Индукционная установка для нагрева металла

Обновлено: 09.05.2024

Индукционный нагрев – применение в целях обработки металла

Индукционный нагрев – это способ бесконтактной тепловой обработки металлов, способных проводить электрическую энергию, под воздействием токов высокой частоты. Индукционный нагрев все активнее стал применяться на предприятиях для осуществления высокотемпературной обработки металлов. На сегодняшний день индукционное оборудование смогло занять лидирующие позиции, вытесняя альтернативные методы нагрева.

Индукционный нагрев как работает

Принцип действия индукционного нагрева предельно прост. Нагрев производится за счет трансформации электрической энергии в электромагнитное поле, обладающее высокой мощностью. Нагрев изделия осуществляется при проникновении магнитного поля индукторов в изделие, способное проводить электрическую энергию.

Заготовка (обязательно из материала, проводящего электрическую энергию) размещается в индукторе или в непосредственной близости с ним. Индуктор, как правило, выполняется в виде одного или нескольких витков провода. Чаще всего для изготовления индуктора используют толстые медные трубки (провода). Специальный генератор электрической энергии подает ее в индуктор, наводя токи высокой частоты, которые могут варьироваться от 10-и Гц до нескольких МГц. В результате наведения токов высокой частоты на индуктор, вокруг него образуется мощное электромагнитное поле. Вихревые токи образовавшегося электромагнитного поля проникают в изделие и преобразуются внутри его в тепловую энергию, осуществляя нагрев.

Во время работы индуктор довольно сильно нагревается за счет поглощения собственного излучения, поэтому он непременно должен охлаждаться во время рабочего процесса за счет проточной технической воды. Вода для охлаждения подается в установку при помощи отсасывания, такой метод позволяет обезопасить установку, если вдруг произойдет прожог или разгерметизация индуктора.

Индукционный нагрев применение в производстве

Как уже можно было понять из описанного выше, применяется индукционный нагрев в производстве довольно активно. На сегодняшний день индукционное оборудование успело занять лидирующее позиции, вытеснив конкурирующие способы обработки металлов на второй план.

Индукционная плавка металлов

Применяется индукционный нагрев для осуществления плавильных работ. Активное использование индукционных печей началось благодаря тому, что нагрев ТВЧ способен уникально обрабатывать все виды металлов, существующие на сегодняшний день.
Плавильная индукционная печь быстро осуществляет плавку металла. Температуры нагрева установки достаточно даже для плавки самых притязательных металлов. Главное преимущество индукционных плавильных печей заключается в том, что они способны производить чистую плавку металла с минимальным шлакообразованием. Работа выполняется за короткий промежуток времени. Как правило, время выплавки 100 килограмм металла равняется 45-и минутам.

Закалка ТВЧ (токами высокой частоты)

Закалка производится чаще всего в отношении изделий из стали, но может быть применена и к медным и другим металлическим изделиям. Принято различать два вида закалки ТВЧ поверхностная и глубокая, или объемная закалка.
Главное достоинство, которым обладает индукционный нагрев по отношению к закалочным работам – это возможность проникновения тепла на глубину (глубокая закалка). На сегодняшний день закалка ТВЧ стала довольно часто производиться именно в индукционном оборудовании.
Индукционный нагрев позволяет не просто произвести закалку ТВЧ, но дает в конечном результате изделие, которое будет обладать отменным качеством. При использовании индукционного нагрева в целях осуществления закалочных работ количество брака в производстве существенно снижается.

Пайка ТВЧ

Индукционный нагрев полезен не только для обработки металла, но и для соединения одной части изделия с другой. На сегодняшний день пайка ТВЧ стала довольно популярной и смогла вытеснить сварку на второй план. Где только появляется возможность заменить сварку пайкой, производители делают это. Чем именно вызвано такое желание? Все предельно просто. Пайка ТВЧ дает возможность получить целостное изделие, которое будет обладать высокой прочностью.
Пайка ТВЧ получается целостной за счет прямого (бесконтактного) проникновения тепла в изделие. Для нагрева металла не требуется стороннее вмешательства в его структуру, что положительно сказывается на качестве готового изделия и на его сроке эксплуатации.

Термообработка сварных швов

Термообработка сварных швов – это еще один важный технологичный процесс, с которым отлично справится индукционный нагреватель. Термообработка осуществляется для того, чтобы придать изделию повышенную прочность и разгладить напряжение металла, которое, как правило, образуется в местах соединений.
Термообработка при помощи индукционного нагрева производится в три этапа. Каждый из них очень важен, ведь если упустить что-то, то впоследствии качество изделия станет другим и его срок эксплуатации снизится.
Индукционный нагрев положительно сказывается на металле, позволяя равномерно проникать на заданную глубину и разглаживать напряжение, образовавшееся во время произведения сварочных работ.

Ковка, пластика, деформация

Индукционный нагрев преимущества и недостатки

У каждой вещи есть преимущества и недостатки, хорошие и плохие стороны. Индукционный нагрев имеет как плюсы, так и минусы. Однако минусы индукционного нагрева настолько ничтожны, что не видны за огромным количеством преимуществ.
Так как недостатков у индукционного нагрева меньше, сразу же перечислим их:

  1. Некоторые установки являются довольно сложными и для их программирования необходимо квалифицированный персонал, который сможет обслуживать установку (осуществлять ремонт, чистку, программировать).
  2. Если индуктор и заготовка плохо согласованы между собой, то потребуется куда больше мощности нагрева, чем если выполнять похожую задачу в электрической установке.

Как видите, недостатков действительно немного и они не оказывают сильное влияние на принятие решение в пользу использования индукционного нагрева.
Достоинств индукционный нагрев имеет гораздо больше, но мы укажем только главные:

  • Скорость нагрева изделия очень высокая. Индукционный нагрев практически сразу приступает к обработке металлического изделия, никаких промежуточных этапов прогрева оборудования не требуется.
  • Нагрев изделия может производиться в любой воссозданной среде: в атмосфере защитного газа, в окислительной, в восстановительной, в вакуумной и в непроводящей жидкости.
  • Индукционная установка обладает сравнительно небольшими размерами, благодаря чему довольно удобна в эксплуатации. Если возникает необходимость, то индукционное оборудование можно перевезти на место проведения работ.
  • Нагрев металла производится через стенки защитной камеры, которая изготавливается из материалов способных пропускать вихревые токи, поглощая незначительное количество. Во время работы индукционное оборудование не нагревается, поэтому оно признано пожаробезопасным.
  • Так как нагрев металла производится при помощи электромагнитного излучения, загрязнение самой заготовки и окружающей атмосферы отсутствует. Индукционный нагрев был по праву признан экологически безопасным. Он не причиняет абсолютно никакого вреда сотрудникам предприятия, которые будут находиться в цеху во время работы установки.
  • Индуктор может быть изготовлен практически любой сложной формы, что позволит подогнать его под габариты и форму изделия, чтобы нагрев получился более качественным.
  • Индукционный нагрев позволяет просто производить избирательный нагрев. Если нужно прогреть какую-то конкретную область, а не все изделие, то достаточно будет разместить в индукторе только ее.
  • Качество обработки при помощи индукционного нагрева получается отменным. Количество брака в производстве существенно снижается.
  • Индукционный нагрев позволяет экономить электрическую энергию и другие производственные ресурсы.

Как видите, достоинств у индукционного нагрева очень много. Выше были указаны лишь основные, которые оказали серьезное воздействие на решение многих владельцев приобрести индукционные установки для термообработки металла.

НПП «ЭЛСИТ»

Среди технологических процессов, которые используются при изготовлении различных деталей из металлов и сплавов, одно из ведущих мест занимает термическая обработка. Этот технологический процесс позволяет придать им необходимые физико-механические свойства за счет изменения структуры и внутреннего строения материала. Термообработка может использоваться в качестве технологической операции:

  • позволяющей существенно облегчить последующую механическую обработку деталей (промежуточная операция);
  • обеспечивающей заданные механические свойства деталей (конечная операция).

Таким образом термообработка металлов оказывает существенное влияние на производительность, качество и себестоимость изготовления деталей в машиностроении и металлургии. При этом выбор метода нагрева играет определяющее значение, во многом влияющее на технико-экономические характеристики производства.
Среди существующих промышленных методов нагрева, индукционный (бесконтактный) нагрев считается наиболее эффективным и выгодным.

Установки индукционного нагрева - историческая справка

Исследования, связанные с бесконтактным нагревом металла, были начаты в 1841 году после того, как физики Э.Ленц (Россия) и Д.Джоуль (Англия) одновременно сформулировали количественную оценку теплоты, выделяемой при действии электрического тока. Впервые индукционная печь была изготовлена в Швеции (1900). Предназначалась она для плавки стали путем нагрева стали электрическим током, который индуцируется переменным магнитным полем.

Метод индукционного нагрева

Традиционные методы нагрева в газовых, мазутных и прочих печах обеспечивают нагрев металла, помещенного в зону воздействия высокой температуры, путем теплопередачи (косвенный нагрев). В отличие от них индукционный метод использует энергию магнитного потока. Под его действием в металле возникают индуцированные токи, которые и осуществляют нагрев детали. Его эффективность зависит от:

  • скорости (частоты) изменения магнитного поля;
  • типа металла;
  • мощности источника электрического тока.

Высокая эффективность индукционного метода обеспечивается за счет получения максимальной температуры внутри металла, а не на его поверхности. При этом переход от индукционного нагрева к нагреву с помощью теплопередачи происходит на глубине проникновения электрического тока, которая зависит от частоты изменения магнитного поля, создаваемого индукционной установкой. Чем ниже эта частота, тем глубже проникновение индукционных токов.

Установки индукционного нагрева. Классификация и конструктивное исполнение.

Классификация.
Согласно существующей классификации различают установки:
Среднечастотные (СЧ), работают в частотном диапазоне от 0,5 до 20 кГц. Глубина горячего проникновения индукционного поля не превышает 10 мм. Среди них различают:

  • высоковольтные (СЧВ) - с напряжением от 100 до 550 В и выходным током 100 - 200 А. При использовании JGBT транзисторов мощность установок может достигать 5 МВт. Использование - плавка черных и цветных металлов, глубокий нагрев при горячей штамповке и закалке на максимальную глубину;
  • низковольтные (СЧН) - с напряжением до 100 В, выходным током от 3000 до 10000 А и мощностью до 500 кВт. Область применения - кузнечные нагреватели и термообработка деталей большого размера.

Высокочастотные (ВЧ), использующие частотный диапазон от 20 до 100 кГц. Обеспечивают глубину проникновения индукционного поля до 3 мм. Более глубокий нагрев происходит за счет теплопередачи (увеличение времени нагрева). Выходная мощность - от 15 до 80 кВт. Использование JGBT транзисторов позволяет увеличить мощность до 1МВт. Область применения - поверхностная закалка деталей, плавка цветных металлов, сварка прямошовных стальных труб и пр.
Сверхвысокочастотные (СВЧ), работающие на частотах от 100 кГц до 2 МГц. Обеспечивают проникновение индукционного поля на глубину до 1 мм. Изготавливаются на JGBT или MOSFET транзисторах и обеспечивают выходную мощность в диапазоне от 3,5 до 500 кВт. Область применения - закалка небольших длинномерных деталей и проволоки, локальная пайка малогабаритных деталей.
Конструктивное исполнение.
В общем случае установка индукционного нагрева выполняется в металлическом кожухе сравнительно небольшого размера. В кожухе смонтирован электрический генератор и катушка индуктивности, магнитное поле которой передается нагреваемой детали. В процессе работы катушка индуктивности и силовые элементы генератора сильно нагреваются, поэтому каждая установка должна быть оборудована системой водяного охлаждения. Кроме того, современные агрегаты индукционного нагрева оснащаются микропроцессорным управлением, контролирующим подачу электрического тока и жидкокристаллическим дисплеями, на которых отражаются параметры нагрева.

Преимущества установок индукционного нагрева

Промышленные приборы индукционного нагрева, выпускаемые в настоящее время, эффективнее своих предшественников по многим показателям, среди которых:
экономия электроэнергии (не нуждаются в предварительном прогреве, быстрый нагрев деталей и пр.);
высокий КПД:
- транзисторных - более 95%;
- тиристорных - до 92%;
автоматизация рабочих процессов;
срок эксплуатации не менее 10 лет;
комфортные условия труда.
Кроме того, технологические процессы, связанные с индукционным нагревом, считаются экологически чистыми и безопасными.

Индукционный нагрев, основные принципы и технологии.

Индукционный нагрев (Induction Heating) — метод бесконтактного нагрева токами высокой частоты (англ. RFH — radio-frequency heating, нагрев волнами радиочастотного диапазона) электропроводящих материалов.

Индукционный нагрев - это нагревание материалов электрическими токами, которые индуцируются переменным магнитным полем. Следовательно - это нагрев изделий из проводящих материалов (проводников) магнитным полем индукторов (источников переменного магнитного поля). Индукционный нагрев проводится следующим образом. Электропроводящая (металлическая, графитовая) заготовка помещается в так называемый индуктор, представляющий собой один или несколько витков провода (чаще всего медного). В индукторе с помощью специального генератора наводятся мощные токи различной частоты (от десятка Гц до нескольких МГц), в результате чего вокруг индуктора возникает электромагнитное поле. Электромагнитное поле наводит в заготовке вихревые токи. Вихревые токи разогревают заготовку под действием джоулева тепла (см. закон Джоуля-Ленца).

Система «индуктор-заготовка» представляет собой бессердечниковый трансформатор, в котором индуктор является первичной обмоткой. Заготовка является вторичной обмоткой, замкнутой накоротко. Магнитный поток между обмотками замыкается по воздуху.

На высокой частоте вихревые токи вытесняются образованным ими же магнитным полем в тонкие поверхностные слои заготовки Δ (Поверхностный-эффект), в результате чего их плотность резко возрастает, и заготовка разогревается. Нижерасположенные слои металла прогреваются за счёт теплопроводности. Важен не ток, а большая плотность тока. В скин-слое Δ плотность тока уменьшается в e раз относительно плотности тока на поверхности заготовки, при этом в скин-слое выделяется 86,4 % тепла (от общего тепловыделения. Глубина скин-слоя зависит от частоты излучения: чем выше частота, тем тоньше скин-слой. Также она зависит от относительной магнитной проницаемости μ материала заготовки.

Для железа, кобальта, никеля и магнитных сплавов при температуре ниже точки Кюри μ имеет величину от нескольких сотен до десятков тысяч. Для остальных материалов (расплавы, цветные металлы, жидкие легкоплавкие эвтектики, графит, электролиты, электропроводящая керамика и т. д.) μ примерно равна единице.

Например, при частоте 2 МГц глубина скин-слоя для меди около 0,25 мм, для железа ≈ 0,001 мм.

Индуктор сильно нагревается во время работы, так как сам поглощает собственное излучение. К тому же он поглощает тепловое излучение от раскалённой заготовки. Делают индукторы из медных трубок, охлаждаемых водой. Вода подаётся отсасыванием — этим обеспечивается безопасность в случае прожога или иной разгерметизации индуктора.

Применение:
Сверхчистая бесконтактная плавка, пайка и сварка металла.
Получение опытных образцов сплавов.
Гибка и термообработка деталей машин.
Ювелирное дело.
Обработка мелких деталей, которые могут повредиться при газопламенном или дуговом нагреве.
Поверхностная закалка.
Закалка и термообработка деталей сложной формы.
Обеззараживание медицинского инструмента.

Высокоскоростной разогрев или плавление любого электропроводящего материала.

Возможен нагрев в атмосфере защитного газа, в окислительной (или восстановительной) среде, в непроводящей жидкости, в вакууме.

Нагрев через стенки защитной камеры, изготовленной из стекла, цемента, пластмасс, дерева — эти материалы очень слабо поглощают электромагнитное излучение и остаются холодными при работе установки. Нагревается только электропроводящий материал — металл (в том числе расплавленный), углерод, проводящая керамика, электролиты, жидкие металлы и т. п.

За счёт возникающих МГД усилий происходит интенсивное перемешивание жидкого металла, вплоть до удержания его в подвешенном состоянии в воздухе или защитном газе — так получают сверхчистые сплавы в небольших количествах (левитационная плавка, плавка в электромагнитном тигле).

Поскольку разогрев ведётся посредством электромагнитного излучения, отсутствует загрязнение заготовки продуктами горения факела в случае газопламенного нагрева, или материалом электрода в случае дугового нагрева. Помещение образцов в атмосферу инертного газа и высокая скорость нагрева позволят ликвидировать окалинообразование.

Удобство эксплуатации за счёт небольшого размера индуктора.

Индуктор можно изготовить особой формы — это позволит равномерно прогревать по всей поверхности детали сложной конфигурации, не приводя к их короблению или локальному непрогреву.

Легко провести местный и избирательный нагрев.

Так как наиболее интенсивно разогрев идет в тонких верхних слоях заготовки, а нижележащие слои прогреваются более мягко за счёт теплопроводности, метод является идеальным для проведения поверхностной закалки деталей (сердцевина при этом остаётся вязкой).

Лёгкая автоматизация оборудования — циклов нагрева и охлаждения, регулировка и удерживание температуры, подача и съём заготовок.

Установки индукционного нагрева:

На установках с рабочей частотой до 300 кГц используют инверторы на IGBT-сборках или MOSFET-транзисторах. Такие установки предназначены для разогрева крупных деталей. Для разогрева мелких деталей используются высокие частоты (до 5 МГц, диапазон средних и коротких волн), установки высокой частоты строятся на электронных лампах.

Также для разогрева мелких деталей строятся установки повышенной частоты на MOSFET-транзисторах на рабочие частоты до 1,7 МГц. Управление транзисторами и их защита на повышенных частотах представляет определённые трудности, поэтому установки повышенной частоты пока ещё достаточно дороги.

Индуктор для нагрева мелких деталей имеет небольшие размеры и небольшую индуктивность, что приводит к уменьшению добротности рабочего колебательного контура на низких частотах и снижению КПД, а также представляет опасность для задающего генератора (добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью слишком хорошо «накачивается» энергией, образует короткое замыкание по индуктору и выводит из строя задающий генератор). Для повышения добротности колебательного контура используют два пути:
- повышение рабочей частоты, что приводит к усложнению и удорожанию установки;
- применение ферромагнитных вставок в индукторе; обклеивание индуктора панельками из ферромагнитного материала.

Так как наиболее эффективно индуктор работает на высоких частотах, промышленное применение индукционный нагрев получил после разработки и начала производства мощных генераторных ламп. До первой мировой войны индукционный нагрев имел ограниченное применение. В качестве генераторов тогда использовали машинные генераторы повышенной частоты (работы В. П. Вологдина) или искровые разрядные установки.

Схема генератора может быть в принципе любой (мультивибратор, RC-генератор, генератор с независимым возбуждением, различные релаксационные генераторы), работающей на нагрузку в виде катушки-индуктора и обладающей достаточной мощностью. Необходимо также, чтобы частота колебаний была достаточно высока.

Например, чтобы «перерезать» за несколько секунд стальную проволоку диаметром 4 мм, необходима колебательная мощность не менее 2 кВт при частоте не менее 300 кГц.

Выбирают схему по следующим критериям: надёжность; стабильность колебаний; стабильность выделяемой в заготовке мощности; простота изготовления; удобство настройки; минимальное количество деталей для уменьшения стоимости; применение деталей, в сумме дающих уменьшение массы и габаритов, и др.

На протяжении многих десятилетий в качестве генератора высокочастотных колебаний применялась индуктивная трёхточка (генератор Хартли, генератор с автотрансформаторной обратной связью, схема на индуктивном делителе контурного напряжения). Это самовозбуждающаяся схема параллельного питания анода и частотно-избирательной цепью, выполненной на колебательном контуре. Она успешно использовалась и продолжает использоваться в лабораториях, ювелирных мастерских, на промышленных предприятиях, а также в любительской практике. К примеру, во время второй мировой войны на таких установках проводили поверхностную закалку катков танка Т-34.

Недостатки трёх точки:

Низкий кпд (менее 40 % при применении лампы).

Сильное отклонение частоты в момент нагрева заготовок из магнитных материалов выше точки Кюри (≈700С) (изменяется μ), что изменяет глубину скин-слоя и непредсказуемо изменяет режим термообработки. При термообработке ответственных деталей это может быть недопустимо. Также мощные твч-установки должны работать в узком диапазоне разрешённых Россвязьохранкультурой частот, поскольку при плохом экранировании являются фактически радиопередатчиками и могут оказывать помехи телерадиовещанию, береговым и спасательным службам.

При смене заготовок (например, более мелкой на более крупную) изменяется индуктивность системы индуктор-заготовка, что также приводит к изменению частоты и глубины скин-слоя.

При смене одновитковых индукторов на многовитковые, на более крупные или более малогабаритные частота также изменяется.

Под руководством Бабата, Лозинского и других учёных были разработаны двух- и трёхконтурные схемы генераторов, имеющих более высокий кпд (до 70 %), а также лучше удерживающие рабочую частоту. Принцип их действия состоит в следующем. За счёт применения связанных контуров и ослабления связи между ними, изменение индуктивности рабочего контура не влечёт сильного изменения частоты частотозадающего контура. По такому же принципу конструируются радиопередатчики.

Недостаток многоконтурных систем — повышенная сложность и возникновение паразитных колебаний УКВ-диапазона, которые бесполезно рассеивают мощность и выводят из строя элементы установки. Также такие установки склонны к затягиванию колебаний — самопроизвольному переходу генератора с одной из резонансных частот на другую.

Современные твч-генераторы — это инверторы на IGBT-сборках или мощных MOSFET-транзисторах, обычно выполненные по схеме мост или полумост. Работают на частотах до 500 кГц. Затворы транзисторов открываются с помощью микроконтроллерной системы управления. Система управления в зависимости от поставленной задачи позволяет автоматически удерживать

а) постоянную частоту
б) постоянную мощность, выделяемую в заготовке
в) максимально высокий КПД.

Например, при нагреве магнитного материала выше точки Кюри толщина скин-слоя резко увеличивается, плотность тока падает, и заготовка начинает греться хуже. Также пропадают магнитные свойства материала и прекращается процесс перемагничивания - заготовка начинает греться хуже, сопротивление нагрузки скачкообразно уменьшается - это может привести к "разносу" генератора и выходу его из строя. Система управления отслеживает переход через точку Кюри и автоматически повышает частоту при скачкообразном уменьшении нагрузки (либо уменьшает мощность).

Индуктор по возможности необходимо располагать как можно ближе к заготовке. Это не только увеличивает плотность электромагнитного поля вблизи заготовки (пропорционально квадрату расстояния), но и увеличивает коэффициент мощности Cos(φ).

Увеличение частоты резко уменьшает коэффициент мощности (пропорционально кубу частоты).

При нагреве магнитных материалов дополнительное тепло также выделяется за счет перемагничивания, их нагрев до точки Кюри идет намного эффективнее.

При расчёте индуктора необходимо учитывать индуктивность подводящих к индуктору шин, которая может быть намного больше индуктивности самого индуктора (если индуктор выполнен в виде одного витка небольшого диаметра или даже части витка — дуги).

Имеются два случая резонанса в колебательных контурах: резонанс напряжений и резонанс токов.
Параллельный колебательный контур – резонанс токов.
В этом случае на катушке и на конденсаторе напряжение такое же, как у генератора. При резонансе, сопротивление контура между точками разветвления становится максимальным, а ток (I общ) через сопротивление нагрузки Rн будет минимальным (ток внутри контура I-1л и I-2с больше чем ток генератора).

В идеальном случае полное сопротивление контура равно бесконечности - схема не потребляет тока от источника. При изменение частоты генератора в любую сторону от резонансной частоты полное сопротивление контура уменьшается и линейный ток (I общ) возрастает.

Последовательный колебательный контур – резонанс напряжений.

Главной чертой последовательного резонансного контура является то, что его полное сопротивление минимально при резонансе. (ZL + ZC – минимум). При настройке частоты на величину, превышающую или лежащую ниже резонансной частоты, полное сопротивление возрастает.
Вывод:
В параллельном контуре при резонансе ток через выводы контура равен 0, а напряжение максимально.
В последовательном контуре наоборот - напряжение стремится к нулю, а ток максимален.

Индукционный нагрев в промышленности

Статья 1 Опубликована в журнале «Индустрия» №3 (85) /2014 г.

Использование индукционного нагрева
зависит только от вашего воображения.

sheff.jpg

Часто сталкиваясь с тем, что современными предприятиями руководят экономисты и управленцы по образованию, я ставлю перед собой цель рассказать простыми словами о применении индукционного нагрева в промышленности. За семь лет работы с индукционным промышленным оборудованием, у меня скопился большой объем информации по индукционному нагреву. Надеюсь, она будет полезна и руководителям и техническим специалистам.

Физика индукционного нагрева

Для понимания, что такое индукционный нагрев, придется немного рассказать о физике этого процесса. Любая индукционная установка представляет собой преобразователь промышленного электрического тока в ток более высокой частоты, главной особенностью этого преобразования является то, что индукционный нагрев металлов осуществляется только на резонансной частоте. Параметры резонанса в основном задаются индуктивностью и емкостью самой установки. Однако, к индукционным установкам подключают индукционные катушки, так называемые индукторы разной конструкции, которые имеют различную индуктивность. Да к тому же металлы в процессе нагрева меняют свои свойства. Вот и приходится индукционной установке постоянно подстраивать собственную резонансную частоту, что бы работать с максимальным КПД.

Ранее промышленность использовала ламповые и машинные преобразователи частоты, которые автоматически не могли подстраивать резонансную частоту генерации. Ее изменяли с помощью коммутации конденсаторных батарей, что было крайне неудобно. Современные индукционные генераторы оснащают ключевыми элементами на базе тиристоров и транзисторов. Транзисторные генераторы могут менять частоту резонанса в достаточно широких пределах, иногда в несколько раз. Что позволяет подключать к ним индукторы с различным количеством витков. Тиристорные генераторы так же могут подстраивать резонансную частоту в пределах нескольких десятков процентов.

Главной задачей индукционного нагревателя является создание в индукторе электрических токов высокой частоты и большой силы. В зависимости от поставленных задач и количества витков индуктора напряжение на индукторе может достигать 1500 вольт и токов в несколько сотен ампер при последовательном резонансе. Или 20-100 вольт при токах до 12.000 ампер при использовании понижающего трансформатора.

Понятно, что такие токи вызывают сильный нагрев электрических проводников, индукторов, полупроводниковых транзисторов и диодов, трансформаторов и конденсаторов самой установки. Именно поэтому большинство современных индукционных установок имеют водяное охлаждение. По сути это две взаимодействующие друг с другом системы, с одной стороны электрическая, а с другой сантехническая – водопроводная. И сбой в работе любой из этих систем приводит к выходу из строя индукционного оборудования в целом. Ремонт индукционных установок стоит недешево. Сборки транзисторов, так называемые IGBT модули, стоят до 10 тысяч рублей, а их иногда выгорает несколько. Выгорание обмоток высокочастотных трансформаторов требует ремонта стоимостью в десятки тысяч рублей. Могу дать совет, купите для своей индукционной установки мощный насос и хорошую систему охлаждения и будете избавлены от множества неприятностей в будущем.

После того, как генератор возбудил в индукторе электрический ток, который в свою очередь создал в нем магнитное поле высокой интенсивности, встает задача максимально передать эту энергию в нагреваемую металлическую деталь. Понятно, что чем ближе деталь располагается к виткам индуктора, тем большее количество энергии в нее попадет. Причем лучшими условиями для нагрева является расположение детали внутри индуктора. Магнитное поле индуктора возбуждает в любом металле вторичные вихревые токи, их еще называют токи Фуко, которые в свою очередь интенсивно нагревают поверхность токопроводящей детали. Глубина этого нагрева зависит от частоты генерации и, как правило, составляет от 0,1 мм до 10 мм. Металлы, обладающие ферромагнитными свойствами, в том числе железо и никель, нагреваются не только за счет токов Фуко, но и за счет перемагничивания ферромагнитных доменов. Однако по достижении температуры точки Кюри, примерно 760 градусов Цельсия, ферромагнитная составляющая индукционного нагрева исчезает и остается только нагрев за счет токов Фуко. Причем, интенсивность этого нагрева растет с ростом температуры, т.к. увеличивается омическое сопротивление металла.

Когда же необходим индукционный нагрев на глубины более 10 мм, например, объемный нагрев для горячей штамповки, дальнейший нагрев вглубь металла происходит только за счет теплопередачи. А это процесс достаточно медленный, например, для нагрева стальной заготовки диаметром 40 мм на частоте 6 кГц с разницей температуры по всему объему металла в 100 градусов Цельсия потребуется 58 секунд. Если же есть потребность нагревать большее количество заготовок, соответственно большее их количество должно нагреваться одновременно. Такое индукционное оборудование называется Индукционный кузнечный нагреватель, сокращенно ИКН.

Индукционный нагрев всегда значительно эффективнее и быстрее остальных видов нагрева за счет того, что максимальная температура создается не на поверхности детали, а на глубине проникновения электрического поля, в месте перехода индукционного нагрева в нагрев с помощью теплопередачи. А глубина проникновения электрического поля зависит от частоты генерации индукционной установки. И чем она ниже, тем глубже расположена эта граница, и тем интенсивнее идет прогрев вглубь металла. На современных среднечастотных транзисторных индукционных установках с частотой генерации 3-5 кГц (после прохождения точки Кюри) глубина горячего проникновения индукционного поля в металл достигает 10 мм.

Инструкция по эксплуатации индукционного оборудования обычно содержит десяток - другой страниц, а вот для того, что бы научиться делать хорошие индукторы, нужно изучить не одну книгу и приобрести практические навыки. Обычно через несколько лет после покупки предприятием индукционной установки, силами своих специалистов изготавливается несколько десятков различных по конструкции индукторов для решения различных задач индукционного нагрева. Компания «Мосиндуктор», которую я возглавляю, не только щедро делится со своими покупателями литературой по индукционной тематике, но и проводит единственные в РФ «Курсы повышения квалификации высокочастотников – термистов». На этих курсах одной из главных является тема изготовления индукторов для решения конкретных технологических задач и согласование их параметров с различными индукционными установками.

Как уже упоминалось, индуктор хорошо нагревает деталь тогда, когда она расположена внутри индуктора. Это происходит потому, что распределение электрического тока по сечению индуктора неоднородно. Высокочастотные токи в индукторе вытесняются магнитным полем на поверхность проводника, именно поэтому индукторы делают из медной трубки, с толщиной стенки 1-3 мм. При этом индуктор обязательно охлаждают водой, ведь токи в тысячи ампер, протекающие через него, вызывает интенсивный нагрев.

На распределение тока в индукторе влияет также эффект близости и производный от него кольцевой эффект. Именно они приводят к концентрации электрического тока на поверхностях индуктора обращенных друг к другу и внутри кольцевого индуктора. Поэтому бывает достаточно сложно эффективно нагреть внутренние отверстия и плоскости. Однако современные магнитодиэлектрики, так называемые «магнитные зеркала», отлично справляются с задачей по вытеснению электрического тока в индукторе на нужную сторону. И позволяют решать сложнейшие задачи индукционного нагрева высокоэффективно и на малых мощностях индукционных генераторов. Компания «Мосиндуктор» предлагает к поставке керамические магнитодиэлектрики под собственной маркой «Ферроксон».

Современные индукционные установки

В 2007 году мы предложили собственную классификацию современных индукционных транзисторных нагревателей, взамен устаревшей советской. Наша классификация прижилась и сейчас, ей пользуются десятки фирм поставщиков индукционного оборудования. Она достаточно простая первые 2-3 буквы обозначают частотный диапазон индукционной установки, а последующие цифры ее мощность.

Среднечастотные - СЧ с частотным диапазоном 5-20 кГц, Высокочастотные - ВЧ, с частотами 30-100 кГц, Сверхвысокочастотные – СВЧ с диапазоном частот 100-450 кГц. Однако если с частотным диапазоном все обычно бывает в порядке, то потребляемую мощность установки при покупке нужно проверять. Однажды мы давали экспертное заключение для арбитража на индукционную установку, мощность и соответственно стоимость которой, поставщик при продаже завысил в 2,5 раза.

Проверить реально потребляемую мощность индукционного оборудования достаточно просто. Измерьте токовыми клещами входной ток одной из трех фаз индукционной установки и разделите эту величину на полтора. Вы получите примерную потребляемую мощность индукционной установки. КПД транзисторных установок свыше 95%, а тиристорных около 92%, соответственно вы можете подсчитать выходную мощность преобразователя. Однако не стоит забывать, что в месте перехода индуктор – деталь теряется не менее 30% выходной мощности. Большая ее часть утилизируется в виде тепла водой из индуктора, а меньшая часть рассеется в пространстве в виде электромагнитного излучения.

Современные транзисторные ТВЧ установки имеют множество преимуществ. Малые габариты и вес, позволяют располагать их рядом с оборудованием последующего технологического цикла. Они экономят электроэнергию, являясь современным энергосберегающим оборудованием. Имеют пренебрежимо малую мощность холостого хода и не нуждаются в прогреве, могут работать непрерывно и даже круглосуточно. Быстро нагревают заготовки изнутри. Позволяют автоматизировать и роботизировать операции закалки и отпуска сложных деталей для автомобилестроения и станкостроения.

При пайке создают самое прочное из всех видов паяных соединений, за счет вибрации с частотой генерации флюса и припоя. Идут на замену электрическим и газовым печам, обеспечивают высокую эргономику рабочего места и комфортные условия труда. При соблюдении минимальных требований охраны труда безопасны для персонала. Низкая цена позволяет окупить индукционное оборудование всего за полгода. Имеют срок эксплуатации более 10 лет, при условии своевременного обслуживания. На них легко научиться работать, навыки можно получить всего за 10 минут.

Общие меры безопасности

Ремонт индукционных установок могут выполнять только специализированные сервисные центры и их специалисты на местах установки оборудования. Поэтому покупая оборудование, поинтересуйтесь есть ли такой сервисный центр у поставщика.

Подключение индукционных установок к сети промышленного тока выполняется электриками с соответствующей группой допуска. К работе на индукционных установках не допускаются люди с имплантированными кардиостимуляторами. К индукционным катушкам мощных кузнечных нагревателей нельзя приближаться с металлическими предметами в карманах, они могут нагреться и вызвать ожоги. Электромагнитные поля, излучаемые мощными индукторами, могут являться источником электрических наводок в соседних металлоконструкциях. Во избежание поражения электрическим током все рамы, транспортеры и подставки должны быть надежно заземлены.

Мощное электромагнитное поле является одним из факторов, вызывающим предрасположенность человека к онкологическим заболеваниям. По возможности сократите время пребывания в непосредственной близости с источником электромагнитного поля. Таким источником в первую очередь являются индукционные катушки мощных плавильных печей и индукционных кузнечных нагревателей. Сила воздействия электромагнитного поля напрямую связана с частотой излучения и его мощностью. Чем выше мощность и частота, тем опаснее излучение. Советую термистам и плавильщикам, работающим на ТВЧ установках, иногда менять свою профессию.

Своевременная очистка от цеховой пыли

Современные индукционные установки охлаждаются не только водой. Часть электронных компонентов охлаждается с помощь потока воздуха, создаваемым вентилятором – кулером. Цеховой воздух, как правило, содержит много пыли. Именно она затягивается вентилятором внутрь прибора и оседает на стенках, на сильноточной и слаботочной электронике. Техническая пыль электропроводна, особенно на высоких частотах. Если периодически раз в 3-4 месяца не очищать индукционную установку и высокочастотный трансформатор от пыли, можно гарантировать электрический пробой по пыли через 2-3 года работы.

Электрический пробой начинается по пыли на высоковольтной части прибора, мгновенно происходит ионизация воздуха и он становится электропроводным. В приборе образуется шар высокотемпературной плазмы, сжигающий не только электронику, но и медные шины в палец толщиной. Прожигается корпус, взрываются конденсаторы. После подобного пробоя требуется ремонт по стоимости соизмеримый с половиной стоимости самого прибора. Периодическая очистка от пыли – единственный способ поддержания многолетней работоспособности индукционного оборудования. Удаление пыли, совсем не сложная операция. Пыль следует удалять с помощью мягкой щетки пылесоса, а в труднодоступных местах, например с обмоток ВЧ трансформатора, с помощью продувки сухим сжатым воздухом.

Лучше всего полностью избавиться от пыли, скапливающейся внутри индукционной установки с помощью особой конструкции системы охлаждения. Мощные установки, выпускаемые по евростандарту, имеют пылезащищенные шкафы и встроенные системы водяного охлаждения внутреннего воздуха. Они состоят из радиатора, по которому циркулирует вода из системы водяного охлаждения установки и вентилятора, который обеспечивает циркуляцию охлажденного воздуха через радиатор и пространство шкафа с электронными компонентами. Напротив сильно греющихся конденсаторов устанавливают дополнительные вентиляторы - кулеры.

Конечно, выводы каждый сделает сам. Кто-то предпочтет недорогое индукционное оборудование и будет за ним периодически ухаживать. А кто-то купит надежное и дорогое оборудование. Дополнительные затраты сторицей окупятся многолетней эксплуатацией без разорительных ремонтов и дополнительных затрат на обслуживание.

Обращайтесь в компанию «Мосиндуктор», у нас есть оборудование на любой вкус и кошелек.

В следующей статье я расскажу вам об особенностях использования индукционных установок различного частотного диапазона и системах охлаждения для индукционного оборудования.

Анонс цикла статей «Индукционный нагрев в промышленности»

Будут рассмотрены следующие темы: физические основы индукционного нагрева металлов, техника безопасности и обслуживание индукционного оборудования, виды индукционных установок и особенности их применения, индукционные катушки – индукторы, магнитодиэлектрики – концентраторы магнитного поля, системы охлаждения индукционных установок. Закалочные станки и автоматические закалочные линии для массовой термообработки деталей в автомобилестроении.

Будет рассказано о способах использования индукционного нагрева для решения множества технологических задач современного производства.

В области термообработки, нормализации сварных швов, пайки, объемного нагрева для горячей штамповки, плавки, кристаллизационной вытяжки из расплава, термопосадки, горячего вальцевания, гибки, сварки металлов и пластмасс, производства прямошовных труб и отводов, выращивания кристаллов, нагрева газовых смесей, плавки образцов для рентгенографического анализа, подогрева труб и кабелей перед нанесением изоляции, сжигание геттера в вакуумных лампах, сжигания металлических плавней, поджигание самоспекающихся смесей, отделение металла от резины и много другого…

Читайте также: