Гелий металл или нет

Обновлено: 17.05.2024


Ге́лий (He) — 2-й элемент периодической системы элементов , газ.

Гелий — практически инертный химический элемент. Возглавляет группу абсолютному нулю температурах. Экстремальные условия также необходимы для создания немногочисленных химических соединений гелия, все они нестабильны при нормальных условиях. Природный гелий состоит из двух стабильных ³He (0,00014 %; содержание гелия-3 в разных природных источниках может варьировать в довольно широких пределах). Известны ещё шесть искусственных радиоактивных изотопов гелия.

Содержание

История

Схема атома гелия

18 августа 1868 года французский учёный [2]

Спустя два месяца 20 октября английский астроном азот и в письме Рамзаю признал за ним приоритет открытия. Впоследствии линия гелия была обнаружена и в пробах вулканических газов и газов, выделяемых радиоактивными изотопами.

Происхождение названия

От ἥλιος — «солнечный» (см. Получение

В промышленности гелий получается путём природного газа, в котором доля гелия составляет около 7 %.Так как гелий имеет низкую температуру кипения, то сжижение происходит при низкой температуре и высоком давлении. Полученный в результате «сырой» гелий очищается последовательным понижением температуры, при котором происходит конденсация других газов и их удаление из смеси. Для окончательной очистки используют неон. На заключительной стадии полученный газ сжижают при низких температурах, что снижает затраты при перевозке гелия на дальние расстояния.

В качестве альтернативы гелий может быть синтезирован путём бомбардировки ядер лития или бора высокоскоростными протонами, однако это крайне невыгодный процесс с экономической точки зрения.

Химические свойства

Свойства в газовой фазе

При стандартных температуре и давлении гелий ведёт себя практически как идеальный газ. Фактически при всех условиях гелий моноатомный. Он обладает теплопроводностью большей, чем у других газов, кроме водорода, и его удельная теплоёмкость чрезвычайно высока.

Гелий также менее растворим в воде, чем любой другой известный газ. Скорость его диффузии сквозь твёрдые материалы в три раза выше, чем у воздуха, и приблизительно на 65 % выше, чем у водорода. Примерный диаметр атома He — 0,20 коэффициент Джоуля-Томсона при нормальной температуре среды, то есть он нагревается, когда ему дают возможность свободно увеличиваться в объёме. Только ниже температуры инверсии Джоуля-Томсона (приблизительно 40 К при нормальном давлении) он остывает во время свободного расширения.

После охлаждения ниже этой температуры, гелий может быть превращён в жидкость при расширительном охлаждении. Такое охлаждение производится при помощи Свойства конденсированных фаз

Уникальные свойства гелия широко используются в промышленности и народном хозяйстве:

В России газообразный гелий получают из природного и нефтяного газов. В настоящее время гелий извлекается на гелиевом заводе ООО " Газпром добыча Оренбург " в См. также

Нестабильные (менее суток): 5 He: Гелий-5 , 6 He: Гелий-6 , 7 He: Гелий-7 , 8 He: Гелий-8 , 9 He: Гелий-9 , 10 He: Гелий, Таблица нуклидов

ГЕЛИЙ

ГЕЛИЙ, He (helium), химический элемент из семейства благородных (инертных) газов He, Ne, Ar, Kr, Xe, Rn, составляющих VIIIA подгруппу в периодической системе элементов, или, как ее еще называют, нулевую группу.

История открытия.

Гелий впервые был идентифицирован как химический элемент в 1868 П.Жансеном при изучении солнечного затмения в Индии. При спектральном анализе солнечной хромосферы была обнаружена ярко-желтая линия, первоначально отнесенная к спектру натрия, однако в 1871 Дж.Локьер и П.Жансен доказали, что эта линия не относится ни к одному из известных на земле элементов. Локьер и Э.Франкленд назвали новый элемент гелием от греч. «гелиос», что означает солнце. В то время не знали, что гелий – инертный газ, и предполагали, что это металл. И только спустя почти четверть века гелий был обнаружен на земле. В 1895, через несколько месяцев после открытия аргона, У.Рамзай и почти одновременно шведские химики П.Клеве и Н.Ленгле установили, что гелий выделяется при нагревании минерала клевеита. Год спустя Г.Кейзер обнаружил примесь гелия в атмосфере, а в 1906 гелий был обнаружен в составе природного газа нефтяных скважин Канзаса. В том же году Э.Резерфорд и Т.Ройдс установили, что a -частицы, испускаемые радиоактивными элементами, представляют собой ядра гелия.

Распространенность в природе.

Содержание гелия в мировом пространстве составляет 28% (второе место после водорода). Гелий – основной компонент звездной материи. В результате углеродного цикла (сложная цепь ядерных реакций), впервые изученного Х.Бете в 1939, водород в звездном веществе превращается в гелий, при этом происходит значительное выделение энергии (см. также ЯДЕРНЫЙ СИНТЕЗ). В земной атмосфере гелий составляет всего 0,0005% об., так как он чрезвычайно легок и слабо удерживается гравитационным полем земли. Гелий образуется при распаде тяжелых радиоактивных элементов, находящихся в расплавленном земном ядре, и медленно диффундирует через земную мантию. Тепловая энергия, выделяющаяся при ядерных процессах, поддерживает ядро земли в расплавленном состоянии. Природный метан, добываемый из скважин, содержит ок. 1,75% гелия и 0,5% CO2. После удаления CO2, глубокого охлаждения природного газа до –185 ° C и сжатия образуется жидкий метан, а в газовой фазе остаются гелий и азот. Метод глубокого охлаждения позволяет получать гелий чистотой 98% и выше.

Свойства.

Гелий имеет одну-единственную электронную оболочку, занятую двумя электронами, т.е. его оболочка полностью заполнена электронами, которые испытывают сильное притяжение ядра, а значит, очень устойчивы; поэтому гелий не вступает в химические реакции, не образует химические соединений и не имеет степеней окисления. Гелий – бесцветный одноатомный газ без запаха; он не вступает в реакции ни с одним химическим элементом, и его атомы не соединяются даже между собой. Наиболее распространенный изотоп 4 He содержит в ядре два протона и два нейтрона, поэтому его массовое число равно 4. Более редкий изотоп 3 He с одним нейтроном был открыт в 1939 Л.Альваресом и Р.Кернегом. Содержание 3 He составляет 10 –5 % гелия, находящегося в природном газе, добываемом из скважин. 3 He получается в ядерных реакциях при распаде трития ( 3 H-изотоп водорода). Гелий – необычное вещество, по свойствам он близок к состоянию идеального газа

СВОЙСТВА 4 He

Жидкий и твердый гелий.

Жидкий гелий обладает рядом уникальных свойств; он имеет самую низкую температуру кипения: 4 He кипит при 4,22 K, а 3 He – 3,19 K. Это свойство гелия используют для создания низких температур. Гелий – единственное вещество на земле, которое при нормальном давлении не кристаллизуется вблизи абсолютного нуля, что объясняется слабым межатомным взаимодействием и квантовыми свойствами. Жидкий гелий бесцветен, очень текуч и имеет очень низкое поверхностное натяжение. Изотопы гелия в жидком состоянии сильно различаются. Так, 4 He имеет две формы: при температурах выше 2,18 K существует 4 He, а ниже 2,18 K происходит необычный переход (фазовый переход второго рода) в 4 He-II. Если пустой стеклянный сосуд погрузить в 4 He-II, то жидкость будет медленно подниматься вверх по стенкам и перетекать внутрь до выравнивания уровней жидкости снаружи и внутри. Если сосуд приподнять, то процесс пойдет обратно до нового выравнивания уровней жидкостей. Это – пленочное движение; оно характерно только для 4 He-II. Другое аномальное свойство 4 He-II – способность жидкости перетекать из области более низких температур в область более высоких. 4 He-II обладает сверхтекучестью (явление сверхтекучести открыл П.Л.Капица в 1938) – свойством, известным только для жидкого гелия. Явление сверхтекучести объясняется на основе двухжидкостной модели. Согласно ей, 4 He-II состоит из двух полностью взаимопроникающих жидкостей – нормальной и сверхтекучей; последняя является идеальной жидкостью и не испытывает сопротивления при протекании через узкие капилляры. Согласно теории, в 4 He-II существуют необычные температурные волны (второй звук). Объяснение аномалий 4 He-II дается на основе представлений квантовой механики.

Жидкие 3 He и 4 He называются квантовыми жидкостями. 4 He не имеет ядерного спина, а у 3 He он равен 1/2 в единицах постоянной Планка. Удивительное различие состоит также в том, что 4 He-II – сверхтекучая жидкость, а сопротивление текучести 3 He резко возрастает с уменьшением температуры. Гелий-3 становится, однако, сверхтекучим при температуре примерно 0,001 К, как было открыто в 1972. Это явление аналогично явлению сверхпроводимости, которая рассматривается как сверхтекучесть «электронной жидкости» (см. также СВЕРХПРОВОДИМОСТЬ). В 3 He обнаружен новый тип звука при очень низких температурах, нулевой звук, предсказанный Л.Д.Ландау и относящийся к волнам, характерным для ионизованных газов (плазмы). См. также СВЕРХТЕКУЧЕСТЬ.

Растворы изотопов гелия также необычны. Ниже 0,9 K раствор спонтанно делится на две части, образуя раствор, обогащенный 3 He и текущий над раствором, обогащенным 4 He. 6% 3 He растворимы в 4 He, но 4 He не растворяется в 3 He при абсолютном нуле.

Твердый гелий можно получить сжатием 4 He до 25 атм или 3 He до 34 атм при низких температурах. Твердый гелий – кристаллическое прозрачное вещество, причем границу между твердым и жидким гелием трудно обнаружить, так как их рефракции близки.

Применение.

Гелий является важным источником низких температур. При температуре жидкого гелия тепловое движение атомов и свободных электронов в твердых телах практически отсутствует, что позволяет изучать многие новые явления, например сверхпроводимость в твердом состоянии. Газообразный гелий используют как легкий газ для наполнения воздушных шаров. Поскольку он негорюч, его добавляют к водороду для заполнения оболочки дирижабля. Так как гелий хуже растворим в крови, чем азот, большие количества гелия применяют в дыхательных смесях для работ под давлением, например при морских погружениях, при создании подводных тоннелей и сооружений. При использовании гелия декомпрессия (выделение растворенного газа из крови) у водолаза протекает менее болезненно, менее вероятна кессонная болезнь, исключается такое явление, как азотный наркоз, – постоянный и опасный спутник работы водолаза. Смеси He–O2 применяют, благодаря их низкой вязкости, для снятия приступов астмы и при различных заболеваниях дыхательных путей.

Гелий используют как инертную среду для дуговой сварки, особенно магния и его сплавов, при получении Si, Ge, Ti и Zr, для охлаждения ядерных реакторов. Другие применения гелия – для газовой смазки подшипников, в счетчиках нейтронов (гелий-3), газовых термометрах, рентгеновской спектроскопии, для хранения пищи, в переключателях высокого напряжения. В смеси с другими благородными газами гелий используется в наружной неоновой рекламе (в газоразрядных трубках). Жидкий гелий выгоден для охлаждения магнитных сверхпроводников, ускорителей частиц и других устройств. Необычным применением гелия в качестве хладагента является процесс непрерывного смешения 3 He и 4 He для создания и поддержания температур ниже 0,005 K.

Гелий — практически инертный химический элемент. Возглавляет группу изотопов: 4 He ( водорода). Однако на Земле гелий редок. Практически весь гелий Вселенной образовался в первые несколько минут после Большого Взрыва, во время первичного нуклеосинтеза. В современной Вселенной почти весь новый гелий образуется в результате термоядерного синтеза из водорода в недрах звёзд. На Земле он образуется в результате альфа-распада тяжёлых элементов (альфа-частицы, излучаемые при земной коры, захватывается природным газом, концентрация гелия в котором может достигать 7 % от объёма. Гелий добывается из природного газа процессом низкотемпературного разделения — так называемой фракционной перегонкой (см. Фракционная дистилляция в статье

Открытие гелия началось с 1868 года, когда при наблюдении солнечного затмения два астронома — француз 1871 году Локьер объяснил её происхождение присутствием на Солнце нового элемента. В 1895 году англичанин У. Рамзай выделил из природной радиоактивной руды Происхождение названия

Локьер дал гелию имя, отражающее историю его открытия (от греч. Ήλιο (Helio) — солнце). Поскольку Локьер полагал, что обнаруженный элемент — металл, он использовал в латинском названии элемента окончание «-ium» (соответствует русскому окончанию «-ий»), которое обычно употребляется в названии металлов. Таким образом, гелий задолго до своего открытия на Земле получил имя, которое окончанием отличает его от названий остальных инертных газов.

Получение

В настоящее время гелий выделяют из природных гелийсодержащих газов, пользуясь методом глубокого охлаждения (гелий сжижается труднее всех остальных газов). Месторождения таких газов имеются в России, США, Канаде, Китае, Алжире, Польше и Катаре. Гелий содержится также в некоторых минералах (монаците, Свойства в газовой фазе

Гелий —— наименее химически активный элемент восьмой группы (инертные газы) таблицы Менделеева. Многие соединения гелия существуют только в газовой фазе в виде так называемых эксимерных молекул, у которых устойчивы возбужденные электронные состояния и неустойчиво основное состояние. Гелий образует двухатомные молекулы He2, фторид HeF, хлорид HeCl (эксимерные молекулы образуются при действии электрического разряда или УФ излучения на смесь гелия газа и фтора (хлора)). При стандартных температуре и давлении гелий ведёт себя практически как идеальный газ. Фактически при всех условиях гелий моноатомный. Он обладает теплопроводностью большей, чем у других газов, кроме водорода, и его удельная теплоёмкость чрезвычайно высока. Гелий также менее растворим в воде, чем любой другой известный газ. Скорость его диффузии сквозь твёрдые материалы в три раза выше, чем у воздуха, и приблизительно на 65 % выше, чем у водорода. Примерный диаметр молекулы He2 — 0,20 коэффициент Джоуля-Томсона при нормальной температуре среды, то есть он нагревается, когда ему дают возможность свободно увеличиваться в объёме. Только ниже температуры инверсии Джоуля-Томсона (приблизительно 40 К при нормальном давлении) он остывает во время свободного расширения. После охлаждения ниже этой температуры, гелий может быть превращён в жидкость при расширительном охлаждении. Такое охлаждение производится при помощи Свойства конденсированных фаз

Гелий используют для создания инертной и защитной атмосферы при дирижаблей и аэростатов, как компонент активной среды гелий-неоновых лазеров. Гелий-3 используется для наполнения газовых нейтронных детекторов, как рабочее тело гелиевых жидкость на Земле, — уникальный хладагент в экспериментальной физике, позволяющий использовать электрической сверхпроводимости). Благодаря тому, что гелий очень плохо растворим в крови, его используют как составную часть газовой смеси, подаваемой для дыхания азота воздуха на гелий предотвращает воздуха содержащийся в нём азот под повышенным давлением растворяется в крови, а при падении давления выделяется из неё в виде пузырьков, закупоривающих мелкие сосуды).


Гелий — второй порядковый элемент периодической системы химических элементов Д. И. Менделеева, с атомным номером 2. Расположен в главной подгруппе восьмой группы, первом периоде периодической системы. Возглавляет группу инертных газов в периодической таблице. Обозначается символом He ( Helium ). Простое вещество гелий (CAS-номер: 7440-59-7) — инертный одноатомный газ без цвета, вкуса и запаха.

Гелий — один из наиболее распространённых элементов во Вселенной, он занимает второе место после водорода. Также гелий является вторым по лёгкости (после водорода) химическим элементом.

Гелий добывается из природного газа процессом низкотемпературного разделения — так называемой фракционной перегонкой (см. Фракционная дистилляция в статье Дистилляция).

История открытия Гелия


18 августа 1868 года французский учёный Пьер Жансен, находясь во время полного солнечного затмения в индийском городе Гунтур, впервые исследовал хромосферу Солнца. Жансену удалось настроить спектроскоп таким образом, чтобы спектр короны Солнца можно было наблюдать не только при затмении, но и в обычные дни. На следующий же день спектроскопия солнечных протуберанцев наряду с линиями водорода — синей, зелено-голубой и красной — выявила очень яркую жёлтую линию, первоначально принятую Жансеном и другими наблюдавшими её астрономами за линию D натрия. Жансен немедленно написал об этом во Французскую Академию наук. Впоследствии было установлено, что ярко-жёлтая линия в солнечном спектре не совпадает с линией натрия и не принадлежит ни одному из ранее известных химических элементов.

Спустя два месяца 20 октября английский астроном Норман Локьер, не зная о разработках французского коллеги, также провёл исследования солнечного спектра. Обнаружив неизвестную жёлтую линию с длиной волны 588 нм (более точно 587,56 нм), он обозначил её D3, так как она была очень близко расположена к Фраунгоферовым линиям D1 (589,59 нм) и D2 (588,99 нм) натрия. Спустя два года Локьер, совместно с английским химиком Эдвардом Франкландом, в сотрудничестве с которым он работал, предложил дать новому элементу название «гелий» ( ήλιος — «солнце»).

Интересно, что письма Жансена и Локьера пришли во Французскую Академию наук в один день — 24 октября 1868 года, однако письмо Локьера, написанное им четырьмя днями ранее, пришло на несколько часов раньше. На следующий день оба письма были зачитаны на заседании Академии. В честь нового метода исследования протуберанцев Французская академия решила отчеканить медаль. На одной строне медали были выбиты портреты Жансена и Локьера над скрещенными ветвями лавра, а на другой — изображение мифического бога Солнца Аполлона, правящего в колеснице четверкой коней, скачущей во весь опор

Шведские химики П. Клеве и Н. Ленгле смогли выделить из клевеита достаточно газа, чтобы установить атомный вес нового элемента.

В 1896 году Генрих Кайзер, Зигберт Фридлендер, а еще через два года Эдвард Бэли окончательно доказали присутствие гелия в атмосфере.

Еще до Рамзая гелий выделил также американский химик Фрэнсис Хиллебранд, однако он ошибочно полагал, что получил азот и в письме Рамзаю признал за ним приоритет открытия.

Исследуя различные вещества и минералы, Рамзай обнаружил, что гелий в них сопутствует урану и торию. Но только значительно позже, в 1906 году, Резерфорд и Ройдс установили, что альфа-частицы радиоактивных элементов представляют собой ядра гелия. Эти исследования положили начало современной теории строения атома.


Только в 1908 году нидерландскому физику Хейке Камерлинг-Оннесу удалось получить жидкий гелий дросселированием (Эффект Джоуля — Томсона), после того как как газ был предварительно охлажден в кипевшем под вакуумом жидком водороде. Попытки получить твёрдый гелий еще долго оставались безуспешными даже при температуре в 0,71 K, которых достиг ученик Камерлинг-Оннеса — немецкий физик Виллем Хендрик Кеезом. Лишь в 1926 году, применив давление выше 35 атм и охладив сжатый гелий в кипящем под разрежением жидком гелии, ему удалось выделить кристаллы.

В 1932 году Кеезом исследовал характер изменения теплоёмкости жидкого гелия с температурой. Он обнаружил, что около 2,19 K медленный и плавный подъём теплоёмкости сменяется резким падением и кривая теплоёмкости приобретает форму греческой буквы λ (лямбда). Отсюда температуре, при которой происходит скачок теплоёмкости, присвоено условное название «λ-точка». Более точное значение температуры в этой точке, установленное позднее — 2,172 K. В λ-точке происходят глубокие и скачкообразные изменения фундаментальных свойств жидкого гелия — одна фаза жидкого гелия сменяется в этой точке на другую, причем без выделения скрытой теплоты; имеет место фазовый переход II рода. Выше температуры λ-точки существует так называемый гелий-I, а ниже её — гелий-II.

В 1938 году советский физик Пётр Леонидович Капица открыл явление сверхтекучести жидкого гелия-II, которое заключается в резком снижении коэффициента вязкости, вследствие чего гелий течёт практически без трения. Вот что он писал в одном из своих докладов про открытие этого явления:
… такое количество тепла, которое фактически переносилось, лежит за пределами физических возможностей, что тело ни по каким физическим законам не может переносить больше тепла, чем его тепловая энергия, помноженная на скорость звука. С помощью обычного механизма теплопроводности тепло не могло переноситься в таком масштабе, как это наблюдалось. Надо было искать другое объяснение.
И вместо того, чтобы объяснить перенос тепла теплопроводностью, то есть передачей энергии от одного атома к другому, можно было объяснить его более тривиально — конвекцией, переносом тепла в самой материи. Не происходит ли дело так, что нагретый гелий движется вверх, а холодный опускается вниз, благодаря разности скоростей возникают конвекционные токи, и таким образом происходит перенос тепла. Но для этого надо было предположить, что гелий при своем движении течет без всякого сопротивления. У нас уже был случай, когда электричество двигалось без всякого сопротивления по проводнику. И я решил, что гелий так же движется без всякого сопротивления, что он является не сверхтеплопроводным веществом, а сверхтекучим. …
… Если вязкость воды равняется 10 −2 П, то это в миллиард раз более текучая жидкость, чем вода …

Происхождение названия

От ἥλιος — «Солнце» (Гелиос). Любопытен тот факт, что в названии элемента было использовано характерное для металлов окончание «-ий» (по лат. «-um» — «Helium»), так как Локьер предполагал, что открытый им элемент является металлом. По аналогии с другими благородными газами логично было бы дать ему имя «гелион» («Helion»). В современной науке название «гелион» закрепилось за ядром лёгкого изотопа гелия — гелия-3.

Распространённость

Во Вселенной

Гелий занимает второе место по распространённости во Вселенной после водорода — около 23 % по массе . Однако на Земле гелий редок. Практически весь гелий Вселенной образовался в первые несколько минут после Большого Взрыва, во время первичного нуклеосинтеза. В современной Вселенной почти весь новый гелий образуется в результате термоядерного синтеза из водорода в недрах звёзд (см. протон-протонный цикл, углеродно-азотный цикл). На Земле он образуется в результате альфа-распада тяжёлых элементов (альфа-частицы, излучаемые при альфа-распаде — это ядра гелия-4). Часть гелия, возникшего при альфа-распаде и просачивающегося сквозь породы земной коры, захватывается природным газом, концентрация гелия в котором может достигать 7 % от объёма и выше.

Земная кора

В рамках восьмой группы гелий по содержанию в земной коре занимает второе место (после аргона).

Содержание гелия в атмосфере (образуется в результате распада Ac, Th, U) — 5,27·10 −4 % по объёму, 7,24·10 −5 % по массе. Запасы гелия в атмосфере, литосфере и гидросфере оцениваются в 5·10 14 м³. Гелионосные природные газы содержат как правило до 2 % гелия по объёму. Исключительно редко встречаются скопления газов, гелиеносность которых достигает 8 — 16 %.

Среднее содержание гелия в земном веществе — 3 г/т. Наибольшая концентрация гелия наблюдается в минералах, содержащих уран, торий и самарий: клевеите, фергюсоните, самарските, гадолините, монаците (монацитовые пески в Индии и Бразилии), торианите. Содержание гелия в этих минералах составляет 0,8 — 3,5 л/кг, а в торианите оно достигает 10,5 л/кг.

Определение Гелия

Качественно гелий определяют с помощью анализа спектров испускания (характеристические линии 587,56 нм и 388,86 нм), количественно — масс-спектрометрическими и хроматографическими методами анализа, а также методами, основанными на измерении физических свойств (плотности, теплопроводности и др.).

Физические свойства Гелия

Гелий — практически инертный химический элемент.

Простое вещество гелий — нетоксично, не имеет цвета, запаха и вкуса. При нормальных условиях представляет собой одноатомный газ. Его точка кипения (T = 4,215 K для 4 He) наименьшая среди всех простых веществ; твёрдый гелий получен лишь при давлениях выше 25 атмосфер — при атмосферном давлении он не переходит в твёрдую фазу даже при крайне близких к абсолютному нулю температурах. Экстремальные условия также необходимы для создания немногочисленных химических соединений гелия, все они нестабильны при нормальных условиях.

Свойства в газовой фазе


При нормальных условиях гелий ведёт себя практически как идеальный газ. Фактически при всех условиях гелий моноатомный. Плотность 0,17847 кг/м³. Он обладает теплопроводностью (0,1437 Вт/(м·К) при н.у.) большей, чем у других газов, кроме водорода, и его удельная теплоёмкость чрезвычайно высока (ср = 5,23 кДж/(кг·К) при н.у., для сравнения — 14,23 кДж/(кг·К) для Н2).


При пропускании тока через заполненную гелием трубку наблюдаются разряды различных цветов, зависящих главным образом от давления газа в трубке. Обычно видимый свет спектра гелия имеет жёлтую окраску. По мере уменьшения давления происходит смена цветов — розового, оранжевого, жёлтого, ярко-жёлтого, жёлто-зелёного и зелёного. Это связано с присутствием в спектре гелия нескольких серий линий, расположенных в диапазоне между инфракрасной и ультрафиолетовой частями спектра, важнейшие линии гелия в видимой части спектра лежат между 706,52 нм и 447,14 нм. Уменьшение давления приводит к увеличению длины свободного пробега электрона, то есть к возрастанию его энергии при столкновении с атомами гелия. Это приводит к переводу атомов в возбуждённое состояние с большей энергией, в результате чего и происходит смещение спектральных линий от инфракрасного к ультрафиолетовому краю.

Гелий менее растворим в воде, чем любой другой известный газ. В 1 л воды при 20 °C растворяется около 8,8 мл (9,78 при 0 °C, 10,10 при 80 °C), в этаноле — 2,8 (15 °C), 3,2 (25 °C). Скорость его диффузии сквозь твёрдые материалы в три раза выше, чем у воздуха, и приблизительно на 65 % выше, чем у водорода.

Коэффициент преломления гелия ближе к единице, чем у любого другого газа. Этот газ имеет отрицательный коэффициент Джоуля-Томсона при нормальной температуре среды, то есть он нагревается, когда ему дают возможность свободно увеличиваться в объёме. Только ниже температуры инверсии Джоуля-Томсона (приблизительно 40 К при нормальном давлении) он остывает во время свободного расширения. После охлаждения ниже этой температуры гелий может быть превращён в жидкость при расширительном охлаждении. Такое охлаждение производится при помощи детандера.

Свойства конденсированных фаз

Химические свойства Гелия

Гелий — наименее химически активный элемент восьмой группы (Инертные газы) таблицы Менделеева. Многие соединения гелия существуют только в газовой фазе в виде так называемых эксимерных молекул, у которых устойчивы возбуждённые электронные состояния и неустойчиво основное состояние. Гелий образует двухатомные молекулы He2, фторид HeF, хлорид HeCl (эксимерные молекулы образуются при действии электрического разряда или УФ излучения на смесь гелия газа и фтора (хлора)).

Известно химическое соединение гелия LiHe. (возможно, имелось ввиду соединение LiHe7)

Изотопы Гелия

Природный гелий состоит из двух стабильных изотопов: 4 He (изотопная распространённость — 99,99986 %) и гораздо более редкого 3 He (0,00014 %; содержание гелия-3 в разных природных источниках может варьировать в довольно широких пределах). Известны ещё шесть искусственных радиоактивных изотопов гелия.

Получение Гелия

Промышленность — химический элемент гелий получают из гелийсодержащих природных газов (в настоящее время эксплуатируются главным образом месторождения, содержащие > 0,1 % гелия). От других газов гелий отделяют методом глубокого охлаждения, используя то, что он сжижается труднее всех остальных газов. Охлаждение производят дросселированием в несколько стадий очищая его CO2 и углеводородов. В результате получается смесь гелия, неона и водорода. Сырой гелий (70-90 % по объёму гелий) очищают от водорода (4-5 %) с помощью CuO при 650—800 К. Окончательная очистка достигается охлаждением сырого гелий кипящим под вакуумом N2 и адсорбцией примесей на активном угле в адсорберах, также охлаждаемых жидким N2. Производят гелий технической чистоты (99,80 % по объёму гелий) и высокой чистоты (99,985 %).

В России газообразный гелий получают из природного и нефтяного газов. В настоящее время гелий извлекается на гелиевом заводе ООО «Газпром добыча Оренбург» в Оренбурге из газа с низким содержанием гелия (до 0,055 % об.), поэтому российский гелий имеет высокую себестоимость. Актуальной проблемой является освоение и комплексная переработка природных газов крупных месторождений Восточной Сибири с высоким содержанием гелия (от 0,15 до 1 %), что позволит намного снизить его себестоимость.

По производству гелия лидируют следующие страны мира: США (140 млн м³ в год), затем — Алжир (16 млн м³). Россия занимает третье место в мире — 6 млн м³ в год. Мировые запасы гелия составляют 45,6 млрд м³. Крупные месторождения находятся в США(45 % от мировых ресурсов), далее идут Россия (32 %), Алжир (7 %), Канада (7 %) и Китай (4 %).

Транспортировка гелия

Для транспортировки газообразного гелия используются стальные баллоны (ГОСТ 949-73) коричневого цвета, помещаемые в специализированные контейнеры. Для перевозки можно использовать все виды транспорта при соблюдении соответствующих правил перевозки газов.

Для перевозки жидкого гелия применяются специальные транспортные сосуды типа СТГ-10, СТГ-25 и СТГ-40 светло-серого цвета объёмом 10, 25 и 40 литров, соответственно. При выполнении определённых правил транспортировки может использоваться железнодорожный, автомобильный и другие виды транспорта. Сосуды с жидким гелием обязательно должны храниться в вертикальном положении.

Применение гелия

Биологическая роль гелия

Гелий не играет никакой биологической роли.

Физиологическое действие

Инертные газы обладают физиологическим действием, которое проявляется в их наркотическом воздействии на организм. Наркотическое воздействие гелия (и неона) при нормальном давлении в опытах не регистрируется, в то время как при повышении давления раньше возникают симптомы «нервного синдрома высокого давления» (НСВД)

Интересные факты

В 2000 г. цены частных компаний на газообразный гелий находились в пределах 1,5 — 1,8 $/м³
В 2009 году цены на газообразный гелий находились в пределах 1.800-2.500 рублей за 6 м³ (40-литровый баллон) (Санкт-Петербург).

Дополнительная информация по гелию

Гелий-3 — лёгкий, нерадиоактивный изотоп гелия.
Эффект Померанчука — аномальный характер плавления (или затвердевания) лёгкого изотопа гелия 3 He

Гелий, Helium, Не (2)
В 1868 г. французский астроном Жансен наблюдал в Индии полное солнечное затмение и спектроскопически исследовал хромосферу солнца. Он обнаружил в спектре солнца яркую желтую линию, обозначенную им D3, которая не совпадала с желтой линией D натрия. Одновременно с ним эту же линию в спектре солнца увидел английский астроном Локьер, который понял, что она принадлежит неизвестному элементу. Локьер совместно с Франкландом, у которого он тогда работал, решил назвать новый элемент гелием (от греч.- гелиос, солнце). Затем новая желтая линия была обнаружена другими исследователями в спектрах «земных» продуктов; так, в 1881 г. итальянец Пальмиери обнаружил ее при исследовании пробы газа, отобранного в кратере Везувия.

Периодическая система химических элементов Менделеева

Классификация хим. элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона/

198095, г.Санкт-Петербург, ул.Швецова, д.23, лит.Б, пом.7-Н, схема проезда

Гелий – солнечный газ

Формула гелия

Гелий химический элемент, атомный номер 2, атомная масса 4,0026, относится к инертным газам, без цвета и запаха. Объемное содержание гелия в воздухе 0,00052%. Гелий значительно легче воздуха, плотность 0,1785 кг/м 3 при нулевой температуре и нормальном давлении. Температура кипения -268,9°С. Потенциал ионизации 25,4 В. Бесцветный, неядовитый, негорючий и невзрывоопасный газ, хорошо диффундирует через твердые тела. Химическая формула - He.

Содержание

Впервые гелий был обнаружен во время солнечного затмения 1868 г. астрономы впервые применили спектроскопию для исследования атмосферы Солнца.

Вопрос о том, какому веществу отвечает линия D3, долго еще оставался открытым. Было лишь установлено, что в спектрах элементов, известных на нашей планете, пока не обнаружено спектральной линии, подобной ярко-желтой линии D3. Локьер ошибочно считал, что раскаленный газ, излучение которого дает таинственную линию D3, является модификацией водорода, не встречающейся на Земле.

В августе 1871 г. Кельвин заявил, что линия D3 до сих пор не идентифицирована с каким-либо земным элементом. Возможно, что она принадлежит новому веществу, которому Локьер и Жансен предложили дать название гелий (от греческого слова гелиос - солнце).

В 1895 г. Сэр Уильям Рамзай (Sir William Ramsay) изучал газ, выделенный им из минерала клевеита, и в гейслеровой трубке неожиданно обнаружил яркую желтую линию. Выдающийся спектроскопист того времени Уильям Крукс (William Crookes) определил длину волны новой линии (5874,9 А) и установил, что это линия D3, на этом основании Рамзай сообщил (23 марта 1895 г.) об открытии им гелия на Земле.

Такова история открытия важнейшего представителя группы инертных газов, который сначала был обнаружен в солнечной атмосфере, а затем (через 27 лет) - на Земле.

Вскоре гелий был обнаружен в других минералах и горных породах, содержащих уран. Наличие гелия в земной коре позволило сделать вывод о его содержании в атмосфере, хотя многие ученые утверждали, что этот легкий газ, выделяющийся из земной коры, полностью уносится из атмосферы в космическое пространство. Вскоре Генрих Кайзер, а затем Зигберт Фридлендер (1896 г.), а также Эдвард Бэли в результате анализа первой выпаренной фракции жидкого воздуха доказали его присутствие в атмосфере.

Способы получения гелия

Гелий получают из гелийсодержащих природных газов, минералов и воздуха. Об этом мы писали в статье о производстве гелия, поэтому здесь не будем повторять написанное.

В промышленности гелий применяют в меньших масштабах, чем газ аргон. Чаще всего его используют:

  • хладагент – охлаждение сверхпроводящих магнитов в медицинских сканерах МРТ;
  • металлургия – выплавка чистых металлов;
  • подводно-спасательное дело – в составе дыхательных смесей;
  • сварочное производство – защитный газ;
  • в индустрии развлечений – заполнение шариков.

Применение гелия в сварке

В связи с тем, что He примерно в 10 раз легче Ar, что понижает эффективность защиту сварочной ванны при сварке в нижнем положении, но способствует лучшей защите при сварке в потолочном положении, поэтому расход гелия при сварке увеличивается в 1,5-3 раза.

Применяют его в основном при сварке неплавящимся электродом химически чистых и активных материалов и сплавов, а также сплавов на основе алюминия и магния.

Применение гелия в сварке

Гелий становится предпочтительнее аргона при необходимости дополнительной защиты швов при сварке в потолочном положении. Особенно при сварке титановых сплавов и других химически активных металлов, поглощающих азот и кислород не только в расплавленном состоянии, но и в твердом при нагреве выше определенной температуры.

Однако не только защитные свойства Ar и He различны. Различными являются и характеристики дуги в этих газах. Так, при одинаковой силе тока напряжение дуги в гелии значительно выше, чем дуги в аргоне. Такая дуга имеет большую проплавляющую способность и менее концентрирована (создает иную форму проплавления, более равномерную, в то время как дуга в аргоне при сварке, например, титановых сплавов вольфрамовым электродом дает большое проплавление в центре и значительно меньшее по краям ванны). Перепад напряжения в столбе дуги в гелии больше, чем в аргоне, поэтому изменение длины дуги заметнее сказывается на напряжении и общей ее теплоэффективности. Для более развернутой информации обязательно прочитайте статью о сварочной дуге в инертных газах.

Форма шва и проплавление для различных защитных газов

Форма шва и проплавление для различных защитных газов

В зависимости от применения того или иного газа меняется и поверхностное натяжение на границе металл-газовая фаза. Так, для хромоникелевых сталей аустенитного класса поверхностное натяжение жидкого металла при сварке в He заметно меньше, чем в Ar. Это сказывается и на формировании поверхности швов. Более плавные переходы от шва к основному металлу, при сварке в гелии, имеют место и для других металлов, в частности титановых сплавов и в ряде случаев оказывают влияние на некоторые характеристики работоспособности сварных соединений.

Чаще всего He используют для образования инертных газовых смесей c Ar. Обладая большей плотностью, чем гелий, такие смеси лучше защищают металл сварочной ванны от воздуха и увеличивают производительность сварки в целом. В смеси в полной мере реализуются преимущества обоих газов:

  • аргон - обеспечивает стабильность горения дуги;
  • гелий - обеспечивает высокую степень проплавления.

Опасность и вред гелия

Гелий не относится к ядовитым и токсичным газам, поэтому в малых количествах он не является опасным. Он может оказать действие как удушающий газ (асфиксант) только в том случае, если в результате утечки уровень кислорода окажется ниже допустимой концентрации. Но утечку гелия очень легко выявить т.к. за счет сжимания голосовых связок у человека меняется голос. Мы все знаем данный комический и мультяшный эффект, когда при вдыхании гелия из шарика голос становится более высоким.

Гелий является опасным, только в случае снижения уровня кислорода в окружающей среде ниже допустимой концентрации.

Хранение и траспортировка гелия

Транспортируют и хранят гелий в газообразном состоянии в стальных баллонах при давлении 15 МПа или в сжиженном состоянии при давлении менее 0,2 МПа.

Баллоны с гелием окрашены в коричневый цвет с надписью белыми буквами «ГЕЛИЙ». Баллоны должны соответствовать требованиям ГОСТ 949.

Баллон с гелием

Методы определения доли примесей и условий поставки регламентируются ГОСТ 20461.

Читайте также: