Из чего состоит печь для плавки металла

Обновлено: 20.09.2024

Дуговая сталеплавильная печь – печь, в которой теплота электрической дуги используется для плавки стали. Ёмкость дуговых печей колеблется от 6 до 200 тонн. Эти печи служат в первую очередь для выплавки легированных и высококачественных сталей, которые затруднительно получать в конверторах и мартеновских печах. Одна из главных особенностей дуговой печи – возможность достижения в рабочем пространстве высокой температуры (до 2500 °С).

Основные преимущества дуговой сталеплавильной печи:

  • возможность регулирования окислительно-восстановительных свойств среды по ходу плавки, а также обеспечения в печи восстановительной атмосферы и безокислительных шлаков, что предопределяет малый угар легирующих элементов (для справки: угар – потери металла в результате окисления при плавке или при нагреве);
  • быстрый нагрев металла, связанный с вводом тепловой мощности в самом металле. Это позволяет вводить в печь большие количества легирующих элементов;
  • плавная и точная регулировка температуры стали;
  • более полное, чем в других печах, раскисление металла, получение его с низким содержанием неметаллических включений;
  • получение стали с низким содержанием серы.

Одним из недостатков дуговой печи является необходимость обеспечения высокого качества шихтовых материалов, из которых 75-100 % составляет стальной лом. Лом должен иметь как можно меньше примесей цветных металлов, фосфора, ржавчины. Лом должен быть тяжеловесным для загрузки его в один приём, т.к. каждая загрузка лома значительно удлиняет плавку. Другой недостаток дуговой печи в непроизводительном использовании мощностей печи в периоды низкого потребления энергии (окислительный и восстановительный периоды).

Дуговые печи делят на печи прямого действия (дуга между электродом и нагреваемым материалом), косвенного действия (дуга между электродами за пределами нагреваемого материала) и закрытого действия (дуга находится под слоем материала). Пример печи закрытого действия – ферросплавная печь. В печах такого типа наименьшие потери теплоты через свод, т.к. он экранируется от дуги слоем материала.

Сталеплавильные дуговые печи обычно являются печами прямого действия и их разделяют на печи переменного тока (ДСП) и печи постоянного тока (ДППТ). В печах переменного тока трехфазный ток проходит между электродами через посредник, которым является шихта (металл, углерод). В этих печах требуются дорогостоящие устройства для компенсации низкого cos ϕ и присутствуют большие индуктивные сопротивления токоподвода в короткой сети, что обусловливает самопроизвольный перенос мощности с одной фазы на другую. В результате возможно образование “мертвой” (отсутствие мощности) и “дикой” (избыточное выделение мощности) фазы.

В печах постоянного тока выделение мощности происходит равномерно и отсутствуют компенсирующие устройства, присущие печам переменного тока. В ДППТ вместо трех графитовых электродов находится только один (хотя он и может быть расщеплен на несколько), а вторым электродом (анодом) является подовый электрод. Преимущества печей постоянного тока по сравнению с печами на переменном токе в 1,5-2 раза меньшем расходе графитовых электродов, на 5-15 % меньшем расходе электроэнергии, на 10 % меньшем износе огнеупоров, в 8 раз меньшем выбросе пыли (0,9-1 кг/т вместо 7-8 кг/т в печи переменного тока) и в меньшем уровне шума (90 децибел взамен 120 децибел в печах переменного тока). Главный недостаток печей постоянного тока связан с получением постоянного тока из переменного тока и большие капитальные затраты на преобразователи тока. Для компенсации этого недостатка разработаны специальные полупроводниковые технологии. К недостаткам ДППТ также можно отнести необходимость использования более дорогостоящих электродов большего диаметра (700-750 мм) взамен электродов диаметром 350-610 мм в ДСП и недостаточную надежность подовых электродов.

В настоящее время на металлургических заводах наиболее распространены печи переменного тока, хотя доля печей на постоянном токе все время растет.

Принцип работы ДСП следующий. Шихтовые материалы загружают на подину печи сверху в открываемое рабочее пространство с помощью бадьи (корзины) с открывающимся дном.
После этого свод печи надвигается на ванну, имеющую форму чаши. Электроды опускают через отверстия свода до возникновения короткого замыкания с шихтой и зажигают электрические дуги. Плавление и нагрев осуществляются за счёт теплоты электрических дуг, возникающих между электродами через жидкий металл или металлическую шихту. После расплавления шихты в печи образуется слой жидкого металла и шлака. Путем добавок в жидкую сталь раскислителей и легирующих добавок добиваются нужного состава стали. Готовую сталь и шлак выпускают через сливной желоб, наклоняя рабочее пространство. Рабочее окно, закрываемое заслонкой, предназначено для контроля за ходом плавки, ремонта пода, загрузки материалов и промежуточного выпуска шлака (в окислительный период). Температура жидкой стали при выпуске на 120-150 °С выше температуры ликвидус и составляет 1550-1650 °С.

По ходу плавки выделяют 4 периода:

1 – подготовка печи к плавке (20-40 минут). Исправление изношенных участков пода заправкой подины магнезитовым порошком, завалка шихты;

2 – период плавления (70-180 минут). Ввод максимальной электрической мощности. Нагрев и расплавление шихты; формирование шлака за счет окисления кремния, марганца, углерода и железа кислородом воздуха, окалины. Возможно использование газокислородных горелок, установленных в стенках или в своде, для ускорения расплавления твердой шихты. Возможна продувка жидкого металла кислородом для ускорения процесса плавления остатков нерасплавившейся шихты. Удаление основной массы фосфора из металла за счет наличия основного железистого шлака;

3 – окислительный период (30-90 минут). Слив основной массы шлака для удаления из печи фосфора; присадка шлакообразующих добавок (известь и др.); присадка руды для интенсивного окисления углерода, получения эффекта “кипения”, во время которого происходит дефосфорация металла и удаление с пузырьками СО водорода и азота; периодический слив вспененного шлака; нагрев металла до температуры выпуска; полный слив окислительного шлака для исключения перехода фосфора из шлака в металл в восстановительный период;

4 – восстановительный период (40-120 минут). Присадка ферромарганца и феррохрома для доведения содержания марганца и хрома до требуемого для выплавляемой марки стали, а также ферросилиция и алюминия для раскисления металла (раскисление – удаление из жидкого металла кислорода путем присадки раскислителей: углерода, кремния, марганца); наводка высокоосновного шлака путем добавки извести, плавикового шпата и шамотного боя для ускорения раскисления и удаления серы из металла; раскисление молотым коксом; раскисление молотым ферросилицием в смеси с известью, плавиковым шпатом и коксом; по необходимости добавка сильных раскислителей: силикокальция и алюминия; легирование стали ферровольфрамом, феррованадием, ферросилицием, ферротитаном, алюминием и др.; выпуск стали вместе с шлаком для дополнительного перехода в шлак серы и неметаллических включений.

Основные параметры, которые лимитируют процесс плавки, это температура футеровки и полная электрическая мощность. Если температура низкая, то мощность поддерживают максимальной без опасности перегрева футеровки. Нежелательным является для футеровки превышение температуры 1500-1800 °С. Подину обычно выполняют из магнезитового кирпича, а стены и свод ванны – из магнезитохромитового кирпича. Стойкость футеровки стен и свода колеблется в пределах 75-250 плавок. Стойкость подины составляет 1500-5000 плавок при условии ее обновления после каждой плавки путём заправки магнезитовым порошком. Общая толщина подины на печах, работающих с электромагнитным перемешиванием, не должна превышать 800-900 мм.

Во время плавки из ДСП выделяется большое количество запылённых газов (особенно в окислительный период). Температура газов составляет 900-1400 °С. Среднее количество газов в окислительный период достигает 180-200 м 3 /(т⋅час). При мокрой очистке от пыли газ охлаждается и затем выбрасывается в атмосферу.

Для снижения расхода энергии в ДСП рекомендуется следующее:

  • 1. перенос операций окисления и восстановления в дуговую печь меньшей мощности (установки “ковш-печь” . В этом случае резко сокращается мощность холостого хода и, соответственно, падает удельный расход энергии;
  • 2. предварительный топливный подогрев шихты перед загрузкой в ДСП. Для этого можно использовать загрузочную бадью. Результат: экономия дорогостоящей электроэнергии;
  • 3. использование газокислородных горелок для предварительного нагрева и плавления шихты. Результат: сокращение длительности плавления и расхода электроэнергии (на 10-15 %). Тот же эффект получается при вдувании в струе кислорода углесодержащих материалов;
  • 4. использование физической теплоты уходящих газов с применением сухой очистки для последующего подогрева воды или без очистки для подогрева шихты;
  • 5. использование физической теплоты жидких шлаков для получения горячей воды и других целей;
  • 6. наклонная установка электродов (до 45 градусов от вертикали), что позволяет отводить газы вертикально вверх через шахту и подогревать шихту. Дополнительный эффект: снижение расхода электродов за счёт охлаждения их концов.

Устройство подины, стен и свода основной дуговой печи

Подина дуговой печи выдерживает, как правило, двухлетнюю кампанию (более 4 000 плавок) до полной замены в очередном капитальном ремонте.

Основная футеровка подины дуговой печи состоит из набивного слоя, слоя кирпичной кладки и теплоизоляционного слоя. При ее создании соблюдается следующая последовательность выполнения операций:

Днище металлического кожуха печи выкладывают листовым асбестом толщиной 10—20 мм, перекрывая швы между собой.

Засыпают шамотный порошок для выравнивания поверхности (5-30 мм). Стены кожуха изолируют листовым асбестом в один — два ряда. На выровненную поверхность днища укладывают шамотный кирпич в один-два ряда на плашку и на ребро, засыпая швы шамотным порошком и простукивая их деревянным молотком.

На шамот выкладывают магнезитовый кирпич на ребро, на плашку линейными рядами, кладку ведут от центра днища печи к стенкам. Швы параллельных рядов кладки не должны совпадать, поэтому в каждом ряду кирпичи выкладывают под углом 45° к предыдущему ряду. Кладку выполняют «насухо», притирая кирпичи один к другому. Толщина швов не должна превышать соответственно 1 и 2 мм в центре и у стенок (контролируют щупом).

Перед кладкой подины подбирают кирпичи одинаковых размеров без отбитостей. Каждый ряд кладки пересыпают магнезитовым порошком, простукивая кирпичи деревянными молотками для уплотнения.По окружности кожуха печи оставляют температурный зазор шириной до 65 мм, заполняя его асбестовой ватой. Искажений ширины и вертикальности зазора не допускают.

Кладку откосов из нормального магнезитового кирпича ведут уступами. На кладке подины намечают окружность определенного диаметра (зависит от емкости печи) и по ней выкладывают окантовочное кольцо из магнезитового кирпича. Пространство между кольцом и подиной выравнивают набивной магнезитовой массой и на образованной площадке выкладывают первый ряд откосов. Последующие ряды кладки откосов ведут с перекрытием швов предыдущего ряда, образуя уступы, обеспечивающие получение заданной ширины будущего верхнего ряда. В температурный зазор откосов утрамбовывают набивную массу, перекрывая его верхним рядом кирпичной кладки. После выравнивания магнезитовым порошком верха откосов, приступают к кладке стен.

Во время кладки стен их толщину уменьшают (к своду) и придают стенам небольшой уклон (15—20°).

Для уменьшения тепловых потерь через стены кладку изолируют от каркаса листовым асбестом, пеношамотным или шамотным кирпичом и другими материалами. Для удобства в работе листовой асбест приклеивают к каркасу печи жидким стеклом.

Стены основных дуговых печей выкладывают магнезитовым и хромомагнезитовым кирпичом (динасовый кирпич в основной печи под действием известковой пыли быстро ошлаковывается, поэтому такая кладка стен мало распространена). В стенах сверхмощных дуговых печей вместо огнеупорной кладки в верхней зоне используют водоохлаждаемые элементы в соответствии с определенными требованиями (толщина стенки элемента 14-20 мм; расход воды на охлаждение 6-9 м 3 на 1 м 2 площади стенового элемента; исключение контакта элементов со шлаком и металлом; скорость истечения воды в элементах 2-6 м/с; шипы на поверхности должны предотвращать сползание огнеупорной подмазки и гарнисажа). Применение водоохлаждаемых элементов (панелей) приводит к некоторому увеличению расхода электроэнергии на плавку (до 10 кВт-ч/т, или до 2% ), снижению расхода огнеупоров на 50% и повышению производительности дуговой печи до 25% .

Достаточно широкое применение получила кладка стен в запасных металлических каркасах. Кирпич в них укладывается плотно на огнеупорных растворах или бетонах соответствующих составов.

Кладку выпускного отверстия выполняют на растворе или хромобетоне. Для кладки столбиков используют хромомагнезитовый кирпич, а для арочки – периклазошпинелидный. Столбики рабочего окна выполняют из периклазошпинелидного кирпича. На некоторых печах сливное отверстие образовано толстостенной металлической трубой, при этом зазоры в футеровке заделывают огнеупорным бетоном.

Одновременно с кладкой стен изготовляют футеровку сливного желоба. Металлический кожух желоба выкладывают листовым асбестом, Кладку откоса, примыкающего к сливному отверстию, выполняют из магнезитового кирпича с напуском к желобу и обеспечивают его плотную стыковку с шамотным кирпичом, укладываемым в желоб на шамотном мертеле с толщиной швов 3 до консистенции полусухой массы. Кладку желоба тщательно просушивают газовой горелкой до полного удаления влаги.

Для слива металла из печи в ковш без шлака применяют закрытые желоба чайникового типа и эркерный.

После завершения кирпичной кладки приступают к изготовлению рабочего набивного слоя подины. Его выполняют: 1) из магнезитового порошка на обезвоженной смоле (89% магнезита, 10% каменноугольной смолы и 1% пека); 2) жидком стекле и 3) всухую. Перед набивкой на смоле кладку подины нагревают до 60-80 °С, а магнезитовый порошок – до 100 °С. Смесь задают в печь и набивают пневматическими трамбовками слоями по 30-40 мм. Этот способ изготовления рабочего слоя подины является весьма трудоемким, так как сопровождается выделением вредных газов.

На большинстве печей набивку рабочего слоя подины осуществляют всухую магнезитовым порошком, содержащим 65-75% зерен размером 0,1-4 мм, 25-35% зерен

Откосы набивают одновременно с подиной, при этом для уменьшения сползания на подину набивную массу увлажняют. Толщина набивного слоя подины должна быть >200 мм при глубине ванны >1100 мм. Плотность набивки проверяют металлическим стержнем 4-5м.

После набивки подину закрывают листовым железом толщиной 3—5 мм. Для предупреждения повреждения подины при завалке расстояние между завалочной корзиной и подиной не должно быть более 0,5 м.

Для сокращения простоев печей по причине ремонта кладку и набивку футеровки подины дуговых печей выполняют заранее в запасном каркасе, при этом расход котельного железа на изготовление дополнительного кожуха печи окупается экономией, полученной от сокращения продолжительности ремонта.

Свод дуговой печи имеет повышенный износ по сравнению с другими частями футеровки. В большей степени (в 2-3 раза) изнашивается центральная часть свода, главным образом, вблизи электродов. Существенное повышение стойкости футеровки сводов достигнуто за счет использования в кладке водоохлаждаемых элементов.

Для футеровки сводов наиболее широко применяют магнезитохромитовый кирпич и значительно реже — динасовый. На ряде зарубежных заводов используют высокоглиноземистый кирпич. Свод набивают на куполообразном металлическом шаблоне, с определенной стрелой подъема. Величина выпуклости кладки свода зависит от материала футеровки. Отношение высоты выпуклости (стрелы подъема) к диаметру свода составляет для динаса 1:12, для магнезитохромита 1:10. Шаблон имеет углубления для электродных отверстий в кладке и фиксаторы для точной установки каркаса свода. При правильном размещении каркаса на шаблоне и соответствии отверстий в кладке свода расположению электродов, кислородной фурмы и газоотсосу на печи получают существенную экономию времени на замену свода с изношенной футеровкой и, кроме того, увеличение срока службы нового свода.

В зависимости от емкости печи, условий службы и особенностей износа огнеупорной футеровки сводов применяют четыре способа кладки: арочную, секторно-арочную, секторную и комбинированную (кольцевая по периферии и секторная в центре). Арочную кладку применяют на печах малой емкости.Наиболее распространенной является секторно-арочная кладка. Ее выполняют фасонным кирпичом. В начале через середину свода, обычно на ширину двух кирпичей, выкладывают массивную арку, к которой под прямым углом подводят другую арку. Секторы между арками заполняют кирпичом в определенной последовательности.

Шихтовые материалы

Металлы, сплавы, специальные лигатуры, шлакообразующие присадки и другие материалы, которые используют для приготовления различных сплавов, в литейном производстве называют шихтовыми материалами или шихтой. В состав шихты входят: свежие материалы (доменные чугуны различных марок, медь, алюминий, цинк, никель и др.), которые поступают в литейные цехи с металлургических заводов; лом черных сплавов и лом цветных сплавов, представляющие собой переработанные промышленные отходы; специальные ферросплавы и лигатуры (промежуточные сплавы более тугоплавких элементов с легкоплавкими), поступающие с металлургических заводов; отходы литейного производства и механических цехов (литники, прибыли, бракованные детали и брикетированная стружка). Количественное соотношение различных материалов в шихте зависит от качества исходных материалов и от требований, которые предъявляют к изготовляемым сплавам.

Основные типы плавильных печей

В литейном производстве используются плавильные печи, работающие на твердом, жидком или газообразном топливе (коксе, нефти, мазуте, газе), и печи электрические. К первому типу печей относят вагранки и тигельные печи, ко второму типу — дуговые электрические печи и электрические индукционные печи. Наибольшее распространение для плавки чугуна получили печи шахтного типа—вагранки. Серый чугун, получаемый в этих печах, используют для отливок различных по сложности деталей. В электрических печах плавится сталь, легированный чугун, а также белый чугун, перерабатываемый затем в ковкий чугун. Схема вагранки приведена на рис. 35. Вагранка представляет собой шахтную печь, основой которой является сварной металлический кожух 1, футерованный изнутри огнеупорным кирпичом 2. Щель между кожухом и футеровкой засыпается сухим кварцевым песком 3. В верхней части вагранки находится загрузочное окно 4. Часть шахты вагранки, расположенная ниже загрузочного окна, футеруется чугунными пустотелыми кирпичами 5, которые предохраняют ее от разрушения при загрузке шихты 7.

Основные типы плавильных печей

Загружают вагранку с помощью скипового подъемника или консольного крана. Верхняя часть вагранки заканчивается искрогасителем 6.

Для поддержания горения в вагранке через специальные отверстия 8, называемые фурмам и, подается воздух (дутье), нагнетаемый вентилятором. Расплавленный чугун по поду 9, расположенному в нижней части шахты, стекает через специальное отверстие и желоб в копильник 10. В начале работы в вагранку загружают слой кокса высотой 500—1500 мм и поджигают его. Этот слой кокса называется холостой колошей. Затем на холостую колошу загружают рабочую коксовую колошу, флюс и первую порцию металлической шихты. После загрузки материалов через фурмы подают воздух, необходимый для горения топлива. В плавильном поясе чугун и шлаки расплавляются и стекают в горн вагранки. Образующиеся газы, поднимаясь вверх, нагревают металлическую шихту и топливо, а затем уходят в трубу.

По мере сгорания кокса и плавления чугуна загружаемая в вагранку шихта опускается вниз, а на ее место загружают новые порции шихтовых материалов. В процессе плавки жидкий чугун скапливается в горне вагранки. Шлак всплывает на поверхность чугуна и периодически выпускается через шлаковую летку. Накопившийся чугун сливается через летку по желобу в специальный копильник, а затем в ковш. Производительность вагранок 0,5—30 т чугуна в час.

Основные типы плавильных печей

В целях пожарной безопасности и предохранения от загрязнения окружающей местности вагранки снабжают искрогасителями, которые одновременно являются и пылеуловителями.

Для плавки стали в литейных цехах используют мартеновские и электродуговые печи с основной и кислой футеровкой, а также индукционные тигельные печи.

На рис. 36 показана схема дуговой электропечи. Источником тепла в этой печи является электрическая дуга, возникающая между расплавом 3, находящимся в ванне печи 4, и тремя графитовыми электродами 1 (проходящими через свод печи 6), по которым подается электрический ток. Вместимость таких печей составляет 1,5—10 т. Длительность плавки 1,5—4 ч. Приготовленный металл выливается при наклоне печи, осуществляемом специальным механизмом, через желоб 5. Загрузка шихты в печь производится через окно 2 или через свод печи, поднимаемый и поворачиваемый специальным механизмом.

Плавка стали в дуговой электрической печи состоит из следующих операций: заправки электропечи, завалки шихты, расплавления шихты и разливки готовой стали.

Индукционная печь (рис. 37) состоит из каркаса 6, сделанного из немагнитного материала, внутри которого находится индуктор (катушка), выполненный из витков 7 медной трубки, по которым протекает охлаждающая вода. Витки отделены друг от друга изоляцией '8. Плавильный тигель 5 в этой печи выполнен из набивной футеровки. Верхние части футеровки 1 и 3 и ее нижняя часть 4 делают из фасонных огнеупорных кирпичей, слой 2 выполняется огнеупорной обмазкой. Источником тепла в этих печах является индукционный ток, возбуждаемый в загруженной в тигель шихте при пропускании по индуктору переменного тока повышенной частоты.

Основные типы плавильных печей

Рис. 38. Дуговая однофазная электропечь для плавки медных сплавов

Плавка цветных сплавов производится в тигельных печах с мазутным или газовым отоплением, в электрических печах сопротивления, а также в дуговых или индукционных электрических печах.

Медные сплавы плавят в тигельных, пламенных и электрических печах. Наиболее широко применяют дуговые однофазные электрические печи типа ДМК (рис. 38). Печь представляет собой металлический барабан 1, футерованный огнеупорным кирпичом 2. Тепло, необходимое для расплавления меди, создается электрической дугой, возникающей между двумя горизонтально расположенными электродами 3. Установленный на роликах 4 барабан 1 может поворачиваться на определенный угол двигателем и зубчатой передачей.

Шихтовые материалы загружают через рабочее окно, снабженное желобом, по которому выпускают готовый расплав. Для выплавки медных сплавов шихтовыми материалами служат чушки, машинный лом, отходы собственного производства и т. д. В процессе плавки меди, цинка и свинца выделяются вредные газы и пары, поэтому плавильные печи снабжают мощной вытяжной вентиляцией.

Алюминиевые сплавы плавят в тигельных и пламенных печах, электрических печах сопротивления и индукционных печах. На рис. 39 показана тигельная печь с газовым обогревом для
плавки алюминиевых сплавов. Печь имеет огнеупорную футеровку 1, внутрь которой вставлен чугунный тигель 2. Газ подводится в горелку 4 и сгорает в пространстве между футеровкой и тиглем. Отверстие 3 предусмотрено для выпуска металла при прогорании тигля. Продукты горения и газы из сплава отводятся вытяжным колпаком 5. Печь подвешена цапфами на боковых опорах и может наклоняться с помощью штурвала и червячной передачи.

Характеристика электродуговых печей

В металлургии электродуговая печь является незаменимым оборудованием. Основное ее назначение – это переплавка металлов под воздействием высокой температуры. Такие тепловые агрегаты бывают различных видов. Они отличаются своими конструктивными характеристиками и особенностью использования.

Сфера применения

Первые дуговые печи изобрели еще в девятнадцатом веке. Использовались они для выплавки металлов. Со временем оборудования существенно усовершенствовали. На сегодняшний день дуговые печи стали незаменимыми в металлургической промышленности.

Процесс переплавки стали в дуговых печах осуществляется за счет высокого температурного режима, который достигается посредством электрической дуги. Таким образом, происходит преобразование энергии электрической в тепловую.

Благодаря высоким техническим характеристикам дуговые печи применяют для создания различных сплавов, которые используют в своих нуждах оборонные и авиационные структуры. С помощью такого теплового оборудования можно получить однородные сплавы любых металлов.

Некоторые виды дуговых печей используют для определения физико-химических анализов. Такие исследования в основном проводятся для выявления количества составляющих различных материалов.

Устройство электродуговой печи

Независимо от конструктивных особенностей все дуговые печи устроены практически одинаково. Тепловые сталеплавильные агрегаты состоят из таких основных элементов:

  • механическое устройство;
  • электрический отдел;
  • автоматизированное управление системой;
  • приспособление для подачи в рабочую часть материалов;
  • емкость, в которой осуществляется плавка;
  • система удаления отходов;
  • газоочистка.

Цилиндрической формы корпус печи включает в себя разъемные части – кожух и днище. Каркас имеет высокую устойчивость к значительным температурным воздействиям.

Конструкция имеет держатели, в которые устанавливаются графитированные электроды. К ним подсоединены подающие электроэнергию кабели. В процессе работы печи между электродами образуется постоянная дуга. Благодаря ей в устройстве возникают температура, которая обеспечивает плавку металлов.

Электродуговая печь

Как выглядит электродуговая печь

К закрытом корпусе печной конструкции встроены приборы, предназначенные для автоматического управления всей системой. Контроль процесса плавки осуществляется с помощью дверок. Для удаления шлаков в каркасе находится несколько полостей. Через них также осуществляется внос различных добавок для корректировки состава металла.

Погрузка шихты в печь может осуществляться через рабочее окно или сверху. Устройства с подачей материала через специальный проем обычно небольшого размера. Загружать металлический лом в такие агрегаты модно ручным способом с помощью широкой лопаты.

Печи с верхней подачей шихты – это более мощные и габаритные устройства. Они имеют достаточно сложную конструкцию. Механизм устройства может быть трех видов:

  • поворотный свод;
  • выкатывающийся корпус;
  • откатываемый свод.

Наиболее распространены дуговые агрегаты с поворотным механизмом.

Принцип работы сталеплавильных электродуговых агрегатов

Основной функцией дуговых печей является выделение тепла дуге, за счет высокого скопления электроэнергии. Благодаря этому выполняется плавка металла со значительной скоростью нагрева.

Гореть дуга может как в парах перерабатываемого материала, так и в обычной атмосфере. Самыми востребованными в промышленной сфере являются электродуговые сталеплавильные печи. Для производства стали расходуется вторичное сырье – лом. Процесс его расплавки состоит из нескольких этапов:

  • подымается свод;
  • загружается в печь шихта с помощью специального крана;
  • свод закрепляется на место;
  • подается электрическое питание на электроды;
  • электропроводники касаются загруженного в агрегат лома;
  • образуется межфазное замыкание;
  • срабатывает автоматический подъем держателей с электродами;
  • происходит загорание электрической дуги.

Таким образом, начинается работа печи, которая происходит при высокой температуре мощности. Состоит она из таких основных стадий:

  1. Расплавление металлического лома. Накаленная шихта покрывается защитной пленкой, которая преграждает к материалу доступ вредных газов. При этом осуществляется впитывание различных плохо влияющих на качество металла веществ.
  2. Процесс окисления. Происходит корректировка вредных элементов. В это время повышается температура в агрегате. Ее значение становится на 120 градусов выше установленного для плавки металла предела. Фосфор и сера должны занимать в общем составе не более 0,15 процентов. Также осуществляется контроль уровня водорода и азота.
  3. Восстановление. С материала устраняются элементы серы, и состав металла доводится до нормативных показателей.

Процесс работы печного устройства во многом зависит от его конструктивных и функциональных особенностей.

Виды и характеристика электродуговых печей

Современные дуговые печи бывают различных размеров и имеют отличительный набор функций.

Дуговые печи косвенного действия

Горение дуги в таких печах происходит между электродами, которые находятся над расплавленной массой. За счет этого осуществляется тепловой обмен между материалом и источником передачи энергии. Излучение, исходящее от дуги, а также конвекция позволяет нагреть металл до необходимой для его плавки температуры.

Дуговые печи косвенного действия оснащены таким электрооборудованием:

  • электропривод механизма подач расходуемых электродов;
  • трансформатор;
  • регулировочное устройство.

Такие печи бывают емкостью 0,5 и 0,25 тонн. Максимальная мощность силового трансформатора может быть 600 КВ/А.

Поступление тока от трансформаторной подстанции к электродам осуществляется посредством гибких кабелей. Регулировка дистанции между электрическими проводниками производится за счет автоматизированного управления.

В электродуговых печах косвенного действия невысокий коэффициент выделения угара и испарения металла. Снижение выхода парообразных веществ достигается за счет высокого расположения эклектической дуги от материала для расплавки.

Используют дуговые косвенные печи для переплава различных цветных металлов и их сплавов. Часто такое тепловое оборудование при выплавке некоторых видов никеля и чугуна.

Косвенные дуговые печи сравнительно небольшие и в них невозможно осуществлять все процессы переплавки металлов, так как некоторые сплавы требуют большей мощности и более высокого температурного режима.

Дуговые печи прямого действия

В таких печных устройствах дуга образуется между электрическим проводником и расплавленным металлом, который благодаря этому нагревается. За чет прямого контакта между электродом и материалом происходит высокое испарение металла.

Электродуговые печи прямого действия являются достаточно мощным оборудованием, которое способно работать на трехфазном токе. Они выделяются высокой производительностью и применяются в основном для выплавки в слитки различных тугоплавких металлов, включая конструкционные и высоколегированные стали.

Электродуговая печь

Электродуговая печь прямого действия

Электропечь оснащена механизмами с гидравлическим или электромеханическим приводом, которые позволяют осуществлять наклоны для слива расплавленной стали, поворачивать и поднимать свод, а также перемещать электроды. К держателям проводников ток поступает за счет охлаждаемых воздух медных труб или шин.

Процесс зажигания электродов производится посредством снижения их к расплавленному металлу. После этого во время подъема проводников образуется электрическая дуга.

Дуговые печи сопротивления

Особенностью печей сопротивления является то, что дуга образуется внутри переплавляемого материала. Шихта может быть направлено относительно электрического разряда параллельно или последовательно.

Дуговые печи сопротивления не имеют функции наклона. Расплавленная масса проходит через специальное отверстие – летку. Электроды расположены в конструкции вертикально. Они имеют сравнительно большие размеры. Благодаря этому агрегат может работать с большой мощностью и при значительной величине тока.

В печах данного вида плавка металлов происходит с высоким показателем удельного сопротивления. Такое оборудование используется для плавления и восстановления руды. С помощью дуговых печей сопротивления можно получить сплавы чугуна, карбида, абразивов, кальция, а также никелевого штейна. Тепловые установки сопротивления в отличие от других видов дуговых печей способны доводить температурный режим до запредельных показателей.

Вакуумные дуговые печи

Такие агрегаты относятся к оборудованию прямого действия. Дуга в вакуумных печах горит в парах или инертном газе переплавляемого металла. Процесс происходит при низком давлении. Различают два типа вакуумных печей:

  1. С расходуемым электродом. Дуга в таких устройствах горит между переплавляемым электрическим проводником и ванной жидкого металла.
  2. С нерасходуемым электродом. Электрический разряд возникает между графитовым электропроводником и металлом, который расплавляется.

Как в первом, так и втором варианте плавление осуществляется в вакуумной камере. Все нагревающиеся элементы такого оборудования охлаждаются с помощью воды. Благодаря этому в вакуумных печах можно осуществлять различные действия при достаточно высоких температурах.

Агрегаты с нерасходуемым электродом практически не используются в промышленности. Основным их назначением является выплавка небольшого размера слитков в лабораторных условиях. Они являются хорошим инструментом для проведения различных анализов.

Электродуговая печь

Пример электродуговой печи

Дуговые вакуумные печи с расходуемым электродом обширно применяются в промышленных целях. В таких устройствах во время работы с металлом происходят такие процессы:

  • плавление;
  • восстановление;
  • раскисление;
  • кристаллизация.

При этом при высокой температуре газовые летучие примеси удаляются, и происходит распад неустойчивых соединений. Благодаря этому в вакуумных дуговых печах можно получить материал с низким содержанием неметаллических примесей и газов.

Вакуумные печи используют в промышленных целях в таких отраслях как ракетостроение и атомная энергетика. С помощью такого оборудования можно получить слитки массой более 50 тонн.

Плазменно-дуговые печи

В таких установках металл нагревается за счет проходящей вместе со струей плазмы инертного газа электрической дуги. Такой процесс обеспечивает чистоту расплавляемого материала, а также позволяет значительно увеличить производительность печного оборудования.

В плазменно-дуговых печах происходит выплавка металлов с невысоким содержанием кислорода. Процесс плавления осуществляется в нейтральной атмосфере, что позволяет создать все условия для максимального выхода газов. Выплавка металла происходит с высокой скоростью.

Пламенно–дуговые печи используют для изготовления стали и сплавов высокого качества. Их применение обходится намного дешевле выплавки металла в вакуумных печах.

Преимущества и недостатки

Применение электродуговых печей для выплавки стали широко используется в металлургической промышленности. Основными преимуществами использования такого оборудования является возможность проведения таких операций:

  • расплавка шихты независимо от ее состава;
  • быстрый нагрев металла в печи;
  • регулировка температурного режима;
  • раскисление металла и получение в результате материала с низким содержанием примесей.

При переплавке стали в печном агрегате создаются все условия для снижения угара легирующих компонентов. Это обеспечивает снизить потери металлов в результате окисления при высоких температурах.

Электродуговые агрегаты широко используются в промышленных целях для переплавки различных металлов. С их помощью можно получить качественные крепкие стальные сплавы. Эффективность работы дуговой печи во многом зависит от качества теплового прибора. Поэтому приобретать следует надежное оборудование у известных и проверенных производителей.

Основные типы металлургических печей цветной металлургии

Печи цветной металлургии можно классифицировать по следующим признакам:

  • По технологическому назначению:
    • сушильные;
    • обжиговые;
    • плавильные;
    • рафинировочные, литейные, нагревательные печи;
    • печи для термической обработки.
    • печи на кусковом;
    • пылевидном, жидком и газообразном углеродистом топливе;
    • печи, работающие за счет тепла экзотермических реакций, происходящих в обрабатываемом материале;
    • электрические печи.
    • печи, в которых тепло выделяется прямо в массе нагреваемого материала;
    • печи, в которых тепловыделение происходит раздельно от обрабатываемого материала и передается к нему путем теплообмена;
    • печи с изолированным тепловыделением (муфельные).
    • с вертикальным рабочим пространством — шахтные печи;
    • с горизонтальным рабочим пространством — пламенные печи; круглые;
    • прямоугольные;
    • цилиндрические печи и т. п.
    • периодически действующие печи;
    • непрерывно действующие печи.
    • рекуперативные и регенеративные печи;
    • печи с котлами-утилизаторами;
    • печи с подогревом шихты

    Печи для обжига сырья и полупродуктов

    Многоподовая печь представляет вертикальный цилиндр диаметром 4—8 м и высотой 4—12 м, разделенный по высоте горизонтальными подами. Исходная шихта загружается на верхний под и последовательно перемещается с пода на под перегребающим устройством, состоящим из центрального вала и рукоятей с гребками. Топливо и воздух подаются в печь через окна, имеющиеся на каждом поду.

    Барабанная вращающаяся печь имеет форму горизонтально расположенного цилиндра диаметром 2—5 м и длиной 20— 150 м. Шихта и топливо поступают в печь обычно с противоположных концов печи. Движение шихты происходит вследствие вращения и некоторого наклона самой печи.

    Агломерационная машина состоит из непрерывно движущейся цепочки стальных решеток шириной 1—4 м и длиной 10—50 м. Шихта насыпается слоем на поверхность решеток и зажигается в голове машины, а воздух, необходимый для обжига, просасывается через слой материала на решетках.

    Печь для обжига в кипящем слое представлена камерой, имеющей поперечный размер 2—8 м и высоту 3—15 м. Воздух, поступающий в печь через под с большим числом отверстий, поддерживает обрабатываемый материал в состоянии непрерывного движения, напоминающего кипение жидкости.

    Печи для плавки руд, концентратов и полупродуктов, а также для рафинирования металлов

    Отражательная печь имеет форму горизонтальной камеры шириной 4—10 м, длиной 10—35 м и высотой 2—4 м. Исходная шихта загружается в печь через отверстия в своде или через окна в боковых стенках, а жидкие продукты плавки накапливаются в ванне печи. Топливо подается с головной части, а продукты горения отводятся в конце печи. Жидкие продукты плавки по мере их накопления выпускаются из печи через специальные отверстия, расположенные на уровне ванны.

    Шахтная печь состоит из вертикальной шахты шириной 1 — 2 м, длиной 5—15 м и высотой 5—8 м, собранной из водоохлаждаемых коробок (кессонов). Кусковая шихта и топливо загружаются сверху, а воздух подается через фурменные отверстия, расположенные в нижней части печи. Продукты плавки непрерывно выпускаются в отстойники или передние горны.

    Электрическая печь для плавки руд и полупродуктов имеет форму рабочего пространства, подобную отражательной печи с несколько меньшими размерами. Через свод проходят 3—6 угольных электродов диаметром 0,6—1,4 м, по которым в рабочее пространство печи подается электроэнергия. Загрузка шихты и выпуск продуктов плавки также аналогичны отражательной печи.

    Конвертер представляет горизонтальный цилиндр диаметром 2-4 м и длиной 4—10 м, имеющий поворот вокруг горизонтальной оси. Жидкий штейн и флюсы загружаются в конвертер через горловину, а воздух подается через фурмы прямо в ванну.

    Печи для нагрева и термической обработки цветных металлов

    Методическая печь обычно имеет прямоугольное рабочее пространство, вытянутое по горизонтали. Нагреваемые изделия непрерывно передвигаются механическими толкателями от загрузочного торца печи к торцу выгрузки нагретых изделий. Температура методической печи по ее длине не одинакова и имеет максимальное значение на стороне выгрузки изделий. Топливо подается в методическую печь со стороны выгрузки изделий, а отходящие газы отводятся через отверстия в поду в воздухоподогреватели.

    Камерная печь отличается от методической печи несколько меньшими размерами и периодичностью в работе, так как нагреваемые изделия неподвижно лежат на поду от начала и до конца нагрева, после чего происходит смена всей садки печи. Температура по всему рабочему пространству камерной печи одинакова. Нагревательные и термические печи для цветных металлов и сплавов во многих случаях работают на электронагреве.

    Печи для приготовления и плавки литейных сплавов

    Индукционная печь состоит из огнеупорного тигля, вмещающего в себя от 1 до 30 т расплава. Загружаемые в печь металлы нагреваются и плавятся за счет тепла, выделяющегося в самом металле при преобразовании в нем электрической энергии индуктируемой специальной обмоткой ( индуктором), окружающей тигель снаружи.

    Дуговая вакуумная печь состоит из водоохлаждаемого тигля (кристаллизатора), изготовленного из сплава того же состава, что и выплавляемый в печи, или из меди. Кристаллизатор герметизирован и соединен с камерой, находящейся под вакуумом, что обеспечивает высокое качество получаемых в печи сплавов. Сплавы получаються при плавлении под действием электрической дуги расходуемого электрода.

    Плавильные печи

    ПЛАВИЛЬНАЯ ПЕЧЬ – это литейная печь c индуктором для плавки металла. Преимущество в том, что плавильная масса отлично перемешивается до однородного состава, если используется индукционная плавильная печь. Индукционная технология ускоряет процесс плавки металла (время плавки 45 минут), такие печи имеют хорошие характеристики! ZAVOD RR – плавильные печи для стали, алюминия, меди от профессионалов!

    Электрические плавильные печи – Плавильные печи для плавки металла

    Содержание

    Как устроены плавильные печи?

    Плавильные печи представляют собой рабочую камеру, в которую помещается исходное сырьё (шихта), материалы и интенсифицирующие образование расплава. Камера отделяется от внешнего корпуса с помощью огнеупорной футеровки, а также теплоизолирующего слоя. В зависимости от вида применяемого энергоносителя или способа нагрева (метод индукции, графитовые электроды, газовые горелки), зависит устройство камеры, а так же время и качество материала на выходе. Давайте рассмотрим устройство плавильных печей.

    – В дуговых плавильных печах устройство для слива расплава и отделения шлаковых масс расположено в нижней части печи. Электроды помещаются сверху их количество от 1 до 4 штук. В качестве источника питания выступает трансформатор. Недостатком этого способа может быть спекание металла.

    – Индукционная плавильная печь состоит из индуктора, внутри которого находится тигель с огнеупорной футеровкой. Оборудование оснащено механизмами загрузки шихты, системами, обеспечивающими полный слив готового расплава, системами управления и регулировки. В индукционных плавильных печах металл сливается сверху. В качестве источника питания выступают тиристорные или транзисторные преобразователи. Качество переплавленного металла таким способом самое лучшее, ведь метод индукции – это постоянное равномерное перемешивание шихты во время плавки; Устройство плавильных печей зависит от их вида.

    Устройство плавильных печей

    Устройство плавильных печей

    – Газовые плавильные печи имеют самую простую и дешевую конструкцию. В плавильный узел в нижней части подключена газовая горелка, которая работает от обычного магистрального газа (метана). Как правило, эти печи используют для переплавки металлов с небольшой удельной теплотворной способностью, таких как алюминий или медь.

    Плавильные печи – преимущества

    При выборе плавильной печи, нужно знать ее недостатки и преимущества. Основное преимущество газовых плавильных печей – это минимальные затраты при плавки металла, ведь газ является самым дешевым энергоносителем. Индукционные плавильные печи позволяют получить отличное качество расплава на выходе. Электродуговые – достичь максимальную температуру плавки, для тугоплавких материалов или сплавов. Все виды печей имеют хорошую автоматизацию процесса и небольшой объём вредных атмосферных выбросов.

    Преимущества использования индукционных печей очевидны:

    • технология производства позволяет получать высококачественные расплавы с однородным химическим составом,
    • есть возможность введения дополнительных легирующих элементов,
    • печи обладают высоким КПД около 95%,
    • сравнительно малый угар,
    • безопасная для здоровья персонала технология производства,
    • экономичность производства, достигаемая за счет выделения большого количества тепла металлом, что позволяет потреблять меньшую мощность.

    Плавильные печи – характеристики

    Плавильные печи – характеристики

    Плавильные печи – характеристики

    Основными характеристиками тепловых установок является вместимость рабочей камеры, которая предопределяет производительность, тип материала, для выплавки которого она предназначена и номинальная мощность нагревательного элемента, задающая максимальную рабочую температуру, а также энергоёмкость процесса.

    Обращая внимание на характеристики оборудования при выборе индукционных печей, стоит уделить особое внимание качеству тигля. В среднем тигель рассчитан на количество плавок от 20 до 60. Комплект индукционной печи, кроме тигля, включает в себя:

    • преобразователь частоты (транзисторный или тиристорный),
    • конденсаторные батареи,
    • плавильные узлы,
    • водоохлаждаемые кабели,
    • системы охлаждения и пульты управления.

    Управление и контроль над процессом плавки должен осуществлять специально обученный персонал.

    Плавильные печи для алюминия

    Плавильные печи для алюминия

    Плавильные печи для плавки металла

    Нагревательный элемент таких установок может работать как в промышленных, так и в средних частотах. Преимуществами такого решения является полный контроль над окислительными процессами, а также полный слив расплава. В качестве футеровочных могут быть использованы как кислые, так и основные материалы.

    Плавильные печи для плавки металла являются самым востребованным оборудованием для металлургических предприятий. Индукционные плавильные печи делают процесс плавки более экономичным и качественным. В зависимости от типа металла и объема шихты процесс плавки металла в индукционной печи занимает в среднем от 30 минут до 1,5 часов. Индукционные печи позволяют проводить термическую обработку черных, цветных и даже драгоценных металлов.

    Плавильные печи для плавки металла

    Плавильные печи для плавки металла

    Плавильные печи для стали

    Плавка стали происходит при температуре 1500-1600 градусов Цельсия. В процессе плавки необходимо снизить содержание веществ, ухудшающих качество стали, таких как сера, фосфор и кислород. Выбор футеровки зависит от состава желаемого расплава. Индукционные печи идеально подходят для производства легированных сталей. Время плавки стали в среднем занимает около 1 часа.

    Эти печи работают, преимущественно, на промышленных частотах в 50 Гц и оснащаются высокоточной автоматикой, позволяющей контролировать как температуру, так и интенсивность ликвации. Величина угара в них едва достигает 2%, кроме того, они не требовательны к качеству подготовки шихтовых материалов.

    Плавильные печи для стали

    Плавильные печи для стали

    Плавильные печи для алюминия

    Температура плавления алюминия составляет 660 градусов Цельсия, поэтому важно, чтобы тиристорный преобразователь не был слишком мощным. Плавильный узел для плавки алюминия не стоит использовать для плавки других металлов. Использование индукционной печи для плавки алюминия и его сплавов позволит получить однородный расплав высокого качества.

    Отличительной особенностью таких печей является низкая температура разогрева и. как следствие, малое энергопотребление. В качестве основного материала для тигля распространён графит, кроме того, для интенсификации процесса, может быть использован и металлический сердечник, подключаемый к среднечастотной сети через понижающий трансформатор. Максимальная температура нагрева, как правило, не превышает 750 ºС.

    Плавильные печи для алюминия

    Плавильные печи для алюминия

    Плавильные печи для меди

    Плавка меди в индукционной печи занимает не более 40 минут. Процесс получения расплава происходит при температуре 1000-1300 градусов Цельсия. Плавить можно в вакууме, в среде защитных газов или в открытой среде. Благодаря высокой тепло- и электропроводности и гибкости медь широко используется в различных отраслях промышленности.

    При производстве медного расплава очень важно обеспечить химическую чистоту, поэтому, печи, в ряде случаев, имеют герметичную рабочую камеру, а индукционный нагрев осуществляется в мягком режиме. Существенных конструктивных отличий от индукционных печей для цветных металлов здесь нет, основное же требование - отсутствие непосредственной реакции между материалом тигля и расплавом.

    Плавильные печи для меди

    Плавильные печи для меди

    Электрические плавильные печи

    Электрические печи используют для нагрева вихревые наведённые электромагнитные поля. Электрическая плавильная печь осуществляет нагрев металла при прохождении тока, возникшего под действием электромагнитного поля индуктора, через металл в тигле. В таких печах можно переплавлять как черные, так и цветные металлы. Печи имеют несложное устройство и оснащены надежными системами контроля и управления, что облегчает работу с ними. Невысокая стоимость, надежность, экономичность, высокая производительность делают индукционные печи особенно привлекательными для современных предприятий.

    Плавильные печи – транзисторные

    Для расплавления шихты на небольших литейных предприятиях используются транзисторные печи. В таких печах используется среднечастотный индукционный нагреватель. Плавка металлов осуществляется в графитовом тигле. В транзисторных печах происходит динамическая циркуляция металлического расплава внутри тигля, благодаря чему происходит выравнивание температуры по всему объему тигля, что способствует получению однородного химического состава многокомпонентного сплава. В таких печах возможен быстрый переход со сплава одной марки на другой.

    Транзисторные индукционные печи отличает универсальность и крайне высокий КПД, который может достигать 99%, вместо привычной медной обмотки, в них применяется нагреватель индукционного типа, собранный на системе взаимосвязанных транзисторов. Преимуществом является и электродинамическая циркуляция, обеспечивающая равномерное перемешивание расплава.

    Плавильные печи – транзисторные

    Плавильные печи – транзисторные

    Плавильные печи – тиристорные

    Тиристорные печи оптимальны для средних и крупных производств. Такие печи успешно работают с разными типами комплексов непрерывного литья. Тиристорные печи обладают высокой производительностью при сравнительно малых эксплуатационных расходах. Применение таких печей возможно для получения различных по составу сплавов, при этом отмечен низкий угар легирующих элементов.

    Ещё одной разновидностью индукционных печей являются установки. В которых для стабилизации процесса нагрева и обеспечения возможности его регулирования применяются тиристорные частотные преобразователи тока, обеспечивающего образование электромагнитного поля.

    Читайте также: