Емкость уединенного металлического шара радиуса r в вакууме равна

Обновлено: 18.05.2024

Такого рода задачи встречаются очень часто не только в электростатике, но и при изучении электрического тока. Для их решения вводят особую физическую величину — электрическую емкость, или просто емкость.

Электрическая емкость уединечного проводника

Рассмотрим сферический проводник радиусом r. Пусть он находится очень далеко от других тел, так что его размеры во много раз меньше расстояний до этих тел. Такой проводник называют уединенным.

не зависит от заряда и определяется лишь радиусом шара и диэлектрической проницаемостью е окружающей среды.

Замечательным является то, что не только для шара, но и для уединенного проводника произвольной формы потенциал прямо пропорционален заряду. Поэтому отношение заряда проводника к его потенциалу не зависит, от значения заряда и определяется лишь геометрическими размерами проводника, его формой и электрическими свойствами окружающей среды (диэлектрической проницаемостью ε). Это позволяет ввести понятие электрической емкости уединенного проводника.

Электрической емкостью С проводника называется отношение заряда q проводника к его потенциалу φ:

Емкость выражается через отношение заряда к потенциалу, но не зависит ни от того, ни от другого. Точно так же, например, скорость при равномерном прямолинейном движении выражается через отношение пути ко времени:

Емкость не зависит от материала проводника: железные, медные тела и тела из других материалов одинаковых размеров и формы имеют одинаковую емкость.

Практическая польза понятия емкости состоит в том, что, определив емкость проводника экспериментально или вычислив ее теоретически, можно с помощью формулы (1.24.2) найти потенциал проводника по известному заряду или, наоборот, заряд по известному потенциалу.

Емкость шара

Согласно определению емкости (1.24.2) и формуле (1.24.1) электрическая емкость шара в СИ равна:


так как в этой системе

В системе СГСЭ потенциал шара вычисляется по формуле (1.19.4), тогда при k = 1 и в соответствии с определением (1.24.2)

В вакууме емкость проводящего шара в системе СГСЭ равна его радиусу.

Зависимость емкости проводника от окружающих тел

В действительности ни один проводник не является, строго говоря, уединенным. Вблизи любого заряженного тела находятся те или иные предметы. И в этих случаях можно говорить об электрической емкости проводника, но она будет зависеть от расположения окружающих тел. В этом можно убедиться на опыте.

Возьмем электрометр и заземлим его корпус. К стержню электрометра прикрепим полый металлический шар с отверстием. Сообщим электрометру заряд q с помощью маленького металлического шарика на изолирующей ручке. Для этого коснемся заряженным шариком внутренней поверхности сферы (рис, 1.96, а). Весь заряд шарика при этом перейдет к электрометру. Возникает разность потенциалов между стержнем электрометра и землей, и его стрелка отклоняется. Сообщим электрометру еще такой же заряд* q. Потенциал стержня относительно земли возрастает в 2 раза. Следовательно, отношение заряда к потенциалу постоянно и равно емкости металлического шара со стержнем.


Но стоит поднести к шару ладони рук (не касаясь его), как стрелка электрометра приблизится к вертикали. Потенциал шара уменьшается, и, значит, емкость возрастает. Такой же эффект наблюдается при поднесении незаряженного диэлектрика к диску на стержне электрометра (см. § 1.14).

Почему это происходит? Потенциал проводника определяется не только зарядом на его поверхности. Согласно принципу суперпозиции (1.19.5) потенциал поля в некоторой точке равен сумме потенциалов, создаваемых всеми заряженными телами. Незаряженные тела также влияют на потенциал проводника, так как под действием поля шара на поверхностях проводников появляются свободные заряды противоположных знаков (вследствие электростатической индукции), а у диэлектриков — связанные заряды (вследствие поляризации).

С помощью электрометра можно обнаружить зависимость емкости проводника от его размеров. Укрепим на стержне полый шар меньшего радиуса. Если теперь сообщить ему такой же заряд q, как и в первом опыте, то потенциал стержня оказывается большим (рис. 1.96, б). Это означает уменьшение емкости с уменьшением размера шара.

Единицы электроемкости

Формула (1.24.2) позволяет ввести единицы электроемкости. В СИ единицей емкости является фарад (Ф).

В системе СГСЭ за единицу емкости в соответствии с формулой (1.24.4) принимают емкость шара радиусом 1 см в вакууме. Эта единица — сантиметр.

Нетрудно видеть, что


Емкость в 1 Ф очень велика. Уединенный шар, обладающий такой емкостью, имел бы радиус, в 13 раз превышающий радиус Солнца. Поэтому на практике часто используют доли этой единицы: микрофарад (мкФ) — 10 16 Ф и пикофарад (пФ) — 10 -12 ф Емкость земного шара равна 709 мкФ.

Формула (1.24.3) позволяет выразить электрическую постоянную ε0 через емкость и размеры проводника:

Это означает, что электрическую постоянную можно выражать в фарадах на метр (Ф/м).

* Два одинаковых заряда можно получить, например, так: коснуться двумя одинаковыми шариками на изолирующей ручке большого заряженного шара и одновременно отвести от шара.

Электрическая емкость уединенного проводника

Если поместить проводник во внешнее электростатическое поле или его зарядить, то на заряды проводника будет действо­вать электростатическое поле, в результа­те чего они начнут перемещаться.

Переме­щение зарядов (ток) продолжается до тех пор, пока не установится равновесное рас­пределение зарядов, при котором электро­статическое поле внутри проводника обра­щается в нуль. Это происходит в течение очень короткого времени. В самом деле, если бы поле не было равно нулю, то в проводнике возникло бы упорядоченное движение зарядов без затраты энергии от внешнего источника, что противоречит закону сохранения энергии. Итак, напря­женность поля во всех точках внутри проводника равна нулю:

Отсутствие поля внутри проводника означает, согласно (85.2), что потенциал во всех точках внутри проводника постоя­нен (j=const), т.е. поверхность провод­ника в электростатическом поле является эквипотенциальной. Отсюда же следует, что вектор напряженности поля на внешней поверхности проводника направ­лен по нормали к каждой точке его по­верхности.

Рассмотрим уединенный проводник,т. е. проводник, который удален от других проводников, тел и зарядов. Его потенци­ал, согласно (84.5), прямо пропорциона­лен заряду проводника. Из опыта следует, что разные проводники, будучи одинаково заряженными, принимают различные по­тенциалы. Поэтому для уединенного про­водника можно записать

C=Q/j (93.1)

Согласно (84.5), потенциал уединенно­го шара радиуса R, находящегося в одно­родной среде с диэлектрической проницае­мостью e, равен

Используя формулу (93.1), получим, что емкость шара

С = 4pe0eR. (93.2)

Отсюда следует, что емкостью в 1 Ф обла­дал бы уединенный шар, находящийся в вакууме и имеющий радиус R=С/(4pe0)»9•10 6 км, что примерно в 1400 раз больше радиуса Земли (элек­троемкость Земли С»0,7мФ). Следова­тельно, фарад — очень большая величина, поэтому на практике используются доль­ные единицы — миллифарад (мФ), микро­фарад (мкФ), нанофарад (нФ), пикофарад (пФ). Из формулы (93.2) вытекает также, что единица электрической посто­янной e0 фарад на метр (Ф/м) (см. (78.3)).

Диэлектрик (как и всякое вещество) со­стоит из атомов и молекул. Так как поло­жительный заряд всех

ядер молекулы ра­вен суммарному заряду электронов, то молекула в целом электрически нейтраль­на. Если заменить положительные заряды ядер молекул суммарным зарядом +Q, находящемся в центре «тяжести» положи­тельных зарядов, а заряд всех электро­нов — суммарным отрицательным заря­дом -Q, находящемся в центре «тя­жести» отрицательных зарядов, то моле­кулу можно рассматривать как электриче­ский диполь с электрическим моментом

Первую группу диэлектриков (N2, H2, О2, СO2, СH4, . ) составляют вещества, молекулы которых имеют симметричное строение, т. е. центры «тяжести» положи­тельных и

отрицательных зарядов в отсут­ствие внешнего электрического поля со­впадают и, следовательно,

дипольный мо­мент молекулы р равен нулю. Молекулытаких диэлектриков называются неполяр­ными.

Под действием внешнего электриче­ского поля заряды неполярных молекул смещаются в

противоположные стороны (положительные по полю, отрицательные против поля) и молекула приобретает ди­польный момент. Вторую группу диэлектриков (H2O, NH3, SO2, CO, . ) составляют вещества, молекулы которых имеют асимметричное строение, т. е. центры «тяжести» положи­тельных и отрицательных зарядов не со­впадают. Таким образом, эти молекулы в отсутствие внешнего электрического по­ля обладают дипольным моментом. Моле­кулытаких диэлектриков называются по­лярными.При отсутствии внешнего поля, однако, дипольные моменты полярных мо­лекул вследствие теплового движения ори­ентированы в пространстве хаотично и их результирующий момент равен нулю. Если такой диэлектрик поместить во внешнее поле, то силы этого поля будут стремиться повернуть диполи вдоль поля и возникает отличный от нуля результирующий момент.

Емкость уединенного металлического шара радиуса r в вакууме равна

Наличие единого (в электростатике!) потенциала во всём проводнике - одно из важнейших его свойств, и именно оно позволяет строго ввести определение электрической ёмкости уединённого проводника по формуле

где `Q` - заряд на проводнике, `varphi` - его потенциал, и ёмкость конденсатора (пары проводников) – по формуле

где `varphi_1` и `varphi_2` - потенциалы отдельных проводников с зарядами `Q` и `-Q`. Не будь этого свойства, было бы непонятно, что именно понимать под `varphi`, `varphi_1` и `varphi_2`. Почему мы, например, не спрашиваем себя, какова ёмкость двух деревяшек? Да потому, что мы не можем говорить о едином потенциале даже одной деревяшки (в разных точках её потенциал будет, вообще говоря, разным).

Электроёмкость измеряется в фарадах: `1` фарад `=1` Ф `=1` Кл/`1`В.

В определение ёмкости конденсатора, т. е. пары проводников, входит один заряд. Дело в том, что наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: `Q_1=-Q_2=Q`.

Хотя в определение электроёмкости входят заряд и потенциал `C=Q//varphi` (или разность потенциалов - для конденсатора `C=Q//(varphi_1-varphi_2)`) фактически ни от заряда, ни от потенциала (разности потенциалов) ёмкость не зависит, а определяется только геометрией проводника (да ещё диэлектрической проницаемостью среды, см. раздел, посвящённый диэлектрикам). Например, ёмкость уединённого проводящего шара радиуса `R` в вакууме равна

`C_"шара"=4pi epsilon_0R` (2.2.3)

(последняя формула получается непосредственно из формулы для потенциала уединённого шара `varphi=Q/(4pi epsilon_0)`), а ёмкость плоского конденсатора (Пример 24)

Последнее связано с тем, что потенциал уединённого проводника всегда пропорционален его заряду (а в конденсаторе разность потенциалов пропорциональна заряду); ёмкость же есть как раз коэффициент пропорциональности `Q=Cvarphi` (или `Q=C(varphi_1-varphi_2)`).

Нетрудно вычислить (воспользовавшись результатом Примера 18) ёмкость сферического конденсатора

`C=4pi epsilon_0(R_1R_2)/(R_2-R_1)`, (2.2.5)

где `R_1` и `R_2` - радиусы внутренней и внешней сфер.

Определить ёмкость шара размером с Землю. Радиус Земли `R=6370` км. Каким должен быть радиус металлического шара, чтобы его электроёмкость была равна `1` фараду?

По формуле (2.2.3) `C=4pi epsilon_0R~~0,71` мФ. Чтобы ответить на 2-ой вопрос, снова воспользуемся формулой (2.2.3), выразив из неё `R=1//4pi epsilon_0C=9*10^6` км, что почти в `13` раз больше радиуса Солнца.

Оценить, какого размера должны быть пластины плоского воздушного конденсатора в форме квадратов, расстояние между которыми `d=1` мм, чтобы его электроёмкость равнялась `1` фараду?

По формуле (2.2.4) имеем `C=epsilon_0L^2//d`, откуда `L~~10,6` км.

Как изменится электроёмкость плоского конденсатора с воздушным зазором между пластинами площади `S` каждая и с расстоянием между пластинами `d`, если между обкладками конденсатора вставить параллельно обкладкам металлическую пластину толщиной `delta

Внутри металлической пластинки напряжённость электрического поля равна нулю, поэтому эта область не вносит вклада в разность потенциалов между обкладками конденсатора. Напряжённость в воздушном промежутке между обкладками конденсатора останется такой же, какой была до внесения пластинки (в целом электрически не заряженная пластинка не изменяет напряжённости поля вне её). Ёмкость конденсатора без пластинки вычислялась бы так:

После внесения пластинки уменьшится ширина области пространства между обкладками конденсатора, занятая полем (от `d` до `d-delta`); в итоге

Мкость уединённого проводника. Ёмкость конденсатора.

Рассмотрим уединенный проводник, т. е. проводник, который удален от других проводников, тел и зарядов. Его потенциал прямо пропорционален заряду проводника. Из опыта следует, что разные проводники, будучи одинаково заряженными, имеют различные потенциалы. Поэтому для уединенного проводника можно записать

Емкость проводника зависит от его размеров и формы, но не зависит от материала, агрегатного состояния, формы и размеров полостей внутри проводника. Это связано с тем, что избыточные заряды распределяются на внешней поверхности проводника. Емкость не зависит также ни от заряда проводника, ни от его потенциала.

Согласно

Используя формулу C = Q/φ , получим, что емкость шара

Отсюда следует, что емкостью 1 Ф обладал бы уединенный шар, находящийся в вакууме и имеющий радиус R = C/(4πε0) = 9*10 6 км, что примерно в 1400 раз больше радиуса Земли (электроемкость Земли С=0,7 мФ). Следовательно, фарад – очень большая величина, поэтому на практике используются дольные единицы. Из формулы C = 4πεε0R вытекает также, что единица электрической постоянной ɛ0 — фарад на метр(Ф/м).

Конденсатор состоит из двух проводников (обкладок), разделенных диэлектриком. На емкость конденсатора не должны оказывать влияния окружающие тела, поэтому проводникам придают такую форму, чтобы поле, создаваемое накапливаемыми заря­дами, было сосредоточено в узком зазоре между обкладками конденсатора. Этому условию удовлетворяют: 1) две плоские пластины; 2) два коаксиальных цилиндра; 3) две концентрические сферы. Поэтому в зависимости от формы обкладок конденсаторы делятся наплоские, цилиндрические и сферические.

Подемкостью конденсатора понимается физическая величина, равная отноше­нию заряда Q, накопленного в конденсаторе, к разности потенциалов (j1 j2) между его обкладками:

Рассчитаем емкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга и имеющих заряды +Q и –Q. Если расстояние между пластинами мало по сравнению с их линейными размерами, то краевыми эффектами можно пренебречь и поле между обкладками считать однородным. При наличии диэлектрика между обкладками разность потенциалов между ними,

где e — диэлектрическая проницаемость. Тогда из формулы (94.1), заменяя Q=sS, с учетом (94.2) получим выражение для емкости плоского конденсатора:

Для определения емкости цилиндрического конденсатора, состоящего из двух полых коаксиаль­ных цилиндров с радиусами r1 и r2 (r2 > r1), вставленных один в другой, опять пренебрегая краевыми эффектами, считаем поле радиально-симметричным и сосредоточенным между цилиндрическими обкладками. Разность потенциалов между обкладками вычислим по формуле


для поля равномерно заряженного бесконечного цилиндра с линейной плотностью t =Q/l (l—длина об­кладок). При наличии диэлектрика между обкладками разность потенциалов

Подставив (94.4) в (94.1), получим выражение для емкости цилиндрического конденсатора:


Для определения емкости сферического конденсатора, состоящего из двух концентрических обкладок, разделенных сферическим слоем диэлектрика, используем формулу для разности потенциалов между двумя точками, лежащими на расстояниях r1 и r2 (r2 > r1) от центра заряженной сферической поверхности. При наличии диэлектрика между обкладками разность потенциалов

Подставив (94.6) в (94.1), получим

Если d=r2r1r1, то r2 » r1 » r и C=4pe0er 2 /d. Так как 4pr 2 —площадь сферической обкладки, то получаем формулу (94.3). Таким образом, при малой величине зазора по сравнению с радиусом сферы выражения для емкости сферического и плоского конденсаторов совпадают.

Читайте также: