Иттрий металл или неметалл

Обновлено: 28.09.2024

ИТТРИЙ (от назв. селения Иттербю, Ytterby в Швеции; лат. Yttrium) Y, хим. элемент III гр. периодич. системы; ат. н. 39, ат. м. 88,9059; относится к редкоземельным элементам. Прир. И. состоит из одного стабильного изотопа 89 Y. Поперечное сечение захвата тепловых нейтронов 1,5.10 - 28 м 2 . Конфигурация внеш. электронных оболочек 4d 1 5s 2 ; степень окисления +3; энергия ионизации при последоват. переходе от Y 0 к Y 3+ соотв. 6,2171, 12,24 и 20,52 эВ; атомный радиус 0,181 нм; ионный радиус (в скобках указаны координац. числа) Y 3+ 0,104 нм (6), 0,110 нм (7), 0,116 нм (8), 0,122 нм (9). Содержание И. в земной коре 2,0.10 - 3 % по массе, в морской воде - 3.10 - 4 мг/л. Вместе с др. РЗЭ содержится в минералах ксенотиме, фергюсоните, эвксените, гадолините, браннерите, иттропаризите, иттрофлюорите, талените, иттриалите и др. Осн. пром. типы месторождений И.: россыпи, содержащие ксенотим, эвксенит и фергюсонит, гранитные пегматиты с ксенотимом и титано-тантало-ниобатами И., а также гидротермальные месторождения, связанные с субщелочными гранитоидами и содержащие ксенотим и иттропаризит. Кроме того, И. может быть получен попутно при переработке нек-рых руд U (золото-браннеритовые конгломераты, урансодержащие фосфориты, каменные и бурые угли), Th (ксенотим-ферриторитовые месторождения), Nb и Та (фергюсонитовые, эвксенитовые, самарскитовые руды). Благодаря большим масштабам переработки апатитового сырья, источниками И. можно считать апатиты, несмотря на низкое содержание в них И. Общие запасы Y 2 O 3 (без социалистич. стран) составляют 34,6 тыс. т. Главнейшие месторождения И. расположены в КНР, СССР, США, Канаде, Австралии, Индии, Малайзии, Бразилии. И. - металл светло-серого цвета; до 1482°С устойчива a-форма: решетка гексагональная типа Mg, a =0,36474 нм, с= 0,57306 нм, z = 2, пространств. группа P6 3 /mmc; рентгеновская плотн. 4,472 г/см 3 , измеренная - 4,45 г/см 3 . Выше 1482 °С устойчива р-форма: решетка кубическая типа a-Fe, а= 0,408 нм, z = 2, пространств. группа Im3m; DH 0 перехода a : b 4,98 кДж/моль. Т. пл. 1528°С, т. кип. ок. 3320 °С; С 0 p 26,52 Дж/(моль. К); DH 0 пл 11,32 кДж/моль, DH 0 возг 423,0 кДж/моль; S 0 298 44,43 Дж/(моль. К); давление пара 6,15.10 - 2 Па (1700 К); температурный коэф. линейного расширения 1,08.10 - 5 К - 1 ; r 6,5.10 - 7 Ом. м; парамагнитен, магн. восприимчивость +2,15.10 - 6 (292 К), 2,43.10 - 6 (90 К); твердость по Бринеллю 628 МПа; модуль упругости 66 ГПа; модуль сдвига 264 ГПа; коэф. Пуассона 0,265; коэф. сжимаемости 26,8.10 - 7 см 2 /кг. Легко поддается мех. обработке. И. куют и прокатывают до лент толщиной 0,05 мм на холоду с промежут. отжигом в вакууме при 900-1000 °С. На воздухе И. покрывается тонкой устойчивой пленкой оксидов, при 370-425 °С образуется черная плотно пристающая оксидная пленка; интенсивное окисление начинается выше 760 °С. Компактный металл медленно окисляется кислородом воздуха в кипящей воде, легко реагирует с минер. к-тами и медленно с уксусной к-той, относительно инертен к фтористоводородной к-те. И. взаимод. с Н 2 при 315-1540°С, образуя гидриды разл. состава. При 760 °С соединяется с N 2 , давая нитрид YN, при нагр. реагирует также с галогенами, С, S, Р. Ниже приводятся сведения о наиб. важных соед. И. Оксид (сесквиоксид) Y 2 О 3 - бесцв. кристаллы; при обычном давлении существует в двух кристаллич. модификациях: с кубич. решеткой типа Тl 2 О 3 (а= 1,061 нм, z = 16, пространств. группа Iа3) и с гексагональной (а= 0,381 нм, с =0,609 нм, z = 1, пространств. группа Гранаты синтетические), оксисульфида и ортованадата И. Иттрий-бариевая керамика (оксокупрат И., бария состава YBa 2 Cu 3 O 7 _ x ) - высокотемпературный сверхпроводящий материал с т-рой перехода в сверхпроводящее состояние ~ 90-100 К; при х =0,31 кристаллизуется в ромбич. сингонии (а= 0,38829 нм, b= 0,38223 нм, с =1,1690 нм, пространств. группа Рттт); получают спеканием Y 2 O 3 , BaO и СuО при 950-1100 °С в атмосфере О 2 , методами криохим. технологии и др. Трифторид YF 3 - бесцв. кристаллы; существует в двух модификациях: с ромбич. решеткой типа Fe 3 C (a =0,6367 нм, b =0,6859 нм, с =0,4394 нм, z = 4, пространств. группа Рпта; рентгеновская плотн. 5,069 г/см 3 ) до 1077°С и гексагональной (а = 0,412 нм, с= 0,423 нм, z = 1, пространств. группа Р3т1) выше 1077 °С; т. пл. 1155°С, т. кип. 2230 °С; С 0 p 94,9 Дж/(моль. К); DH 0 обр -1718 кДж/моль; S 0 298 100 Дж/(моль. К); образует кристаллогидраты. Получают гидраты осаждением из р-ров солей И. при действии фтористоводородной к-ты, безводную соль обезвоживанием гидратов, взаимод. Y 2 O 3 с газообразным HF или F 2 , разложением фтораммонийных комплексов при 400-500 °С. Используют при получении И. металлотермич. способом; Li[YF 4 ], легированный Но, - лазерный материал. Трихлорид YCl 3 - бесцв. гигроскопичные кристаллы с моноклинной решеткой типа АlСl 3 ( а =0,692 нм, b =1,192 нм, с= 0,644 нм, b = 111,0°, z = 4, пространств. группа С2/m); т. пл. 721 °С, т. кип. 1482 °С; измеренная плотн. 2,8 г/см 3 (18 °С), рентгеновская 2,61 г/см 3 ; С 0 p 92,1 Дж/(моль. К); DH 0 обр -1000 кДж/моль; S 0 298 113 Дж/(моль. К); хорошо раств. в воде; образует кристаллогидраты. Получают взаимод. смеси Сl 2 и ССl 4 с Y 2 O 3 или Y 2 (C 2 O 4 ) 3 выше 200 °С, хлорированием И. выше 100 °С и др. М. б. использован для получения чистого И. металл отермич. способом. Гидроксид Y(OH) 3 - бесцв. творожистый осадок, сильно гидратированный. Образуется при обработке водорастворимых солей И. щелочами (начинает осаждаться при рН 6,5-7,0). Подвергается старению; в присут. СО 2 превращ. в гидратированные основные карбонаты И. Водорастворимые соли И. - хлорид, нитрат, перхлорат, сульфат, ацетат, формиат и др. при упаривании р-ра выделяются в форме кристаллогидратов, напр.: Y(NO 3 ) 3 .6Н 2 О, Y 2 (SO 4 ) 3 .8H 2 O. В разб. водных р-рах соли И. гидролизуются с образованием основных солей. При прокаливании солей кислородсодержащих к-т они переходят в оксид. Важнейшие комплексные соед. И. - нитраты, сульфаты, хлориды, фториды, b-дикетонаты и др. Соед. с монодентатными лигандами малоустойчивы и в р-рах обычно полностью диссоциируют. Однако полидентатные лиганды (комплексоны, гидроксикислоты, b-дикетоны и др.) образуют с И. комплексные соед. высокой устойчивости. Координац. число И. в комплексных соед. с полидентатными лигандами обычно больше шести. В ряду РЗЭ по величине атомного и ионного радиусов И. занимает место между Тb и Dy. Однако в зависимости от состава и строения комплексных соед. по величине константы устойчивости комплексов И. иногда "перемещается" в сторону легких РЗЭ и может при разделении образовывать общие фракции даже с Sm. "Перемещение" И. в ряду РЗЭ с изменением природы лиганда считают перспективным для разработки эффективных методов выделения и очистки И. из смесей РЗЭ. Соед. И. извлекают из смесей с соед. др. РЗЭ экстракцией и ионным обменoм. Металлич. И. получают восстановлением безводных галогенидов И. литием или кальцием с послед. отгонкой примесей. И. - легирующая и модифицирующая добавка к чугунам, сталям и сплавам. Его используют при получении высокопрочного чугуна (с шаровидным графитом), нержавеющих и жаростойких хромистых сталей. И. повышает жаростойкость и жаропрочность сплавов на основе Ni, Co, Cr, Nb и др., увеличивает прочность и пластичность тугоплавких металлов и сплавов на основе W, Hf, Zr, Mo, Та, упрочняет титановые, медные и др. сплавы, входит в состав сплавов на основе Mg и Аl, используемых в авиационной технике. В электронике и радиотехнике сплавы И. с La, Al, Zr применяют в качестве геттеров. Из тугоплавких и огнеупорных материалов на основе боридов, сульфидов и оксидов И. изготовляют катоды для мощных генеpаторов. Ортованадат и оксисульфид И., активированные Еu, - красные люминофоры для цветного телевидения, оксисульфид, активированный Тb, - люминофор для мед. диагностики, алюминат И. - лазерный материал. В 1794 Ю. Гадолин выделил из минерала иттербита оксид элемента, к-рый он назвал И. Однако в 1843 К. Мосандер показал, что этот оксид на самом деле является смесью оксидов Y, Еr и Тb, и выделил из этой смеси Y 2 O 3 . Металлич. (нечистый) И. впервые получил Ф. Вёлер в 1828. Лит.: см. при ст. Редкоземельные элементы. Л. И. Мартыненко. С. Д. Моисеев. Ю. М. Киселев.

Химическая энциклопедия. — М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Полезное

Смотреть что такое "ИТТРИЙ" в других словарях:

иттрий — иттрий, я … Русский орфографический словарь

ИТТРИЙ — (греч.). Металл группы алюминия в виде мелких, темно серых, блестящих чешуек. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ИТТРИЙ греч. Металл в виде мелких, темносерых, блестящих пластинок. Объяснение 25000… … Словарь иностранных слов русского языка

Иттрий — Y (от назв. селения Иттербю, Ytterby, в Швеции * a. yttrium; н. Ittrium; ф. yttrium; и. itrio), хим. элемент III группы периодич. системы Mенделеева, ат.н. 39, ат. м. 88,9059; относится к редкоземельным элементам. B природе один… … Геологическая энциклопедия

ИТТРИЙ — (Yttrium), Y, химический элемент III группы периодической системы, атомный номер 39, атомная масса 88,9059; относится к редкоземельным элементам; металл. Иттрий открыт финским химиком Ю. Гадолином в 1794, впервые получен немецким химиком Ф.… … Современная энциклопедия

ИТТРИЙ — (символ Y), серебристо серый металлический элемент III группы периодической таблицы. Впервые выделен в 1828 г. Встречается наряду с элементами группы ЛАНТАНОИДОВ в монацитовых песках, в минералах бастнезите и гадолините; сходен с лантаноидами по… … Научно-технический энциклопедический словарь

Иттрий — (Yttrium), Y, химический элемент III группы периодической системы, атомный номер 39, атомная масса 88,9059; относится к редкоземельным элементам; металл. Иттрий открыт финским химиком Ю. Гадолином в 1794, впервые получен немецким химиком Ф.… … Иллюстрированный энциклопедический словарь

ИТТРИЙ — (лат. Yttrium) Y, химический элемент III группы периодической системы, атомный номер 39, атомная масса 88,9059, относится к редкоземельным элементам. Назван по минералу иттербиту (гадолиниту), найденному около селения Иттербю в Швеции (как и… … Большой Энциклопедический словарь

ИТТРИЙ — (Yttrium), Y, редкоземельный хим. элемент III группы периодич. системы элементов, ат. номер39, ат. масса 88,9059. В природе представлен стабильным 89Y. Электронная конфигурация двух внеш. оболочек 4s2p6d15s2. Энергии последоват. ионизации… … Физическая энциклопедия

иттрий — сущ., кол во синонимов: 2 • металл (86) • элемент (159) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

Иттрий — (хим.) вместе со скандием, лантаном и иттербием являетсяпредставителем элементов III ей группы периодической системы, составляявместе с этими металлами более основную подгруппу … Энциклопедия Брокгауза и Ефрона

Иттрий — (Y) химический элемент III группы периодической системы, атомный номер 39, атомная масса 88,91; относится к редкоземельным элементам; имеет малое сечение захвата тепловых нейтронов, вследствие чего применяется в атомной технике. Термины атомной… … Термины атомной энергетики

ИТТРИЙ

(Yttrium), Y,- редкоземельный хим. элемент III группы периодич. системы элементов, ат. номер39, ат. масса 88,9059. В природе представлен стабильным 89 Y. Электронная конфигурация двух внеш. оболочек 4s 2 p 6 d 1 5s 2 . Энергии последоват. ионизации соответственно равны 6,217, 12,24 и 20,52 эВ. Кристаллохим. радиус атома Y 0,181 нм, иона Y 3+ 0,097 нм. Значение электроотрицательности 1,21.В свободном виде - серебристо-белый металл. Кристаллич. решётка a-Y гексагональная плотноупакованная с параметрами решётки а=0,36474 нм и c=0,57306 нм; при 1480 °С переходит в b-Y с кубич. объёмноцентрированной решёткой (а=0,408 нм). Плотн. a-Y 4,469 кг/дм 3 , t пл =1528 °С, t кип =3322 °С. Теплота плавления 11,39 кДж/моль, теплота возгонки 404,5 кДж/моль, теплота кипения 362,4 кДж/моль. Уд. сопротивление 6,9.10 -6 Ом. -6 К -1 , уд. теплоёмкость 0,31 кДж/кг. -28 м 2 ) позволяет использовать И. как конструкционный материал в атомной промышленности. Из сплавов Y с Be изготовляют отражатели и замедлители нейтронов, работающие при темп-рах св. 1000 °С. Добавление И. к алюминиевым сплавам повышает их прочность. Примесь 1% И. в стали существенно повышает её устойчивость к окислению, добавка И. к ванадию улучшает его пластичность. И. входит в состав разл. люминофоров, в т. ч. кооперативных люминофоров и "красных" люминофоров для цветного телевидения. Иттриевые ферриты используют в радиоэлектронике. Мн. соединения И. являются лазерными материалами. Из искусств. радионуклидов И. наиб. значение имеют b - -радиоактивные 90 Y (Т 1/4 =64,4 ч) и 91 Y (T 1/2 =58,51 сут), содержащиеся в продуктах деления, а также получаемый на циклотроне 88 Y (электронный захват и b + -распад, T 1/2 =106,6 сут).С. С. Бердоносов.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .

Yttrium sublimed dendritic and 1cm3 cube.jpg


Светло-серебристый редкоземельный металл

И́ттрий / Yttrium (Y), 39

1,22 (шкала Полинга)

И́ттрий — элемент побочной подгруппы третьей группы пятого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 39. Обозначается символом Y (лат. Yttrium ). Простое вещество иттрий (CAS-номер: 7440-65-5) — металл светло-серого цвета. Существует в двух кристаллических модификациях: α-Y с гексагональной решёткой типа магния, β-Y с кубической объёмноцентрированной решёткой типа α-Fe, температура перехода α↔β 1482 °C [1] .

Содержание

История

В 1794 году финский химик Юхан (Иоганн) Гадолин (1760—1852) выделил из минерала иттербита оксид элемента, который он назвал иттрием — по названию шведского населённого пункта Иттербю, находящегося на острове Ресарё, входящем в Стокгольмский архипелаг (иттербит был найден здесь в заброшенном карьере). В 1843 году Карл Мосандер доказал, что этот оксид на самом деле является смесью оксидов иттрия, эрбия и тербия и выделил из этой смеси Y2O3. Металлический иттрий, содержащий примеси эрбия, тербия и других лантаноидов, был получен впервые в 1828 году Фридрихом Велером.

Нахождение в природе

Иттрий — химический аналог лантана. Кларк 26 г/т, содержание в морской воде 0,0003 мг/л [3] . Иттрий почти всегда содержится вместе с лантаноидами в минеральном сырье. Несмотря на неограниченный изоморфизм, в группе редких земель в определённых геологических условиях возможна раздельная концентрация редких земель иттриевой и цериевой подгрупп. Например, с щелочными породами и связанными с ними постмагматическими продуктами преимущественное развитие получает цериевая подгруппа, а с постмагматическими продуктами гранитоидов с повышенной щёлочностью — иттриевая. Большинство фторкарбонатов обогащено элементами цериевой подгруппы. Многие тантало-ниобаты содержат иттриевую подгруппу, а титанаты и титано-тантало-ниобаты — цериевую. Главнейшие минералы иттрия — ксенотим YPO4, гадолинит Y2FeBe2Si2O10.

Месторождения

Главные месторождения иттрия расположены в Китае, Австралии, Канаде, США, Индии, Бразилии, Малайзии [4] .

Получение

Соединения иттрия получают из смесей с другими редкоземельными металлами экстракцией и ионным обменом. Металлический Y получают восстановлением безводных галогенидов иттрия литием или кальцием c последующей отгонкой примесей.

Физические свойства

Иттрий — металл светло-серого цвета. Существует в двух кристаллических модификациях: α-Y с гексагональной решёткой типа магния (a=3,6474 Å; с=5,7306 Å; z=2; пространственная группа P63/mmc), β-Y с кубической объёмноцентрированной решёткой типа α-Fe (a=4,08 Å; z=2; пространственная группа Im3m), температура перехода α↔β 1482 °C, ΔH перехода 4,98 кДж/моль. Температура плавления 1528 °C, температура кипения около 3320 °C. Иттрий легко поддается механической обработке [1] .

Изотопы

Иттрий моноизотопный элемент, в природе представлен одним стабильным нуклидом [1] .

Химические свойства

На воздухе иттрий покрывается плотной защитной оксидной пленкой. При 370—425 °C образуется плотная черная пленка оксида. Интенсивное окисление начинается при 750 °C. Компактный металл окисляется кислородом воздуха в кипящей воде, реагирует с минеральными кислотами, уксусной кислотой, не реагирует с фтороводородом. Иттрий при нагревании взаимодействует с галогенами, водородом, азотом, серой и фосфором. Оксид Y2О3 обладает основными свойствами, ему отвечает основание Y(ОН)3.

Применение

Иттриевая керамика

Керамика для нагревательных элементов

Хромит иттрия — материал для лучших высокотемпературных нагревателей сопротивления, способных эксплуатироваться в окислительной среде (воздух, кислород).

ИК — керамика

«Иттралокс»(Yttralox) — твёрдый раствор двуокиси тория в окиси иттрия. Для видимого света этот материал прозрачен, как стекло, но также он очень хорошо пропускает инфракрасное излучение, поэтому его используют для изготовления инфракрасных «окон» специальной аппаратуры и ракет, а также используют в качестве смотровых «глазков» высокотемпературных печей. Плавится «Иттрий-локс» лишь при температуре около 2207 °C.

Огнеупорные материалы

Оксид иттрия — чрезвычайно устойчивый к нагреву на воздухе огнеупор, упрочняется с ростом температуры (максимум при 900—1000 °C), пригоден для плавки ряда высокоактивных металлов (в том числе и самого иттрия). Особую роль оксид иттрия играет при литье урана. Одной из наиболее важных и ответственных областей применения оксида иттрия в качестве жаропрочного огнеупорного материала является производство наиболее долговечных и качественных сталеразливочных стаканов (устройство для дозированного выпуска жидкой стали), в условиях контакта с движущимся потоком жидкой стали оксид иттрия наименее размываем. Единственным известным и превосходящим по стойкости оксид иттрия в контакте с жидкой сталью является оксид скандия, но он чрезвычайно дорог.

Термоэлектрические материалы

Важным соединением иттрия является его теллурид. Имея малую плотность, высокую температуру плавления и прочность, теллурид иттрия имеет одну из самых больших термо-э.д.с среди всех теллуридов, а именно 921 мкВ/К (у теллурида висмута например 280 мкВ/К) и представляет интерес для производства термоэлектрогенераторов с повышенным КПД.

Сверхпроводники

Один из компонентов иттрий-медь-бариевой керамики с общей формулой YBa2Cu3O7-δ — высокотемпературный сверхпроводник с температурой сверхпроводящего перехода около 90 К.

Бериллид иттрия (равно как и бериллид скандия) является одним из лучших конструкционных материалов аэрокосмической техники и плавясь при температуре около 1920 °C, начинает окисляться на воздухе при 1670 °C (!). Удельная прочность такого материала весьма высока, и при использовании его в качестве матрицы для наполнения нитевидными кристаллами (усами) можно создать материалы, имеющие фантастические прочностные и упругие характеристики.

Сплавы иттрия

Иттрий является металлом, обладающим рядом уникальных свойств, и эти свойства в значительной степени определяют очень широкое применение его в промышленности сегодня и, вероятно, ещё более широкое применение в будущем. Предел прочности на разрыв для нелегированного чистого иттрия около 300 МПа (30 кг/мм²). Очень важным качеством как металлического иттрия, так и ряда его сплавов является то обстоятельство, что будучи активным химически, иттрий при нагревании на воздухе покрывается пленкой оксида и нитрида, предохраняющих его от дальнейшего окисления до 1000 °C. Перспективными областями применения сплавов иттрия являются авиакосмическая промышленность, атомная техника, автомобилестроение. Очень важно то обстоятельство, что иттрий и его некоторые сплавы не взаимодействуют с расплавленным ураном и плутонием, и их использование позволяет применить их в ядерном газофазном ракетном двигателе.

Легирование

Легирование алюминия иттрием повышает на 7,5 % электропроводность изготовленных из него проводов.

Иттрий имеет высокие предел прочности и температуру плавления, поэтому способен создать значительную конкуренцию титану в любых областях применения последнего (ввиду того, что большинство сплавов иттрия обладает большей прочностью, чем сплавы титана, а кроме того у сплавов иттрия отсутствует «ползучесть» под нагрузкой, которая ограничивает области применения титановых сплавов).

Иттрий вводят в жаростойкие сплавы никеля с хромом (нихромы) с целью повысить температуру эксплуатации нагревательной проволоки или ленты и с целью в 2—3 раза увеличить срок службы нагревательных обмоток (спиралей), что имеет большое экономическое значение (использование вместо иттрия скандия ещё в несколько раз увеличивает срок службы сплавов).

Магнитные материалы

Изучается перспективный магнитный сплав — неодим-иттрий-кобальт.

Покрытия иттрием и его соединениями

Напыление (детонационное и плазменное) иттрия на детали двигателей внутреннего сгорания позволяет увеличить износостойкость деталей в 400—500 [источник не указан 593 дня] раз по сравнению с хромированием.

Люминофоры

Окись и ванадат иттрия, легированные европием, используются в производстве кинескопов цветных телевизоров.

Оксосульфид иттрия, активированный европием, применяется для производства люминофоров в цветном телевидении (красная компонента), а активированный тербием — для черно-белого телевидения.

Иттрий-алюминиевый гранат, легированный трехвалентным церием (ИАГ) с максимумом в области желтого цвета используется в конструкции люминофорных белых светодиодов.

Дуговая сварка

Добавлением иттрия в вольфрам резко снижают работу выхода электрона (у чистого иттрия 3,3 эВ), что используется для производства иттрированных вольфрамовых электродов для аргонодуговой сварки и составляет значительную статью расхода металлического иттрия.

Гексаборид иттрия имеет так же малую работу выхода электронов (2,22 эВ) и применяется для производства катодов мощных электронных пушек (электронно-лучевая сварка и резка в вакууме).

Другие сферы применения

Тетраборид иттрия находит применение в качестве материала для управляющих стержней атомных реакторов (имеет малое газовыделение по гелию и водороду).

Ортотанталат иттрия синтезируется и используется для производства рентгеноконтрастных покрытий.

Синтезированы иттрий-алюминиевые гранаты («сиграны»)(ИАГ), имеющие ценные физико-химические свойства, могут применяться и в ювелирном деле, и уже довольно давно применяемые в качестве технологичных и относительно дешёвых твердотельных лазеров. Важным лазерным материалом является ИСГГ — иттрий-скандий-галлиевый гранат.

Гидрид иттрия-железа применяют как аккумулятор водорода с высокой емкостью и достаточно дешевый.

Цены на иттрий

  • Иттрий чистотой 99—99,9 % стоит в среднем 115—185 $ за 1 кг.

Примечания

  1. 1234Редкол.:Кнунянц И. Л. (гл. ред.) Химическая энциклопедия: в 5 т. — Москва: Советская энциклопедия, 1990. — Т. 2. — С. 277. — 671 с. — 100 000 экз.
  2. ↑Иттрий на Integral Scientist Modern Standard Periodic Table
  3. ↑ J.P. Riley and Skirrow G. Chemical Oceanography V. 1, 1965
  4. ↑Иттрий :: Группа AMT&C

Ссылки

Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 13 мая 2011.

Что такое иттрий? Свойства иттрия. Описание иттрия

Иттрий (Yttrium) — это редкоземельный химический элемент, имеющий атомный номер 39, согласно периодической системе элементов. Его принято обозначать символом Y. Свое название он получил по названию деревни Иттербю в Швеции.

Что-такое-иттрий-Свойства-иттрия-Описание-иттрия-1

Очень необычна история открытия этого элемента. В 1794 году химик из Финляндии Юхан Гадолин, после проведенного эксперимента над породой иттербит, получил из породы оксид иттрия с примесью других элементов. При этом он ошибочно считал, что получил чистый иттрий и назвал полученный элемент экебертом.

Карл Мосандер спустя 50 лет, в 1843 году, обосновал, что полученный Гадолином экеберт является соединением из окислов эрбия, иттрия, тербия. Металлический иттрий, с незначительным содержанием других лантаноидов, был выделен первый раз только в 1828 году, в виде порошка светло-серого цвета.

Удалось это химику из Германии Фридриху Вёлеру. В Российской литературе по химии, датированной первой половиной 19 века, элемент назывался так: основание иттрийской земли, иттрин (Страхов), иттрий (Гесс).

Месторождения иттрия

В земной коре иттрий содержится в размере 0,0028 весовых процентов и находится в числе тридцати самых распространенных элементов. В морской воде его концентрация составляет 0,0003 мг/л. Он входит в состав многих пород и минералов, больше всего содержится иттрия в фергюсоните, гадолините, цирконе, черчите, ксенотиме.

Что-такое-иттрий-Свойства-иттрия-Описание-иттрия-2

Мировые запасы сырья, из которого может быть получен иттрий, оцениваются в объеме 544,4 тысячи тонн. В год его добывают около 9 тысяч тонн во всем мире. Основным типом его месторождений являются россыпи. Крупнейшие месторождения иттрия расположены в таких странах, как: Китай, США, Австралия, Индия, Россия.

Свойства и цена иттрия

В чистом виде иттрий представляет собой относительно мягкий металл, который хорошо поддается обработке. Он относительно легко растворяется кислотами при комнатной температуре.

При нагревании до 400 °C на поверхности металла образовывается плотный слой окисла черного цвета. Температура плавления иттрия составляет 1530 °C, кипения 3318 °C.

Что-такое-иттрий-Свойства-иттрия-Описание-иттрия-3

Стоимость одного килограмма иттрия находится в районе 140 долларов. Использование его в промышленности очень обширно и будет расти в ближайшее время. В большинстве сфер потребления ему нет равноценной замены.

Применение иттрия

Металлический иттрий используется как добавка при изготовлении сплавов из черных и цветных металлов, увеличивая их предел прочности, температуру плавления и меняя их магнитные свойства.

Из него изготавливают трубопроводы для транспортировки расплавленного ядерного топлива, потому что он не вступает во взаимодействие с расплавленными ураном и плутонием .

Иттрий используется как стабилизатор, электролит и катализатор. Из него изготовляют керамику и высокотемпературные сверхпроводники. Его применяют при производстве искусственных драгоценных камней .

Что-такое-иттрий-Свойства-иттрия-Описание-иттрия-4

Также широко используются соли иттрия и другие его соединения. Крайне устойчив к нагреву в контакте с жидкой сталью и не имеет равноценных аналогов оксид иттрия.

Его используют для изготовления оптических, инфракрасных лазеров большой мощности, компонентов микроволновых радаров, производства иттриевых ферритов для радиоэлектроники.

Радиоактивный изотоп иттрия применяется для лечения раковых заболеваний, как источник бета-излучения. Нанесение соединений иттрия на компоненты двигателей внутреннего сгорания усиливает их износостойкость в 300 раз. Из оксосульфида иттрия производят красную компоненту люминофора для цветных телевизоров и компьютерных мониторов.

Иттрий – описание металла и его свойства, цена за кг иттрия

Иттрий металл или неметалл – это извечный вопрос для любознательных пользователей сети, а также школьников/студентов. Хотя ответ придется все равно искать на страницах справочной литературы, неоднозначность его подогревается предложениями о покупке этого вещества в виде белого порошка.

Цены на иттрий представлены в конце статьи. Стоимость иттрия зависит от партии закупки и страны, поставляющей продукт. Из Китая материал обычно бывает чуть дешевле, но не факт. Чтобы сделать выгодную покупку приходиться мониторить рынок этого сегмента постоянно. Стандартные упаковки оксида иттрия обычно содержат до 5 кг, изготавливается из плотных полиэтиленовых материалов.

Так выглядит металлический иттрий

Так выглядит металлический иттрий

Желающим просто купить иттрий, схема электронного строения вряд ли понадобится. Однако именно это является ключом к пониманию того, что же это за элемент.

Кристаллические модификации и основной синтетический изотоп

Покупателей иттрия не мало – его берут для нужд собственного предприятия, несмотря на специфические свойства и качества этого материала. Это связано с широким применением иттрия, как конструкционного. Не меньший интерес материал вызывает в области оптики, где также нашел практическое применение.

Иттрий химический элемент, который по своим качествам относится к аналогам лантана. Его часто находят в составе минералов, которые содержат лантаноиды. Изредка исследователи находят редкие земли, содержащие большую или меньшую концентрацию иттрия или церия. Чаще, эти соединения трудно разделимы. Наиболее яркий представитель иттриевой подгруппы: тантало-ниобат. При этом самые распространенные минералы, содержащие этот элемент: ксенотим YPO4, тортвейтит (Y, Sc)2Si2O7, гадолинит Y2FeBe2Si2O10.

Посмотрите интересное видео: Иттрий – Металл для СВЕРХПРОВОДНИКА!

Цепочка элементов: иттрий-тербий-эрбий-иттербий, имеют практически одинаковую историю открытия и носят похожие названия в честь города Иттербю, поблизости которого были впервые обнаружены минералы со всеми из перечисленных металлов. Долгое время за оксид иттрия принимали окисную смесь всех четырех.

Электронная конфигурация иттрия отчетливо представлена таблицей Менделеева и отображает принадлежность элемента к металлам:

1s 22s 22p 63s 23p63d104s 24p64d15s2

Отсюда же четко видно, сколько электронов во внешнем слое атома иттрия. У него есть один свободный электрон на интересующем энергетическом уровне. Для металлов характерно от 1до 3, что подходит к описываемому случаю.

Однако электронно-графическая формула иттрия не так однозначна, при детальном рассмотрении этот элемент относят либо к щелочноземельным или редкоземельным. Что в некоторой степени подтверждается и двойственной природой химической структуры Y (Yttrium). Этот элемент может находится в нескольких кристаллических модификациях.

  • Одна из них подобна щелочноземельному магнию: α-Y с гексагональной решеткой.
  • Вторая более походит на структуру просто металла – железа: β-Y с кубической объемно-центрированной решеткой.

Для осуществления перехода из одного состояния α в другое β (и наоборот) необходимо нагревание материала до 1482 °C.

Иттрий в таблице Менделеева занимает 39 позицию. Относится к третьей группе. Валентность иттрия по кислороду 3. Известный оксид Y2O3. На внешний вид это белый порошок. Хотя первоначально его принимали за YO, считая его валентность равной той, что у кислорода. Остается только отметить, что на пути открытия этого элемента, который длился более 60 лет, свою лепту внес и сам Менделеев, определивший точную формулу оксида этого металла.

иттрий в колбе

В природе иттрий металл имеет лишь один изотоп Y-89. Но параллельно с этим существует искусственно синтезируемый иттрий 90. Свойства последнего трудно переоценить. Это радиоактивный материал, способный излучать β-частицы, необходимые при лечение раковых опухолей. Изотоп Y-90 формируется в шарики диаметром не более миллиметра. С помощью шприца и специального раствора вводятся внутрь опухоли, вызывая разрушение ее клеток.

Основная область применения соединений иттрия

Керамическая и стекольная промышленность, электроника – эти отрасли проявляют наиболее интенсивный интерес к данному металлу. Возможность получать Рамановский спектр оксида иттрия в различных соединениях позволяет легко его идентифицировать: определять степень и важность его присутствия в различных пленках, напыляющих растворах, прочем.

Наиболее востребованные соединения иттрия, участвующие в перечисленных отраслях промышленности:

  • Ацетат Y(O2C2H3)3х4H2O;
  • Гидроксид иттрия Y(OH)3xH2O
  • Карбонат Y2(CO3)3xH2O.

Еще 6-7 соединений: сульфат иттрия, его нитрат и т.д. Октоат иттрия применяется в автомобильной промышленности, как защитное покрытие двигателей внутреннего сгорания. Хотя это направление еще только изучается, но уже сейчас ученые говорят, что данная технология многократно улучшает эксплуатационные качества по сравнению с теми, что дает хромирование.

Все перечисленные соединения выглядят в общем одинаково – это белый порошок, для создания которого используется чистейший материал с пробой от 99. Каждое из перечисленных соединений имеет свои особенности и права для длинного рассказа о нем.

Например, еще не упомянутый иттрий алюминиевый гранат, используется в качестве люминофора для телевиденья. С этой целью оксосульфид иттрия активируют европием, получая красную составляющую свечения.

Для производства белого цвета свечения светодиодов, тот же ИАГ легируют церием при особых условиях. Благодаря, чему получают желаемый результат.

Основные физические свойства, привлекающие внимание к элементу

Кроме электронного строение иттрия практический интерес вызывают высокие температуры плавления и кипения. 1795 K и 3 611 K – соответственно. Это делает иттрий металлический интересным во многих областях металлургии. Эти особенности присущи также соединениям и сплавам этого элемента.

оксид иттрия

Оксид иттрия – один из наиболее известных огнеупоров. Примечательно, что с нагреванием его свойства только усиливаются. Это делает допустимым использование Y для плавки высокоактивных металлов. Что выражается в привлечении его для создания оборудования, где собственно происходит плавление и закалка стали, а также дозирующие приспособления.

Термоэлектрические иттрий характеристики, как элемента выражаются в его соединениях с теллуром. Среди всех, так называемых теллуридов, именно иттриевый отличается самой высокой термостойкостью, удельной прочностью. Этот сплав имеет максимальную термо-эдс среди всех подобных. В промышленности полезен, как материал для создания термоэлектрогенераторов с высоким коэффициентом полезного действия.

Есть еще одна особенность металла, не извлекаемая из электронной схемы иттрия – это отсутствие взаимодействия с U-92 и Pu-94 при нагревании. Данное утверждение касается, как чистого металла, так и некоторых его сплавов. Это открывает перспективы применения иттрия в ядерном газофазном ракетном двигателе.

Наряду с уже перечисленными свойствами о температурах плавления и кипения иттрия, необходимо отметить высокий предел прочности сплавов этого металла на разрыв 300 Мпа. Способность иттрия образовывать защитную пленку при нагревании в воздушной среде, уже используется для атомной, ракетостроительной промышленностей. Однако многое говорит о том, что основные направления применения металла еще не определены. Поэтому об иттрии, как и его спутниках тербии-эрбии-иттербии часто говорят, как о материалах будущего. Но даже уже сегодня, они активно применяются в качестве конструктивных металлов, а также как легирующее вещество.

Цены на иттрий за кг

Занимаясь покупкой/продажей радиолома или вторичного сырья, добывающегося из компонентов микросхем, есть резон поговорить об иттрии и цене за грамм этого металла. Но общая тенденция такова, что продажи идут на большие объемы. Поэтому часто можно увидеть иттрий, цена которому указывается за килограмм. При этом добавляют, каков объем минимальной партии.

Продают иттрий в слитках, самая популярная марка:

ИтМ-1 – цена такого металла (на продажу) от 7000 до 9000 рублей за килограмм .

Также существуют другие марки иттрия – ИтМ-2, ИтМ-3, ИтМ-4, ИтМ-5, цена их примерно одинакова и находится в пределах цены за марку ИтМ-1.

У оксида иттрия существуют две наиболее популярных марки на рынке – это ОСЧ (содержания иттрия 99.9995%) и марка 5N (не менее 99,9%, оксида иттрия относительно оксидов других РЗЭ – 99.999%). Продают оксид иттрия от 1 килограмма.

Читайте также: