Классификация цветных металлов и их применение

Обновлено: 19.05.2024

К цветным металлам относятся все металлы, кроме железа и сплавов на его основе – сталей и чугунов, которые называются черными. Сплавы на основе цветных металлов используют в основном как конструкционные материалы со специальными свойствами: коррозионно-стойкие, подшипниковые (обладающие низким коэффициентом трения), тепло- и жаропрочные и др.

В маркировке цветных металлов и сплавов на их основе нет единой системы. Во всех случаях принята буквенно-цифровая система. Буквы указывают на принадлежность сплавов к определенной группе, а цифры в разных группах материалов имеют разное значение. В одном случае они указывают на степень чистоты металла (для чистых металлов), в другом – на количество легирующих элементов, а в третьем обозначают номер сплава, которому по гос. стандарту должны соответствовать определенный состав или свойства.
Медь и ее сплавы
Техническая медь маркируется буквой М, после которой идут цифры, связанные с количеством примесей (показывают степень чистоты материала). Медь марки М3 содержит примесей больше, чем М000. Буквы в конце марки означают: к – катодная, б – безкислородная, р – раскисленная. Высокая электропроводность меди обуславливает ее преимущественное применение в электротехнике как проводникового материала. Медь хорошо деформируется, хорошо сваривается и паяется. Ее недостатком является плохая обрабатываемость резанием.
К основным сплавам на основе меди относятся латуни и бронзы. В сплавах на основе меди принята буквенно-цифровая система, характеризующая химический состав сплава. Легирующие элементы обозначаются русской буквой, соответствующей начальной букве названия элемента. Причем часто эти буквы не совпадают с обозначением тех же легирующих элементов при маркировке стали. Алюминий – А; Кремний – К; Марганец – Мц; Медь – М; Никель – Н; Титан –Т; Фосфор – Ф; Хром –Х; Бериллий – Б; Железо – Ж; Магний – Мг; Олово – О; Свинец – С; Цинк - Ц.
Порядок маркировки литейных и деформируемых латуней разный.
Латунь - сплав меди с цинком (Zn от 5 до 45%). Латунь с содержанием от 5 до 20% цинка называется красной (томпаком), с содержанием 20–36% Zn – желтой. На практике редко используют латуни, в которых концентрация цинка превышает 45%. Обычно латуни делят на:
- двухкомпонентные латуни или простые, состоящие только из меди, цинка и, в незначительных количествах, примесей;
-многокомпонентные латуни или специальные – кроме меди и цинка присутствуют дополнительные легирующие элементы.
Деформируемые латуни маркируются по ГОСТ 15527-70.
Марка простой латуни состоит из буквы «Л», указывающей тип сплава - латунь, и двузначной цифры, характеризующей среднее содержание меди. Например, марка Л80 - латунь, содержащая 80 % Cu и 20 % Zn. Все двухкомпонентные латуни хорошо обрабатываются давлением. Их поставляют в виде труб и трубок разной формы сечения, листов, полос, ленты, проволоки и прутков различного профиля. Латунные изделия с большим внутренним напряжением (например, нагартованные) подвержены растрескиванию. При длительном хранении на воздухе на них образуются продольные и поперечные трещины. Чтобы избежать этого, перед длительным хранением необходимо снять внутреннее напряжение, проведя низкотемпературный отжиг при 200-300 C.
В многокомпонентных латунях после буквы Л пишут ряд букв, указывающих, какие легирующие элементы, кроме цинка, входят в эту латунь. Затем через дефисы следуют цифры, первая из которых характеризует среднее содержание меди в процентах, а последующие - каждого из легирующих элементов в той же последовательности, как и в буквенной части марки. Порядок букв и цифр устанавливается по содержанию соответствующего элемента: сначала идет тот элемент, которого больше, а далее по нисходящей. Содержание цинка определяется по разности от 100%.
Латуни в основном применяются как деформируемый коррозионно-стойкий материал. Из них изготавливают листы, трубы, прутки, полосы и некоторые детали: гайки, винты, втулки и др.
Литейные латуни маркируются в соответствии с ГОСТ 1711-30. В начале марки тоже пишут букву Л (латунь), после которой пишут букву Ц, что означает цинк, и число, указывающее на его содержание в процентах. В легированных латунях дополнительно пишут буквы, соответствующие введенным легирующим элементам, и следующие за ними числа указывают на содержание этих элементов в процентах. Остаток, недостающий до 100 %, соответствует содержанию меди. Литейные латуни используют для изготовления арматуры и деталей для судостроения, втулок, вкладышей и подшипников.
Бронзы (сплавы меди с различными элементами, где цинк не является основным). Они подобно латуням подразделяются на литейные и деформируемые. Маркировка всех бронз начинается с букв Бр, что сокращенно означает бронза.
В литейных бронзах после Бр пишут буквы с последующими цифрами, которые символически обозначают элементы, введенные в сплав (в соответствии с таблицей 1), а последующие цифры обозначают содержание этих элементов в процентах. Остальное (до 100 %) – подразумевается медь. Иногда в некоторых марках литейных бронз в конце пишут букву «Л», что означает литейная.
Большинство бронз обладает хорошими литейными свойствами. Их применяют для различного фасонного литья. Чаще всего их используют как коррозионно-стойкий и антифрикционный материал: арматура, ободы, втулки, зубчатые колеса, седла клапанов, червячные колеса и т.д. Все сплавы на основе меди имеют высокую хладостойкость.
Алюминий и сплавы на его основе
Алюминий выпускают в виде чушек, слитков, катанки и т.п. (первичный алюминий) по ГОСТ 11069-74 и в виде деформируемого полуфабриката (листы, профили, прутки и т.п.) по ГОСТ 4784-74. По степени загрязненности тот и другой алюминий подразделяется на алюминий особой чистоты, высокой чистоты и технической чистоты. Первичный алюминий по ГОСТ 11069-74 маркируют буквой А и числом, по которому можно определить содержание примесей в алюминии. Алюминий хорошо деформируется, но плохо обрабатывается резанием. Прокаткой из него можно получить фольгу.

Сплавы на основе алюминия подразделяются на литейные и деформируемые.
Литейные сплавы на основе алюминиямаркируются по ГОСТ 1583-93. Марка отражает основной состав сплава. Большинство марок литейных сплавов начинаются с буквы А, что означает алюминиевый сплав. Затем пишут буквы и цифры, отражающие состав сплава. В ряде случаев алюминиевые сплавы маркируют буквами АЛ (что означает литейный сплав алюминия) и цифрой, означающей номер сплава. Буква В, стоящая в начале марки показывает, что сплав высокопрочный.
Применение алюминия и сплавов на его основе очень разнообразно. Технический алюминий применяют в основном в электротехнике в качестве проводника электрического тока, как заменитель меди. Литейные сплавы на основе алюминия широко применяются в холодильной и пищевой промышленности при изготовлении деталей сложной формы (различными методами литья), от которых требуется повышенная коррозионная стойкость в сочетании с небольшой плотностью, например, поршни некоторых компрессоров, рычаги и другие детали.
Деформируемые сплавы на основе алюминия также находят широкое применение в пищевой и холодильной технике для изготовления различных деталей методом обработки давлением, к которым предъявляются также повышенные требования к коррозионной стойкости и плотности: различные емкости, заклепки и т.п. Важным достоинством всех сплавов на основе алюминия является их высокая хладостойкость.
Титан и сплавы на его основе
Титан и сплавы на его основе маркируются в соответствии с ГОСТ 19807-74 по буквенно-цифровой системе. Однако какой-либо закономерности в маркировке не имеется. Единственной особенностью является наличие во всех марках буквы Т, которая свидетельствует о принадлежности к титану. Числа в марке означают условный номер сплава.
Технический титан маркируется: ВТ1-00; ВТ1-0. Все остальные марки относятся к сплавам на основе титана (ВТ16, АТ4, ОТ4, ПТ21 и др). Главным достоинством титана и его сплавов является хорошее сочетание свойств: относительно низкой плотности, высокой механической прочности и очень высокой коррозионной стойкости (во многих агрессивных средах). Основной недостаток – высокая стоимость и дефицитность. Эти недостатки сдерживают применение их в пищевой и холодильной технике.

Сплавы титана применяются в ракетной, авиационной технике, химическом машиностроении, в судостроении и транспортном машиностроении. Они могут использоваться при повышенных температурах до 500-550 градусов. Изделия из сплавов титана изготавливают обработкой давлением, но могут быть изготовлены и литьем. Состав литейных сплавов обычно соответствует составу деформируемых сплавов. В конце марки литейного сплава стоит буква Л.
Магний и сплавы на его основе
Технический магний из-за его неудовлетворительных свойств не находит применения в качестве конструкционного материала. Сплавы на основе магния в соответствии с гос. стандартом делятся на литейные и деформируемые.
Литейные сплавы магнияв соответствии с ГОСТ 2856-79 маркируют буквами МЛ и числом, которое обозначает условный номер сплава. Иногда после числа пишут строчные буквы: пч – повышенной чистоты; он – общего назначения. Деформируемые сплавы магния маркируют в соответствии с ГОСТ 14957-76 буквами МА и числом, обозначающим условный номер сплава. Иногда после числа могут быть строчные буквы пч, что означает повышенной чистоты.

Сплавы на основе магния обладают подобно сплавам на основе алюминия хорошим сочетанием свойств: низкой плотностью, повышенной коррозионной стойкостью, относительно высокой прочностью (особенно удельной) при хороших технологических свойствах. Поэтому из сплавов магния изготавливают как простые, так и сложные по форме детали, от которых требуется повышенная коррозионная стойкость: горловины, бензиновые баки, арматура, корпусы насосов, барабаны тормозных колес, фермы, штурвалы и многие другие изделия.
Олово, свинец и сплавы на их основе
Свинец в чистом виде практически не используется в пищевой и холодильной технике. Олово применяется в пищевой промышленности в качестве покрытий пищевой тары (например лужение консервной жести). Маркируется олово в соответствии с ГОСТ 860-75. Имеются марки О1пч; О1; О2; О3; О4. Буква О обозначает олово, а цифры – условный номер. С увеличением номера увеличивается количество примесей. Буквы пч в конце марки означают – повышенной чистоты. В пищевой промышленности для лужения консервной жести применяют олово чаще всего марок О1 и О2.
Сплавы на основе олова и свинца в зависимости от назначения подразделяются на две большие группы: баббиты и припои.
Баббиты – сложные сплавы на основе олова и свинца, которые дополнительно содержат сурьму, медь и другие добавки. Они маркируются по ГОСТ 1320-74 буквой Б, что означает баббит, и числом, которое показывает содержание олова в процентах. Иногда кроме буквы Б может быть другая буква, которая указывает на особые добавки. Например, буква Н обозначает добавку никеля (никелевый баббит), буква С – свинцовый баббит и др. Следует иметь в виду, что по марке баббита нельзя установить его полный химический состав. В некоторых случаях даже не указывается содержание олова, например в марке БН, хотя здесь его содержится около 10 %. Имеются и безоловянистые баббиты (например свинцово-кальциевые), которые маркируются по ГОСТ 1209-78 и в данной работе не изучаются.

1. Особолегкоплавкие (температура плавления tпл ≤ 145 °С);

2. Легкоплавкие (температура плавления tпл > 145 °С ≤ 450 °С );

3. Среднеплавкие (температура плавления tпл > 450 °С ≤ 1100 °С );

4. Высокоплавкие (температура плавления tпл > 1100 °С ≤ 1850 °С );

5. Тугоплавкие (температура плавления tпл > 1850 °С).

Первые две группы применяются для низкотемпературной (мягкой) пайки, остальные – высокотемпературной (твердой) пайки. По основному компоненту припои подразделяют на: галлиевые, висмутовые, оловянно-свинцовые, оловянные, кадмиевые, свинцовые, цинковые, алюминиевые, германиевые, магниевые, серебряные, медно-цинковые, медные, кобальтовые, никелевые, марганцевые, золотые, палладиевые, платиновые, титановые, железные, циркониевые, ниобиевые, молибденоыве, ванадиевые.

Классификация цветных металлов, их свойства и области применения

5.Редкие. К этой группе в зависимости от технологических особенностей производства, содержания в рудах и других свойств относят от 50 до 60 элементов.

1.Легкие редкие металлы (литий, бериллий, рубидий, цезий) обладают малой плотностью — до 2000 кг/м 3 . Их соединения отличаются высокой химической стойкостью и с трудом восстанавливаются до металла. Получают их электролизом в расплав­ленных средах или металлотермическими способами.

2.Тугоплавкие редкие металлы (титан, цирконий, ванадий, ниобий, тантал, вольфрам, молибден). Температура плавления более 1873 К. Обладают высокими антикоррозионными свойствами. Со многими металлами образуют твердые растворы и интерметаллиды.

3.Рассеянные редкие металлы (галлий, индий, таллий, герма­ний, гафний, рений, селен, теллур). Сырьем для их получения служат отходы производства основных цветных металлов, в ко­торых концентрация данных металлов в десятки раз превышает первоначальное содержание в руде.

5.Радиоактивные редкие металлы (радий, уран и другие элементы, встречающиеся в природе, а также искусственные заурановые элементы — от плутония до курчатовия).

Развитие промышленности и освоение новых месторожде­ний вносят коррективы в классификацию цветных металлов. Вольфрам, молибден, ванадий, уран, литий, бериллий, ниобий,

титан, цирконий, церий не являются редкими по основному определению и могут быть классифицированы по их физико-химическим свойствам.

В рудных месторождениях металлы присутствуют в виде комплексного сырья. Геохимическое семейство элементов при­ведено ниже.

Распространенность элементов цветных металлов в земной коре по данным А.П. Виноградова и Мейсона (мощность 16км, без океана и атмосферы)

Физические свойства металлов меняются в широких преде­лах. Так, температура плавления изменяется от 234,13 (Hg) до 3683 К (W). При плавлении металлы сохраняют свои электриче­ские, тепловые и оптические свойства.

Удельное электрическое сопротивление при 298 К имеет значения от0,016 (Ag) до 810 4 (Se) мкОмм. Высокая теплопро­водность металлов коррелирует с их высокой электрической проводимостью. Удельный коэффициент теплопроводности (х) и электрической проводимости (σ) металлов связаны между собой соотношением х /(σ · Т) = 2,45 · 10 -8 Вт-Ом/К 2 (закон Видео­мана—Франца).

А1 (1,175); Be (0,026); V (5,40); Bi (7); W (0,0154); Cd (0,517); Ga (1,083—7,85); Ge (2,03); In (3,408); Ir (0,1125); Si (7,1 пленки); Mo (0,915); As (0,31—0,5); Nb (9,25); Sn (3,722); Re (1,697); Pb (7,196); Sb (2,6—2,7); Tl (2,88); Та (4,47); Те (2,05); Тс (7,8); Ti (0,40); Th (1,38); Zn (0,85); Zr (0,61—0,95).

Научное и практическое значение с 90-х годов стали приоб­ретать соединения в системах La—Sr—Си—О (Гс = 36 К); Υ— Ва—Сu—О (Тс = 77 К), Nb3Ge(Гс = 23,3 К) как основа для синте­за сверхпроводящих материалов.

При использовании металлов важное значение имеет сочета­ние механических свойств (пластичности, вязкости) со значи­тельной прочностью, твердостью и упругостью. Эти свойства за­висят не только от состава сплава или чистоты металла, но и от совершенства кристаллической решетки и структуры, определя­емых термической и механической обработкой.

Большинство металлов окисляется кислородом воздуха уже при обычной температуре, однако скорость и механизм реакции зависят от природы металла. Устойчивость металлов на воздухе определяется свойствами образующегося оксида, в частности, отношением молярных объемов VOKC/VM. Если VOKC /VM> 1, образу­ется защитная пленка, предохраняющая металл от дальнейшего окисления, что характерно для алюминия, титана, хрома.

Способность металлов к взаимному растворению с образова­нием при кристаллизации твердых растворов лежит в основе получения сплавов. Известно свыше 30000 сплавов — легкоплавких и тугоплавких, очень твердых и пластичных, с большой и ма­лой электрической проводимостью, ферромагнитных и других.

Цветные металлы используют в чистом виде, в виде сплавов, как легирующие присадки при производстве сталей, как антикоррозионные покрытия, в виде порошков и различных химиче­ских соединений.

Латуни (медь + (8—40 %) цинка) хорошо обрабатываются давлением, ковкой и штамповкой. Используются для изготовле­ния деталей литьем, обладают антикоррозионными свойствами, широко применяются в производстве биметаллов. Основные по­требители латуней — машиностроение, химическая промыш­ленность, судостроение, оптика и приборостроение.

Алюминиевые бронзы — 5—11 % алюминия и добавки желе­за, марганца, никеля. Обладают высокими механическими свой­ствами и антикоррозионной стойкостью.

Свинцовые бронзы — 25—33 % свинца с присадками олова, цинка и никеля. Используются для приготовления подшипников, работающих при высоких удельных давлениях и больших скоро­стях скольжения.

Бериллиевые бронзы — 1,8—2,3 % бериллия, обладают по­сле закалки высокой твердостью и упругостью. Используются для изготовления пружин.

Кадмиевые бронзы — сплавы меди с кадмием (до 1 %). До­бавляют олово и магний. Используют при производстве трол­лейных проводов и коллекторов машин постоянного тока, для изготовления арматуры водопроводных и газовых линий.

Силумин — сплав алюминия с кремнием, по прочности не уступает стали, обладает хорошими литейными качествами. Ис­пользуется в машиностроении, автомобильной промышленнос­ти, в быту.

Дюралюминий — сплав алюминия с медью — 3,5—5,5 %, магнием — 0,6—0,8 % и марганцем. Нашел широкое применение в промышленной и бытовой технике, самолетостроении, авто­мобильной промышленности.

Баббиты — сплавы на основе олова, свинца, цинка, алюми­ния. Характеризуются высоким сопротивлением износу, механи­ческой прочностью, низким коэффициентом трения, стойкос­тью против коррозии. Используются при заливке подшипников и вкладышей.

Припои — сплавы цветных металлов для пайки. Мягкий при­пой — сплав олова, свинца и сурьмы. Твердый припой — медно-серебряный сплав.

Твердые сплавы — изготавливаются на основе карбидов вольфрама и титана с различным содержанием кобальта. Изготавливают методом порошковой металлургии; их используют для оснащения бурового и режущего инструмента и повышения износостойкости трущихся поверхностей.

Источник:
Набойченко С.С., Агеев Н.Г., Дорошкевич А.П., Жуков В.П., Елисеев Е.И., Карелов С.В., Лебедь А.Б., Мамяченков С.В. Процессы и аппараты цветной металлургии. Екатеринбург, 2005г.

Сайт содержит техническую и нормативную информацию по металлургии.
Все материалы размещенные на сайте предоставляются бесплатно.

Основы металлургии цветных металлов

С электрохимической точки зрения металлами называются элементы, имеющие в процессе реакций преимущественную тенденцию к отдаче электронов, в отличие от металлоидов, стремящихся к их присоединению.

Многочисленность металлов, различия в их свойствах, методах получения и областей потребления определяет необходимость их классификации по отдельным группам.

В современных условиях используют промышленную классификацию металлов, которая отражает исторически сложившуюся структуру металлургической промышленности и, как следствие этого, структуру подготовки инженерно-технических кадров нашей страны.

Согласно промышленной классификации все металлы делятся на две группы: черные и цветные (в зарубежной практике металлы обычно делят на железные и нежелезные).

К черным металлам относятся железо и его сплавы, марганец, и хром, производство которых тесно связано с металлургией чугуна и стали. Все остальные металлы относятся к, цветным. Название «цветные металлы» довольно условно, так как фактически только золото и медь имеют ярко выраженную окраску. Все остальные металлы, включая черные, имеют серый цвет с различными оттенками - от светло-серого до темно-серого.

1. Основные тяжелые металлы: медь, никель, свинец, цинк и олово. Своё название они получили из-за больших масштабов производства и потребления, большого («тяжелого») удельного веса в народном хозяйстве.

2. Малые тяжелые металлы: висмут, мышьяк, сурьма, кадмий, ртуть и кобальт. Они являются природными спутниками основных тяжелых металлов. Обычно их получают попутно, но производят в значительно меньших количествах.

3. Легкие металлы: алюминий, магний, титан, натрий, калий, барий, кальций, стронций. Металлы этой группы имеют самую низкую среди всех металлов плотность (удельную массу).

4. Благородные металлы: золото, серебро, платина и платиноиды (палладий, родий, рутений, осмий, иридий). Эта группа металлов обладает высокой стойкостью к воздействию окружающей среды и агрессивных сред.

Основным сырьем для получения металлов являются руды – горные породы, содержащие в своем составе металл или металлы в количествах, которые при современном уровне развития обогатительной и металлургической техники могут быть экономически выгодно извлечены в товарную продукцию.

Руды состоят из минералов – природных химических соединений, подразделяющихся на рудные (ценные) и пустую породу. К пустой породе относят минералы, не содержащие извлекаемых элементов; эти породы чаще всего представлены кварцем, карбонатами, силикатами, алюмосиликатами.

Хотя с металлургической точки зрения пустая порода не представляет ценности, безотходные технологии должны полностью использовать все сырьевые ресурсы. Пустая порода может с успехом применяться при получении ряда строительных материалов (цемент, шлаковата, шлаковая брусчатка и пр.)

Состав руды определяют химическим анализом. Кроме химического состава для практических целей необходимо знать и вид присутствующих в сырье минералов (минералогический состав), и распределение всех компонентов сырья между минералами (фазовый состав).

В зависимости от вида присутствующих металлсодержащих минералов руды цветных металлов делятся на группы:

1) сульфидные, в которых металлы находятся в форме сернистых соединений. Примером таких руд могут служить медные, медно-никелевые и свинцово-цинковые руды;

2) окисленные, в которых металлы присутствуют в форме различных кислородсодержащих соединений (оксидов, карбонатов, гидроксидов и т. д.). К этой группе относятся алюминиевые, окисленные никелевые, оловянные руды, руды ряда редких металлов;

3) смешанные, в которых металлы могут находитьсякаквсульфидной, так и в окисленной форме (медные руды);

4) самородные, содержащие металлы в свободном состоянии. В самородном состоянии в природе встречаются золото, серебро, медь и платина.

Сульфидные руды по форме размещения в земной коре делятся на сплошные, состоящие почти полностью из сульфидных минералов, и вкрапленные, когда сульфиды в виде мелких включений присутствуют в пустой породе. Вкрапленные руды, как правило, беднее сплошных.

По числу присутствующих металлов руды классифицируются на монометаллические и полиметаллические (комплексные). Большинство руд цветных металлов являются полиметаллическими и содержат минимум два ценных компонента. Наиболее сложными по составу являются медные, медно-никелевые и свинцово-медно-цинковые руды. Они содержат до 10-15 ценных металлов.

Руды цветных металлов, как правило, очень бедные и содержат всего несколько процентов, а часто и доли процента основного металла. Концентрация ценных элементов-спутников обычно во много раз меньше. Однако многие сопутствующие элементы по ценности значительно превосходят основные компоненты руды. Примерная стоимостная оценка двух видов руд приведена в таблице 1.

При переработке сложных по составу руд необходимо добиваться полного комплексного использования всех ее ценных составляющих, т. е. безотходной технологии. Об уровне технического развития металлургического предприятия и его технологии в первую очередь судят по коэффициенту комплексности использования сырья, который определяется как отношение стоимости извлеченных в товарную продукцию компонентов к их стоимости в исходной руде.

Рентабельный минимум, т. е. то минимальное содержание основного металла, которое определяет возможность и целесообразность металлургической переработки данной руды, постоянно снижается. Так, если в конце XIX в. к категории медных руд относили горные породы с содержанием меди не менее 1,5%, то сейчас эта величина снизилась до 0,4-0,5%.

Снижению рентабельного минимума способствуют развитие и совершенствование обогатительной и металлургической техники и повышение коэффициента комплексности использования сырья, т. е. чем больше извлекается ценных компонентов, тем с меньшим содержанием основного компонента экономически и технически выгодно перерабатывать руду.

Руды, как и другие полезные ископаемые, образуют естественные скопления, которые называются месторождениями. Содержание ценных элементов в месторождениях значительно выше их среднего содержания в земной коре. Самый распространенный металл в природе – алюминий (7,5%), наиболее редкие – полоний и актиний (их кларк близок к 10 -15 ).

Ряд металлов, например рассеянных, собственных месторождений не образует. Обычно в очень небольших концентрациях они присутствуют в виде примесей в минералах основных цветных металлов.

Так как большинство руд цветных металлов бедны, руды обычно обогащают, т.е. повышают содержание металлов в сырье, поступающем на металлургическую переработку. Основной метод обогащения, применяемый в цветной металлургии – флотация. Перед обогащением сырье проходит механическую подготовку: дробление, измельчение, грохочение.

Все используемые при производстве цветных металлов процессы подразделяются на две группы: пирометаллургические и гидрометаллургические.

Пирометаллургические процессы проводятся при высоких температурах чаще всего с полным и реже с частичным расплавлением материалов, гидрометаллургические процессы - в водных средах при температурах максимально до 300 0 С.

Выделяемые иногда в отдельную группу электрометаллургические процессы могут быть как пиро-, так и гидрометаллургическими. Отличительной особенностью этих процессов является использование электроэнергии в качестве движущей энергетической силы для их протекания.

Пирометаллургические процессы по характеру поведения участвующих в процессе компонентов иих конечным результатам можно разделить на три группы: обжиг, плавка и дистилляция.

Обжиг - металлургический процесс, проводимый при высоких температурах (500-1200°С) с целью изменения химического состава перерабатываемого сырья. Обжиговые процессы, за исключением обжига со спеканием, являются твердофазными. В цветной металлургии применяют следующие виды обжига: кальцинирующий, окислительный, восстановительный, хлорирующий и фторирующий.

Плавка пирометаллургический процесс, проводимый при температурах, обеспечивающих в большинстве случаев полное расплавление перерабатываемого материала.

Различают две разновидности плавок – рудные и рафинировочные. По характеру протекания химических реакций рудные плавки подразделяют на виды: восстановительная, плавка на штейн, электролиз расплавленных солей, металлотермическая, реакционная. Некоторые металлы получают проведением восстановительной или окислительной плавки. В случае переработки сульфидного сырья содержащуюся в рудах серу часто используют в качестве топлива и химического реагента.

Рафинировочные плавки проводят с целью очистки полученных металлов от примесей. В их основе лежат различия в физико-химических свойствах основного металла и металлов-примесей. Различают разновидности рафинировочных плавок: окислительное (огневое) рафинирование, ликвационное, сульфидирующее рафинирование, хлорное рафинирование. Могут использоваться дистилляционные процессы – процессы испарения вещества при температуре несколько выше точки его кипения. Дистилляция с целью рафинирования называется ректификацией.

При получении металлов высокой степени чистоты также используют различные специальные методы: зонная плавка (в металлургии алюминия, вольфрама), иодидное рафинирование титана и др.

Эта группа процессов проводится при низких температурах на границе раздела чаще всего твердой и жидкой фаз. Любой гидрометаллургический процесс состоит из трех основных стадий: выщелачивания, очистки растворов от примесей и осаждения металла из раствора.

Применяющиеся на действующих предприятиях цветной металлургии технологические процессы в большинстве случаев далеко не полностью удовлетворяют современным требованиям. Ряд процессов и их аппаратурное оформление устарели и нуждаются в замене новыми, более совершенными.

Современные металлургические процессы получения цветных металлов и, тем более, процессы ближайшего будущего должны удовлетворять по меньшей мере следующим основным требованиям:

2) высокая производительность труда (выпуск продукции на одного работника в количественном или стоимостном выражении);

5) минимальные энергетические затраты за счет использования внешних источников тепловой энергии или электричества;

8) использование простой, дешевой, долговечной и удобной в работе, пуске, наладке и ремонте аппаратуры;

9) обеспечение возможности создания непрерывных, поточных, полностью автоматизированных технологических линий получения металлов;

Источник:
Е.П. Большина "Высокие технологии в металлургии. Ч.1 производство цветных металлов" Новотроицк 2008 г.

Цветные металлы и сплавы. Марки, свойства и применение

Ценные свойства цветных металлов обусловили их широкое применение в различных машинах современного производства. Медь, алюминий, цинк, магний, титан и дру гие метадгы и их сплавы являются незаменимыми материалами для приборостроительной и электротехнической промышленности, самолетостроения и радиоэлектроники, ядерной и космической отраслей техники.

1. Медь и ее сплавы

В настоящее время медь широко используется в электромашиностроении, при строительстве линий электропередач, для изготовления оборудования телеграфной и телефонной связи, ради- и телевизионной аппаратуры. Из меди изготовляют провода, кабели, шины и другие токопроводящие изделия. Большое количество меди идет на производство бронзы, латуни и других медных, а также алюминиевых и железных сплавов.

ГОСТ 859-2001 предусматривает следующие марки меди:

  • катодная — МВ4к, МООк, МОку, МОк, М1к;
  • бескислородная — М006, М06, М1б;
  • катодная переплавленная — Mly, Ml;
  • раскисленная — М1р, М1ф, М2р, МЗр, М2, М3 (для раскисления используется фосфористая медь).

Обладая замечательными свойствами, медь в то же время как конструкционный материал не удовлетворяет требованиям машиностроения, поэтому ее легируют, т.е. вводят в ее состав такие металлы, как цинк, олово, алюминий, никель и др., за счет чего улучшаются ее механические и технологические свойства.

По химическому составу медные сплавы подразделяют на латуни, бронзы и медноникелевые, по технологическому назначению — на деформируемые, используемые для производства полуфабрикатов (проволоки, листа, полос, профиля), и литейные, применяемые для литья деталей.

2. Латунь

Латунь — сплав меди с цинком и другими компонентами. Латуни, содержащие кроме цинка другие легирующие элементы, называются сложными, или специальными, и именуются по вводимым, кроме цинка, легирующим компонентам. Например: железомарганцовая (ЛЖМц59-1-1), алюминиевоникелькремнистомарганцовая (ЛАНКМц75-2-2,5-0,5-0,5) и др.

В обозначении марок латуней принята буквенно-цифровая система. Первая буква означает «латунь», остальные буквы соответствуют условным обозначениям химических элементов, входящих в латунь; первая цифра указывает на содержание меди, остальные цифры — на содержание других легирующих элементов. Содержание цинка в обозначении марки не указывается. Для того чтобы определить содержание цинка в латуни, необходимо от 100% вычесть процентное содержание меди и других химических элементов, входящих в данную латунь. Например: томпак Л90 — это латунь, содержащая 90% меди, остальное — цинк; латунь алюминиевая ЛА77-2 — 77% меди, 2% алюминия, остальное — цинк; латунь алюминиевоникель- кремнистомарганцовая ЛАНКМц75-2-2,5-0,5-0,5 -75% меди, 2% алюминия, 2,5% никеля, 0,5% кремния, 0,5% марганца, остальное — цинк.

По сравнению с медью латуни обладают большей прочностью, коррозионной стойкостью и упругостью. Детали получают литьем, давлением и резанием. Латуни, обрабатываемые давлением, нормируются ГОСТ 15527-2004. Из них изготовляют полуфабрикаты (листы, ленты, полосы, трубы конденсаторов и теплообменников, проволоку, прутки, фольгу, поковки, штамповки), медали и значки, художественные изделия, музыкальные инструменты, сильфоны, гибкие шланги, застежки- молнии, подшипники скольжения и разную фурнитуру. В табл. 27 приводятся марки этих латуней, их основные свойства и области применения.

Таблица 27. Латуний, их основные свойства и применение

Литейные латуни поставляются в виде чушек ( ГОСТ 1020-97) и служат сырьем для получения латуней определенных марок для фасонных отливок (ГОСТ 17711-93) — это различная арматура, работающая при температурах до 250°С и подвергающаяся гидровоздушным испытаниям; детали, работающие в морской воде (при условии их протекторной защиты); подшипники и втулки неответственного назначения, гайки нажимных винтов, детали без притираемых поверхностей, сепараторы подшипников, шестерни, детали, подвергающиеся лужению или заливке баббитом; детали судо- и автомобилестроения и др. (табл. 28).

Таблица 28. Марки литейных латуней

ГОСТ 17711-80 кроме химического состава нормирует механические свойства медноцинковых сплавов: предел прочности σв — от 146 до 705 МПа (от 15 до 72 кгс/мм 2 ), относительное удлинение δ — от 6 до 20%, твердость — от 587 до 1600 МПа (от 60 до 165 кгс/мм 2 ).

Читайте также: