Гидролиз солей с металлами

Обновлено: 21.09.2024

Пример 1 .Магний опустили в раствор хлорида магния, наблюдали образование белого осадка и пузырьков газа, без цвета и запаха.

1 этап. Гидролиз хлорида магния по катиону

Mg 2+ + H 2 O → MgOH + + H +

2 H + + Mg 0 → Mg 2+ + H 2

Mg 0 + MgCl 2 + 2 H 2 O →2 MgOHCl ↓ + H 2

Пример 2. Алюминий опустили в раствор хлорида алюминия

1 этап. Гидролиз хлорида алюминия по катиону

Al 3+ + H 2 O → AlOH 2+ + H +

2 H + + Al 0 → Al 3+ + H 2

2 Al 0 + 4 AlCl 3 + 6 H 2 O →6 AlOHCl 2 ↓ + 3 H 2

Б) Взаимодействие металла и соли другого металла, подвергающейся гидролизу по катиону с образованием основной соли металла из гидролизующейся соли, и газообразного водорода

Ме + соль (другого Ме ) = основная соль( Ме ) + средняя соль ( Ме ) + Ме ↓+ Н2 ↑

Пример 3. Магниевый порошок опустили в раствор хлорида меди ( II )

С u 2+ + H 2 O → CuOH + + H +

3 этап. Mg 0 + С u 2+ → Cu o ↓ + Mg 2+

3 Mg 0 + 4С uCl 2 + 2 H 2 O →2 CuOHCl ↓ + H 2 ↑+ 2С u ↓+3 MgCl 2

Пример 4. Цинковые опилки опустили в раствор хлорида железа( II )

1 этап. Гидролиз хлорида железа( II ) по катиону

Fe 2+ + H 2 O → FeOH + + H +

2 H + + Zn 0 → Zn 2+ + H 2

3 этап. Zn 0 + Fe 2+ → Zn 2+ + Fe ↓

3 Zn 0 + 4 FeCl 2 + 2 H 2 O →2 FeOHCl ↓ + H 2 ↑+ 2 Fe ↓+3 ZnCl 2

3 Mg 0 + 4 ZnCl 2 + 2 H 2 O → 2 ZnOHCl ↓ + H 2 ↑+2 Zn ↓+3 MgCl 2

Mg 0 + 2 NH 4 Cl + 2 H 2 O → 2 NH 3* H 2 O + H 2 ↑+2 Zn ↓+ MgCl 2

4 Mg 0 + 4 FeCl 3 + 2 H 2 O →2 FeOHCl 2 ↓ + H 2 ↑+ 2 Fe ↓+4 MgCl 2

В) Взаимодействие металла с продуктами гидролиза по аниону

Ме + соль (гидролиз по An n - )= [комплексная соль] + кислая соль + Н2 ↑

Амфот с ионом амф ме из соли

Пример 5. Алюминий опустили в раствор карбоната натрия

1 этап. Гидролиз карбоната натрия по аниону

CO 3 2- + H 2 O → HCO 3 2- + OH - среда щелочная

Примеры :

Г) Полный необратимый гидролиз

Все РИО проверяйте по ТР. Если для продуктов реакции стоит «-» , следовательно, продукты реакции подверглись полному необратимому гидролизу

Д) «полуполный гидролиз»

Идет между сульфатами, гидролизующимися по катиону и карбонатами и сульфитами, гидролизующимися по аниону. В результате образуется основные карбонаты и сульфиты, оксид углерода ( IV ) или оксид серы ( IV ), сульфат

Пример 6

Примеры заданий с сайта «Решу ЕГЭ»

(Красным выделения химические уравнения с гидролизом)

С3.задание 32. Вариант 4075 Гидрокарбонат на­трия прокалили. По­лу­чен­ное после про­ка­ли­ва­ния твёрдое ве­ще­ство рас­тво­ри­ли в воде и сме­ша­ли с рас­тво­ром бро­ми­да железа (III), в ре­зуль­та­те чего выпал бурый оса­док и об­ра­зо­вал­ся газ. Оса­док от­де­ли­ли и прокалили. Твёрдый оста­ток рас­тво­ри­ли в иодо­во­до­род­ной кислоте. На­пи­ши­те урав­не­ния четырёх опи­сан­ных реакций.

С3. Решу ЕГЭ . Задание 4556

Иодоводородную кис­ло­ту ней­тра­ли­зо­ва­ли гид­ро­кар­бо­на­том калия. По­лу­чен­ная соль про­ре­а­ги­ро­ва­ла с раствором, со­дер­жа­щим ди­хро­мат калия и сер­ную кислоту. При вза­и­мо­дей­ствии об­ра­зо­вав­ше­го­ся про­сто­го ве­ще­ства с алю­ми­ни­ем по­лу­чи­ли соль. Эту соль рас­тво­ри­ли в воде и сме­ша­ли с рас­тво­ром суль­фи­да калия, в ре­зуль­та­те чего об­ра­зо­вал­ся оса­док и вы­де­лил­ся газ.

В,Н. Доронкин, АГ Бережная, ТВ Сажнева, ВА Февралева «Химия. Задания высокого уровня сложности»

7. Вещество, полученное на аноде при электролизе раствора йодида натрия с инертными электродами, прореагировало с сероводородом. Образовавшееся твердое вещество сплавили с алюминием и продукт растворили в воде. Составьте уравнения четырех описанных реакций.

21. К раствору сульфата алюминия добавили избыток раствора гидроксида натрия. В полученный раствор небольшими порциями прибавили соляную кислоту. При этом наблюдали образование объемного осадка белого цвета, который растворился при дальнейшем приливании кислоты. В образовавшийся раствор прилили раствор карбоната натрия. Составьте уравнения четырех описанных реакций.

46. Вещество, выделившееся на катоде при электролизе расплава хлорида натрия, сожгли в кислороде. Полученный продукт поместили в газометр, наполненный углекислым газом. Образовавшееся вещество добавили в раствор хлорида аммония и раствор нагрели . Составьте уравнения четырех описанных реакций.

163. К раствору сульфата меди ( II ) прилили избыток раствора соды. Выпавший осадок прокалили, а полученный продукт нагрели в атмосфере водорода. Полученный продукт растворили в концентрированной азотной кислоте. Составьте уравнения четырех описанных реакций.

Гидролиз

Материалы из методички: Сборник задач по теоретическим основам химии для студентов заочно-дистанционного отделения / Барботина Н.Н., К.К. Власенко, Щербаков В.В. – М.: РХТУ им. Д.И. Менделеева, 2007. -155 с.

Теоретическое введение

Примеры обратимого гидролиза

Случаи необратимого гидролиза

Константа и степень гидролиза

Примеры решения задач

Задачи для самостоятельного решения

Теоретическое введение

Гидролиз – обменная реакция взаимодействия растворенного вещества (например, соли) с водой. Гидролиз происходит в тех случаях, когда ионы соли способны образовывать с Н + и ОН — ионами воды малодиссоциированные электролиты.

Примеры обратимого гидролиза

Соли, образованные сильным основанием и слабой кислотой, например , CH3COONa, Na2CO3, Na2S, KCN гидролизуются по аниону:

СН3СООNa + НОН ↔ СН3СООН + NaОН (рН > 7)

Гидролиз солей многоосновных кислот протекает ступенчато. 1 ступень:

CO3 2– + HOH ↔ HCO3 – + OH – ,

или в молекулярной форме:

Продукты гидролиза по первой ступени подавляют вторую ступень гидролиза, в результате вторая ступень гидролиза протекает незначительно.

Соли, образованные слабым основанием и сильной кислотой, например , NH4Cl, FeCl3, Al2(SO4)3, гидролизуются по катиону:

Соли, образованные многокислотными основаниями, гидролизуются ступенчато, образуя катионы основных солей. 1 ступень:

Fe 3+ + HOH ↔ FeOH 2+ + H + ;

FeCl3 + HOH ↔ FeOHCl2 + HCl

FeOH 2+ + HOH ↔ Fe(OH)2 + + H + ;

FeOHCl2 + HOH ↔ Fe(OH)2Cl+ HCl.

Fe(OH)2 + + HOH ↔ Fe(OH)3 + H + ;

Fe(OH)2Cl + HOH ↔ Fe(OH)3+ HCl.

Гидролиз по второй и, в особенности, по третьей ступени практически не протекает при комнатной температуре.

Соли, образованные слабым основанием и слабой кислотой, например , CH3COONH4, (NH4)2CO3, HCOONH4, гидролизуются и по катиону, и по аниону:

В этом случае реакция раствора зависит от соотношения констант диссоциации образующихся кислот и оснований. Поскольку в рассматриваемом примере константы диссоциации СH3COOH и NH3·H2О при 25 о С примерно равны (Кд(СH3COOH) = 1,75·10 –5 , Кд(NH3·H2О) = 1,76·10 –5 ), то раствор соли будет нейтральным.

При гидролизе HCOONH4 реакция раствора будет слабокислой, поскольку константа диссоциации муравьиной кислоты (Кд(HCOOН) = 1,77·10 –4 ) больше константы диссоциации уксусной кислоты.

Соли, образованные сильным основанием и сильной кислотой (например, NaNO3, KCl, Na2SO4), при растворении в воде гидролизу не подвергаются.

Случаи необратимого гидролиза

Гидролиз некоторых солей, образованных слабыми основаниями и слабыми кислотами, протекает необратимо. Необратимо гидролизуется, например , сульфид алюминия:

Следует отметить, что при смешении растворов солей гидролизующихся по аниону и катиону:

Mg 2+ + HOH ↔ MgOH + + H + ,

CO3 2– + HOH ↔ HCO3 – + OH –

Продукты гидролиза первой соли усиливают гидролиз второй соли и наоборот. В результате при смешении водных растворов сульфата магния и карбоната натрия образуется основной карбонат магния:

Основные карбонаты выпадают в осадок также при смешивании растворов карбонатов щелочных металлов и солей Be 2+ , Co 2+ , Ni 2+ , Zn 2+ , Pb 2+ , Cu 2+ и др.

При сливании растворов соды и солей Fe 2+ , Ca 2+ , Sr 2+ , Ba 2+ реакции протекают следующим образом:

(Ме – Fe, Ca, Sr, Ba)

При взаимодействии солей Аl 3+ , Сr 3+ и Fe 3+ в растворе с сульфидами, карбонатами и сульфитами в результате гидролиза в осадок выпадают не сульфиды, карбонаты и сульфиты этих катионов, а их гидроксиды:

Следует отметить, что катион Fe 3+ производит окисляющее действие на анион S 2- . В результате протекает реакция:

2Fe 3+ + S 2- = 2Fe 2+ + S о .

Например , хлорид железа (III) реагирует с сульфидом калия:

2FeCl3 + 3K2S = 2FeS + S + 6KCl

Некоторые соли в результате гидролиза в воде образуют малорастворимые оксосоединения:

SbCl3 + H2O → SbOCl↓ + 2HCl.

Необратимо гидролизуются в водных растворах галогенангидриды:

Константа и степень гидролиза

Константа Кг и α г степень гидролиза для растворов электролитов связаны между собой уравнением, по форме совпадающим с уравнением Оствальда:

Константа гидролиза Кг может быть рассчитана на основе значений ионного произведения воды Кw и константы диссоциации Кд образующихся в результате гидролиза слабой кислоты или слабого основания:

Примеры решения задач

Задача 1. Вычислите Кг, α г и рН 0,01 М раствора NH4Cl при температуре 298 К, если при указанной температуре Кд(NH3·H2O) = 1,76× 10 -5 .

Решение.

[Н + ] = 2,4·10 –4× 0,01 = 2,4× 10 –6 М.

рН = — lg 2,4× 10 –6 = 5,6.

Задача 2. Определите константу гидролиза, степень гидролиза и рН 0,02 М раствора НСООNa при 298 К, если при указанной температуре Кд(НСООН) = 1,77× 10 –4 .

Решение. Формиат натрия гидролизуется в соответствии с уравнением:

НСОО — + Н2О ↔ НСООН + ОН — .

Поскольку [НСООН] = [ОН – ] и [НСОО – ]·Сисх(НСООNa), то константу гидролиза можно записать следующим образом:

[Н + ] = 10 –14 ÷1,06× 10 –6 = 9,4·10 –9 М

рН = — lg 9,4× 10 –9 = 8

Задача 3. Определите рН 0,006М раствора NaNO2, если α г = 7·10 –3 %.

[ОН – ] = 0,006× 7× 10 –5 = 4,2× 10 –7 М.

[Н + ] = 10 –14 :4,2× 10 –7 = 2,4× 10 –8 М.

рН = — lg 2,4× 10 –8 = 7,6.

Задача 5. Определите рН 0,1 М раствора Na3PO4 при 298 К, если константы диссоциации ортофосфорной кислоты при указанной температуре соответственно равны: Кд.1 = 7,11× 10 — 3 , Kд.2 = 6,34× 10 — 8 , Kд.3 = 4,40× 10 — 13 .

Решение. Na3PO4 диссоциирует в растворе и подвергается ступенчатому гидролизу:

Следует обратить внимание на выбор “нужной” величины Кд.

Kдисс.2 = 6,34·10 — 8

Поскольку Кг,3 < < Kд,2, то гидролиз по третьей ступени практически не идет и в растворе NaH2PO4 преобладает процесс диссоциации ионов H2PO4 — .

Так как Кг,1 > > Кг,2, то можно считать, что соль подвергается гидролизу только по первой ступени.

поскольку [HPO4 2- ] = [OH — ].

рОН = –lg 4,76× 10 — 2 = 1,32 и рН = 14 – 1,32 = 12,68.

Задачи для самостоятельного решения

1. Гидролиз соли Na2SO3 усилится при добавлении в раствор веществ:

а) Н2O б) Na2CO3 в) NaOH
г) H2SO4 д) Na2S е) Na2SO4

2. Напишите уравнение реакции NiCl2 + Na2CO3 + H2O → .

Гидролиз – взаимодействие веществ с водой. Гидролизу подвергаются разные классы неорганических и органических веществ: соли, бинарные соединения, углеводы, жиры, белки, эфиры и другие вещества. Гидролиз солей происходит, когда ионы соли способны образовывать с Н + и ОН — ионами воды малодиссоциированные электролиты.

AAAUAVA0

Гидролиз солей может протекать:

→ обратимо : только небольшая часть частиц исходного вещества гидролизуется.

→ необратимо : практически все частицы исходного вещества гидролизуются.

Для оценки типа гидролиза необходимо рассмотреть соль, как продукт взаимодействия основания и кислоты. Любая соль состоит из металла и кислотного остатка. Металлы соответствует основание или амфотерный гидроксид (с той же степенью окисления, что и в соли), а кислотному остатку — кислота. Например, карбонату натрия Na2CO3 соответствует основание — щелочь NaOH и угольная кислота H2CO3.

Обратимый гидролиз солей

Механизм обратимого гидролиза будет зависеть от состава исходной соли. Можно выделить 4 основных варианта, которые мы рассмотрим на примерах:

1. Соли, образованные сильным основанием и слабой кислотой , гидролизуются ПО АНИОНУ .

CH3COONa + HOH ↔ CH3COOH + NaOH

CH3COO — + Na + + HOH ↔ CH3COOH + Na + + OH —

сокращенное ионное уравнение:

CH3COO — + HOH ↔ CH3COOH + OH —

Таким образом, при гидролизе таких солей в растворе образуется небольшой избыток гидроксид-ионов OH — . Водородный показатель такого раствора рН>7 .

Гидролиз солей многоосновных кислот (H2CO3, H3PO4 и т.п.) протекает ступенчато, с образованием кислых солей:

CO3 2- + HOH ↔ HCO3 2- + OH —

2. Соли, образованные слабым основанием и сильной кислотой , гидролизуются ПО КАТИОНУ . Пример такой соли: NH4Cl, FeCl3, Al2(SO4)3 Уравнение гидролиза:

При этом катион слабого основания притягивает гидроксид-ионы из воды, а в растворе возникает избыток ионов Н + . Водородный показатель такого раствора рН .

Соли, образованные многокислотными основаниями, гидролизуются ступенчато, образуя катионы основных солей. Например:

Fe 3+ + HOH ↔ FeOH 2+ + H +

FeCl3 + HOH ↔ FeOHCl2 + H Cl

FeOH 2+ + HOH ↔ Fe(OH)2 + + H +

FeOHCl2 + HOH ↔ Fe(OH)2Cl+ HCl

Fe(OH)2 + + HOH ↔ Fe(OH)3 + H +

Fe(OH)2Cl + HOH ↔ Fe(OH)3 + HCl

3. Соли, образованные слабым основанием и слабой кислотой , гидролизуются И ПО КАТИОНУ, И ПО АНИОНУ .

В этом случае реакция раствора зависит от соотношения констант диссоциации образующихся кислот и оснований. В большинстве случаев реакция раствора будет примерно нейтральной, рН ≅ 7 . Точное значение рН зависит от относительной силы основания и кислоты.

4. Гидролиз солей, образованных сильным основанием и сильной кислотой , в водных растворах НЕ ИДЕТ .

Сведем вышеописанную информацию в общую таблицу:

табличка

Необратимый гидролиз

Необратимый гидролиз происходит, если при гидролизе выделяется газ, осадок или вода, т.е. вещества, которые при данных условиях не могут взаимодействовать между собой. Необратимый гидролиз является химической реакцией, т.к. реагирующие вещества взаимодействуют практически полностью.

Варианты необратимого гидролиза:

  1. Гидролиз, в который вступают растворимые соли 2х-валентных металлов (Be 2+ , Co 2+ , Ni 2+ , Zn 2+ , Pb 2+ , Cu 2+ и др.) с сильным ионизирующим полем (слабые основания) и растворимые карбонаты/гидрокарбонаты. При этом образуются нерастворимые основные соли (гидроксокарбонаты):

! Исключения: (соли Ca, Sr, Ba и Fe 2+ ) – в этом случае получим обычный обменный процесс:

МеCl2 + Na2CO3 = МеCO3 + 2NaCl (Ме – Fe, Ca, Sr, Ba).

  1. Взаимный гидролиз , протекающий при смешивании двух солей, гидролизованных по катиону и по аниону. Продукты гидролиза по второй ступени усиливают гидролиз по первой ступени и наоборот. Поэтому в таких процессах образуются не просто продукты обменной реакции, а продукты гидролиза (совместный или взаимный гидролиз). Соли металлов со степенью окисления +3 (Al 3+ , Cr 3+ ) и соли летучих кислот (карбонаты, сульфиды, сульфиты) при смешивании в растворе (взаимном гидролизе) образуют осадок гидроксида и газ (H2S, SO2, CO2):

Соли Fe 3+ при взаимодействии с карбонатами также при смешивании в растворе (взаимном гидролизе) образуют осадок гидроксида и газ:

! Исключения: при взаимодействии солей трехвалентного железа с сульфидами реализуется окислительно-восстановительная реакция:

2FeCl3 + 3K2S(изб) = 2FeS + S↓ + 6KCl (при избытке сульфида калия)

При взаимодействии солей трехвалентного железа с сульфитами также реализуется окислительно-восстановительная реакция.

Полные уравнения таких реакций выглядят довольно сложно. Поначалу я рекомендую составлять такие уравнения в 2 этапа: сначала составляем обменную реацию без участия воды, затем разлагаем полученный продукт обменной реакции водой. Сложив эти две реакции и сократив одинаковые вещества, мы получаем полное уравнение необратимого гидролиза.

3. Гидролиз галогенангидридов и тиоангидридов происходит также необратимо. Галогенангидриды разлагаются водой по схеме ионного обмена (H + OH — ) до соответствующих кислот (в случае водного гидролиза) и солей (в случае щелочного гидролиза). Степень окисления центрального элемента и остальных при этом не изменяется!

Галогенангидрид – это соединение, которое получается, если в кислоте ОН-группу заменить на галоген. При гидролизе галогенангидридов кислот образуются соответствующие данным элементам и степеням окисления кислоты и галогеноводородные кислоты.

Галогенангидриды некоторых кислот:

Кислота Галогенангидриды
H2SO4 SO2Cl2
H2SO3 SOCl2
H2CO3 COCl2
H3PO4 POCl3, PCl5

Тиоангидриды (сульфангидриды) — так называются, по аналогии с безводными окислами (ангидридами), сернистые соединения элементов (например, Sb2S3, As2S5, SnS2, CS2 и т. п.).

  1. Необратимый гидролиз бинарных соединений, образованных металлом и неметаллом:
  • сульфиды трехвалентных металлов вводе необратимо гидролизуются до сероводорода и и гидроксида металла:

при этом возможен кислотный гидролиз, в таком случае образуются соль металла и сероводород:

  • гидролиз карбидов приводит к образованию гидроксида металла в водной среде, соли металла в кислой де и соответствующего углеводорода — метана, ацетилена или пропина:
  1. Некоторые соли необратимо гидролизуются с образованием оксосолей :

BiCl3 + H2O = BiOCl + 2HCl,

SbCl3 + H2O = SbOCl + 2HCl.

Алюмокалиевые квасцы:

Количественно гидролиз характеризуется величиной, называемой степенью гидролиза .

Степень гидролиза (α) — отношение количества (концентрации) соли, подвергающейся гидролизу, к общему количеству (концентрации) растворенной соли. В случае необратимого гидролиза α≅1.

Факторы, влияющие на степень гидролиза:

1. Температура

Гидролиз — эндотермическая реакция! Нагревание раствора приводит к интенсификации процесса.

Пример : изменение степени гидролиза 0,01 М CrCl3 в зависимости от температуры:

65

2. Концентрация соли

Чем меньше концентрация соли, тем выше степень ее гидролиза.

Пример : изменение степени гидролиза Na2CO3 в зависимости от температуры:

2

По этой причине для предотвращения нежелательного гидролиза хранить соли рекомендуется в концентрированном виде.

3. Добавление к реакционной смеси кислоты или щелочи

Изменяя концентрация одного из продуктов, можно смещать равновесие реакции гидролиза в ту или иную сторону.

ВВЕДЕНИЕ В ОБЩУЮ ХИМИЮ

Растворы; электролитическая диссоциация; гидролиз солей

  • Почему растворы занимают промежуточное положение между смесями и химическими соединениями.
  • Чем отличается ненасыщенный раствор от разбавленного и насыщенный от концентрированного.
  • Какими правилами нужно руководствоваться при составлении ионных уравнений.
  • Почему при растворении в воде некоторых солей меняется реакция среды (с нейтральной на кислую или щелочную).

В результате изучения данной темы вы научитесь:

  • Составлять уравнения реакции ионного обмена.
  • Составлять полные и сокращенные ионные уравнения гидролиза солей.
  • Предсказывать реакцию среды в растворах солей.
  • Решать задачи на определение концентрации растворов.

Учебные вопросы:

9.1. Растворы и их классификация

Растворами называют гомогенные системы, в которых одно вещество распределено в среде другого (других) веществ.

Растворы состоят из растворителя и растворенного вещества (веществ). Эти понятия условны. Если одним из составляющих растворов веществ является жидкость, а другими — газы или твердые вещества, то растворителем обычно считают жидкость. В других случаях растворителем считают тот компонент, которого больше.

Газообразные, жидкие и твердые растворы

В зависимости от агрегатного состояния растворителя различают газообразные, жидкие и твердые растворы. Газообразным раствором является, например, воздух и другие смеси газов. Морская вода — наиболее распространенный жидкий раствор различных солей и газов в воде. К твердым растворам принадлежат многие металлические сплавы.

Истинные и коллоидные растворы

По степени дисперсности различают истинные и коллоидные растворы (коллоидные системы). При образовании истинных растворов растворенное вещество находится в растворителе в виде атомов, молекул или ионов. Размер частиц в таких растворах равен 10 –7 — 10 –8 см. Коллоидные растворы относятся к гетерогенным системам, в которых частицы одного вещества (дисперсная фаза) равномерно распределены в другом (дисперсионная среда). Размер частиц в дисперсных системах находится в пределах от 10 –7 см до 10 –3 и более см. Следует отметить, что здесь и далее везде мы будем рассматривать истинные растворы.

Ненасыщенные, насыщенные и пересыщенные растворы

Процесс растворения связан с диффузией, т. е. с самопроизвольным распределением частиц одного вещества между частицами другого. Так, процесс растворения твердых веществ, имеющих ионное строение, в жидкостях можно представить следующим образом: под влиянием растворителя разрушается кристаллическая решетка твердого вещества, а ионы распределяются равномерно по всему объему растворителя. Раствор останется ненасыщенным до тех пор, пока в него может переходить еще некоторое количество вещества.

Раствор, в котором вещество при данной температуре больше не растворяется, т.е. раствор, находящийся в состоянии равновесия с твердой фазой растворяемого вещества, называется насыщенным. Растворимость данного вещества равна его концентрации в насыщенном растворе. При строго определенных условиях (температура, растворитель) растворимость есть величина постоянная.

Если растворимость вещества увеличивается с ростом температуры, то охлаждая насыщенный при более высокой температуре раствор, можно получить пересыщенный раствор, т.е. такой раствор, концентрация вещества в котором выше концентрации насыщенного раствора (при данных температуре и давлении). Пересыщенные растворы очень неустойчивы. Легкое сотрясение сосуда или введение в раствор кристаллов вещества, находящегося в растворе, вызывает кристаллизацию избытка растворенного вещества, и раствор становится насыщенным.

Разбавленные и концентрированные растворы

Не следует путать ненасыщенный и насыщенный растворы с разбавленным и концентрированным. Понятия разбавленный и концентрированный растворы – относительные и между ними нельзя провести четкой границы. Они определяют соотношение между количествами растворенного вещества и растворителя. В общем случае, разбавленные растворы – это растворы, содержащие небольшие количества растворенного вещества по сравнению с количеством растворителя, концентрированные – с большим содержанием растворенного вещества.

Например, если при 20 o С растворить в 100 г воды 25 г NaCl, то полученный раствор будет концентрированным, но ненасыщенным, поскольку растворимость хлорида натрия при 20 o С составляет 36 г в 100 г воды. Максимальная масса AgI, которая растворяется при 20 o С в 100 г Н2О равна 1,3·10 –7 г. Полученный при этих условиях раствор AgI будет насыщенным, но очень разбавленным.

9.2. Физическая и химическая теория растворов; тепловые явления при растворении

Физическая теория растворов была предложена В. Оствальдом (Германия) и С. Аррениусом (Швеция). Согласно этой теории частицы растворителя и растворенного вещества (молекулы, ионы) равномерно распределяются по всему объему раствора вследствие процессов диффузии. При этом между растворителем и растворенным веществом отсутствует химическое взаимодействие.

Химическая теория была предложена Д.И. Менделеевым. Согласно представлениям Д.И. Менделеева между молекулами растворяемого вещества и растворителем происходит химическое взаимодействие с образованием неустойчивых, превращающихся друг в друга соединений растворенного вещества с растворителем – сольватов.

Русские ученые И.А. Каблуков и В.А. Кистяковский объединили представления Оствальда, Аррениуса и Менделеева, заложив тем самым основу современной теории растворов. Согласно современной теории в растворе могут существовать не только частицы растворенного вещества и растворителя, но и продукты физико-химического взаимодействия растворенного вещества с растворителем – сольваты. Сольваты – это неустойчивые соединения переменного состава. Если растворителем является вода, их называют гидратами. Сольваты (гидраты) образуются за счет ион-дипольного, донорно-акцепторного взаимодействий, образования водородных связей и т.д. Например, при растворении NaCl в воде между ионами Na + , Cl – и молекулами растворителя возникает ион-дипольное взаимодействие. Образование гидратов аммиака при его растворении в воде происходит за счет образования водородных связей.

Гидратная вода иногда настолько прочно связывается с растворенным веществом, что выделяется вместе с ним из раствора. Кристаллические вещества, содержащие молекулы воды, называются кристаллогидратами, а вода, входящая в состав таких кристаллов, называется кристаллизационной. Примерами кристаллогидратов является медный купорос CuSO4·5H2O, алюмокалиевые квасцы KAl(SO4)2·12H2O.

Тепловые эффекты при растворении

В результате изменения структуры веществ при переходе их из индивидуального состояния в раствор, а также в результате происходящих взаимодействий изменяются свойства системы. На это указывают, в частности, тепловые эффекты растворения. При растворении происходят два процесса: разрушение структуры растворяемого вещества и взаимодействие молекул растворенного вещества с молекулами растворителя. Взаимодействие растворенного вещества с растворителем называется сольватацией. На разрушение структуры растворяемого вещества затрачивается энергия, а взаимодействие частиц растворенного вещества с частицами растворителя (сольватация) – процесс экзотермический (идет с выделением теплоты). Таким образом, процесс растворения может быть экзотермическим или эндотермическим, в зависимости от соотношения этих тепловых эффектов. Например, при растворении серной кислоты наблюдается сильное разогревание раствора, т.е. выделение теплоты, а при растворении нитрата калия – сильное охлаждение раствора (эндотермический процесс) .

9.3. Растворимость и ее зависимость от природы веществ

Растворимость – наиболее изученное свойство растворов. Растворимость веществ в различных растворителях колеблется в широких пределах. В табл. 9.1 приведена растворимость некоторых веществ в воде, а в табл. 9.2 – растворимость йодида калия в различных растворителях.

Читайте также: