строительства ЛЭП, железобетонные конструкции имеют ряд преимуществ, среди которых:

  • продолжительный срок службы. Долговечность железобетона насчитывает 50- 70 лет в зависимости от условий эксплуатации;
  • устойчивость к внешним воздействиям в виде влаги, попадания прямых солнечных лучей и т. д.;
  • экологическая чистота материала, который не выделяет токсинов и не наносит вред окружающей среде;
  • устойчивость к коррозионным процессам;
  • высокая механическая прочность, которая достигается за счет армирования бетона;
  • доступная стоимость;
  • минимальные требования к процессу установки и монтажа;
  • широкий температурный диапазон эксплуатации - от -55 до + 55°С;
  • высокая пожаробезопасность материала, который не является горючим;

Наряду с преимуществами железобетонные опоры обладают лишь одним недостатком, который сводится к их большой массе. Невзирая на это, использование изделий оправдано считается экономически выгодным и эффективным для различных сетей и воздушных линий, которые призваны обеспечить безаварийную и бесперебойную подачу электроэнергии.


Разновидности и технология изготовления железобетонных опор

Железобетонные основания имеют армированную конструкцию. Для их изготовления находят применение сварные стальные каркасы. В ходе производственного процесса в заготовках размещаются армированные стержни как напряженной, так и ненапряженной конструкции. После этого заготовка заливается бетонным раствором. В зависимости от используемого техпроцесса опоры делятся на следующие категории:

Устройство ЛЭП

Устройство ЛЭП

Преимущественно передача электроэнергии от электростанций осуществляется по воздуху. И ЛЭП или линии электропередач в этой цепочке является важнейшим компонентом. С их помощью электрический ток передается на большие расстояния, распределяется по отдельным участкам. Последнее происходит на станциях с огромными понижающими трансформаторами, где высокое напряжение 6-330 кВ преобразуется в «стандартное» 380В.

Что такое ЛЭП?

Высоковольтные линии электропередач обычно устанавливаются вдоль крупных трасс или по незаселенным территориям. Такой подход повышает безопасность, упрощает устройство и техническое обслуживание ЛЭП.

Передается по ЛЭП напряжение переменного тока, оно обеспечивает большее расстояние передачи по сравнению с постоянным. Значение выбирается исходя из дальности, например, между городами и объектами крупных предприятий ставятся системы на 35-150 кВ, внутри населенных пунктов до 20 кВ. Магистральные же ЛЭП работают под напряжением порядка 220-500 кВ. Они предназначены для соединения городских энергосистем со станцией, генерирующей электричество.

Между специалистами применяется ряд специфических терминов:

  1. Трасса – ось прокладки ЛЭП, проходящая по поверхности земли.
  2. Пикет – отрезок трассы с одинаковыми характеристиками (нулевым называют начало линии ЛЭП, а их установку пикетажом).
  3. Пролет – расстояние между центрами близстоящих опор.
  4. Стрела провеса – дельта между наиболее нижней точкой провеса кабеля и горизонтальной линией между опорами.

Также используется термин «габарит провода». Он означает расстояние между провисшим кабелем и верхней точкой сооружений, расположенных под ним. Перечисленные понятия имеют отношение в основном к проектированию устройства воздушных линий электропередач. Именно на этом этапе рассчитываются меры безопасности самого оборудования, людей, которым предстоит заниматься его обслуживанием, и проезжающих-проходящих мимо.

Таблица 1. Типовые габариты ЛЭП

Номинальное напряжение, кВ Расстояние между фазами, м Длина пролета, м Высота опоры, м
-1

Сопротивление заземляющих устройств выбирается исходя из условий, указанных в таблице. Если речь идет о не населенной местности в грунтах с удельным сопротивлением до 100 Ом*м оно должно составлять оно должно составлять не более 30 Ом. На грунтах с высоким сопротивлением, более 100 Ом*м – не более 0,3 Ом. При использовании на ЛЭП 6-10 кВ изоляторов ШФ 10-Г, ШФ 20-В, ШС 10-Г сопротивление заземления в не населенной местности никак не регламентируется.

Передача электроэнергии от поставщиков к потребителям производится при помощи специальных сооружений – ЛЭП, включающими в себя кабели, опоры, изоляторы, устройства защиты от короткого замыкания, арматуру. Все перечисленные элементы выпускаются и устанавливаются с учетом определенных нормативов вроде ГОСТ 13109-97, ГОСТ 24291-90, ГОСТ Р 58087-2018, СТО 70238424.29.240.20.001-2011.

Читайте также: