Из перечисленных свойств выберите два которые характерны для веществ с металлической связью низкая

Обновлено: 28.09.2024

Тренировочные упражнения по теме «Строение вещества. Химическая связь: ковалентная (полярная и неполярная), ионная, металлическая» в формате ОГЭ по химии (тренажер задания 5 ОГЭ по химии).

Теория по теме (теория для решения задания 5 ОГЭ по химии):

Тренажер по теме «Химические связи» — 10 вопросов, при каждом прохождении новые.

Из предложенного перечня выберите два вещества с ковалентной полярной связью.

Ответ: 15

Из предложенного перечня выберите два вещества, содержащие ионную связь.

1) оксид серы(IV)
2) бромид калия
3) оксид натрия
4) сероводород
5) хлорид фосфора(III)

Ответ: 23

Из предложенного перечня выберите два вещества с ионной связью.

Ответ: 13

Из предложенного перечня выберите два вещества с металлической связью.

Ответ: 34

Ответ: 25

Из предложенного перечня выберите два вещества, содержащие ковалентную полярную связь.

Ответ: 14

Из предложенного перечня выберите два вещества, в каждом из которых содержится как ионная, так и ковалентная связь.

Ответ: 45

Из предложенного перечня выберите два вещества с ковалентной неполярной связью.

Ответ: 24

Из предложенного перечня выберите два вещества, содержащие ковалентную неполярную связь.

Из предложенного перечня выберите два вещества, содержащие как ионную, так и ковалентную связь.

Ответ: 12

1) азотная кислота
2) бромоводород
3) иодид кальция
4) бромид натрия
5) оксид фосфора(V)

1) хлор
2) аммиак
3) вода
4) сероводород
5) водород

1) иодид калия
2) хлороводород
3) белый фосфор
4) оксид бария
5) гидроксид калия

1) оксид магния
2) сульфид натрия
3) оксид азота(II)
4) белый фосфор
5) фторид аммония

Ответ: 35

1) ромбическая сера
2) оксид магния
3) хлорид кальция
4) сероводород
5) графит

1) водород
2) алюминий
3) оксид углерода(II)
4) хлороводород
5) белый фосфор

1) бромид натрия
2) оксид азота(II)
3) сульфид калия
4) фторид фосфора(V)
5) хлороводород

Из предложенного перечня выберите два вещества, содержащие металлическую связь.

1) бром
2) хлороводород
3) аммиак
4) кальций
5) ромбическая сера

Из перечисленных свойств выберите два которые характерны для веществ с металлической связью низкая

Тип 4 № 7799

Из предложенного перечня выберите два вещества, для которых характерна ковалентная неполярная связь.

Запишите в поле ответа номера выбранных соединений.

Ковалентная неполярная связь образуется в простых веществах между атомами неметаллов. Простые вещества неметаллы — йод и водород.

Тип 4 № 7800

Из предложенного перечня выберите две пары веществ, в которых расположены только соединения с ковалентной неполярной связью.

1) азот и кислород

2) вода и аммиак

Запишите в поле ответа номера выбранных пар веществ.

Ковалентная неполярная связь образуется в простых веществах между атомами неметаллов. Азот, кислород, фтор и сера — это простые вещества неметаллы.

Тип 4 № 7809

Из предложенного перечня выберите два соединения, в которых присутствует ковалентная неполярная связь.

Ковалентная неполярная связь образуется в простых веществах между атомами неметаллов, такими веществами являются хлор и азот.

Тип 4 № 7811

Из предложенного перечня выберите два соединения с ковалентной полярной связью.

Ковалентная полярная связь образуется в молекулах между атомами разных неметаллов, такими веществами являются сероводород и углекислый газ.

Тип 4 № 7815

Ковалентная неполярная связь образуется в простых веществах между атомами неметаллов, поэтому правильные ответы кислород и водород.

Тип 4 № 8200

Из предложенного перечня выберите два соединения с ковалентной неполярной связью.

В молекулах кислорода и перекиси водорода есть связь между атомами кислорода, которые являются ковалентными неполярными.

Тип 4 № 8209

Из предложенного перечня выберите два соединения, у которых кислород образует ковалентную полярную связь.

Ковалентная полярная связь осуществляется между разными неметаллами, в данном случае, в и

Тип 4 № 8210

Из предложенного перечня выберите два соединения, у которых хлор образует ковалентную полярную связь.

Тип 4 № 9899

Из предложенного перечня выберите два вещества, в которых имеются ковалентные связи, образованные по донорно-акцепторному механизму.

Запишите в поле ответа номера выбранных веществ.

Ковалентная связь образуется между атомами неметаллов, поэтому следует сразу исключить . Существует 2 механизма образования ковалентной связи: обменный механизм, когда каждый атом предоставляет в общую электронную пару 1 электрон, и донорно-акцепторный механизм, когда один атом предоставляет электронную пару, а другой — свободную орбиталь. Донорно-акцепторный механизм наблюдается в ,, .

Тип 4 № 7796

Ковалентная связь это соединение атомов посредством общих электронных пар, образуется между атомами неметаллов. Ионная связь это связь между ионами, образуется при взаимодействии атомов металла и неметалла. В аммиаке и воде содержатся атомы разных неметаллов, значит, здесь ковалентные полярные связи.

Тип 4 № 7805

Из предложенного перечня выберите две формулы, которые соответствуют веществам с ковалентной связью.

Ковалентная связь это соединение атомов посредством общих электронных пар, образуется между атомами неметаллов. Молекулами, где образуется ковалентная связь, является фторид водорода и четыреххлористый углерод.

ответ 25 является неверным. либо задание составлено некорректно. в задании сказано: "найти ковалентную связь", а HF - яркий пример водородной связи. К ковалентной связи данная кислота не имеет никакого отношения

К сожалению для Вас, Вы ошибаетесь.

Вещество HF - яркий пример вещества с ковалентной полярной связью в молекуле. А водородная связь возникает между молекулами HF

Тип 4 № 8219

Из предложенного перечня выберите два соединения с ковалентной связью.

Ковалентная неполярная связь образуется в молекулах между атомами одного элемента-неметалла. Ковалентная полярная связь образуется в молекулах между атомами разных неметаллов, ионная — между атомами металлов и неметаллов. Поэтому веществами с ковалентной связью являются и .

Тип 4 № 8223 Тип 4 № 7820

Из предложенного перечня выберите два вещества с атомной кристаллической решеткой.

3) поваренная соль

По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки.

Поваренная соль это ионное соединение, немолекулярного строения. Хлороводород и вода это вещества с ковалентными связями, газ и жидкость, значит, они имеют молекулярное строение, кремнезем и графит — вещества с ковалентными связями, твердые, тугоплавкие, значит, эти вещества с атомной кристаллической решеткой.

Тип 4 № 7825

Из предложенного перечня выберите две пары веществ с молекулярным строением.

1) графит и оксид углерода (IV)

2) вода и оксид углерода (II)

3) кремний и оксид железа (III)

4) сероводород и аммиак

5) серная кислота и оксид кремния (IV)

Вещества с ковалентными связями образуют либо атомную, либо молекулярную кристаллическую решетку.

Немолекулярное строение имеют вещества с атомной кристаллической решеткой(ковалентные связи), ионные и металлические кристаллы.

Правильные ответы 2 и 4, т. к. все вещества имеют молекулярное строение.

Тип 4 № 7823

Из предложенного перечня выберите два вещества с молекулярным строением.

4) хлорид аммония

Хлорид бария и оксид калия, хлорид аммония это ионные соединения, немолекулярного строения. Аммиак и бром это вещества с ковалентными связями, газ и жидкость при н. у., значит, они имеет молекулярное строение.

Тип 4 № 8198

Из предложенного перечня выберите две пары веществ только с ковалентными связями.

Запишите в поле ответа номера выбранных пар соединений.

Ковалентные связи образуются между атомами неметаллов.

Между металлами и неметаллами образуются ионные связи.

Также ионная связь возникает между ионами аммония (и им подобными) и отрицательными ионами.

Таким образом, соединения , — с ковалентными связями.

А почему не подходит 2 вариант? Хлорид серы и хлорид аммония образованы ковалентными полярными связями

В хлориде аммония между ионами аммония и ионами хлора связь ионная

Тип 4 № 10419

Из перечисленных свойств выберите два, которые характерны для веществ с металлической связью.

1) низкая плотность

2) хорошая растворимость в воде

3) высокая электропроводность

4) высокая теплопроводность

5) низкая температура плавления

Запишите в поле ответа номера выбранных свойств.

Для веществ с металлической связью характерны следующие свойства: пластичность, металлический блеск, высокая электро- и теплопроводность.

Тип 4 № 7298

Из предложенного перечня выберите два вещества с одинаковым типом кристаллической решетки.

Медь — простое вещество с металлической кристаллической решеткой.

Оксид кремния (кварц) — соединение с атомной кристаллической решеткой.

Сульфат алюминия — соль, ионная кристаллическая решетка.

Алмаз — известное соединение с атомной кристаллической решеткой, как и многие другие аллотропные модификации простых веществ.

Пропан — вещество молекулярного строения (молекулярная кристаллическая решетка в твёрдом состоянии).

Вещества с одинаковым типом кристаллической решетки: и .

Al2O3 не ионная разве?

Тип 4 № 7299

Натрий — простое вещество с металлической кристаллической решеткой.

Оксид кремния(IV) — соединение с атомной кристаллической решеткой.

Нитрат аммония — соль, ионная кристаллическая решетка.

Фуллерен — одна из аллотропных модификаций углерода, имеющая молекулярное строение.

Ацетилен — вещество молекулярного строения (молекулярная кристаллическая решетка в твёрдом состоянии).

Фуллерен является веществом с атомной кристаллической решеткой, как и сам углерод

Vitaliy, нет. Фуллерен вещество молекулярного строения. Каждая молекула состоит из 60 атомов

Задания Д4 № 1397

К веществам с молекулярным строением относятся

1) алмаз и оксид натрия

2) аммиак и оксид серы (IV)

3) йод и хлорид бария

4) фосфорная кислота и кремний

Вещества, в молекулах которых атомы соединены ковалентными связями, могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2, CaC2, SiC (карборунд), BN, Fe3C, TaC, красный и чёрный фосфор. В эту группу входят вещества , как правило, твердые и тугоплавкие вещества.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры кипения, чем все остальные вещества. По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки. Вещества молекулярного строения:аммиак , оксид серы (IV),фосфорная кислота , йод. Вещества ионного строения оксид натрия, хлорид бария. Вещества с атомной кристаллической решеткой это алмаз, кремний.

Задания Д4 № 2589

Веществом с ионным типом кристаллической решётки является

3) уксусная кислота

4) сульфат натрия

Немолекулярное строение имеют вещества с ионными и металлическими связями. Вещества, в молекулах которых атомы соединены ковалентными связями могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: С (алмаз, графит), Si, Ge, B, SiO2 , CaC2 , SiC (карборунд), BN, Fe3 C, TaC, красный и чёрный фосфор. В эту группу входят вещества, как правило, твердые и тугоплавкие вещества.

Вещества с молекулярной кристаллической решеткой имеет более низкие температуры кипения, чем все остальные вещества. По формуле необходимо определить тип связи в веществе, а затем определить тип кристаллической решетки.

Ионную кристаллическую решетку имеет сульфат натрия.

Тип 4 № 8241

Из предложенного перечня выберите два вещества с ионной кристаллической решеткой в твёрдом состоянии.

Под строением вещества понимают, из каких частиц молекул, ионов, атомов построена его кристаллическая решетка. Немолекулярное строение имеют вещества с ионными и металлическими связями. Вещества, в молекулах которых атомы соединены ковалентными связями могут иметь молекулярные и атомные кристаллические решетки. Атомные кристаллические решетки: (алмаз, графит), , , , , , (карборунд), , , , красный и чёрный фосфор. В эту группу входят вещества, как правило, твердые и тугоплавкие вещества.

Вода, соляная и азотная кислоты — вещества молекулярного строения, а вот нитрат кальция и фторид калия — типичные соли с ионной кристаллической решеткой.

ХИМИЯ. как определить тип кристаллической решетки?

В зависимости от вида частиц и от характера связи между ними различают четыре типа кристаллических решеток: ионные, молекулярные, атомные и металлические.

Ионные кристаллические решетки
Виды частиц в узлах решетки: ионы
Для веществ с ионной химической связью будет характерна ионная решетка.
Ионы-это частицы, имеющие положительный или отрицательный заряд.
Напрмер NaCl, Соли, галогениды (IA,IIA),оксиды и гидроксиды типичных металлов.
Физ. свойства: Твердые, прочные, нелетучие, хрупкие, тугоплавкие, многие растворимы в воде, расплавы проводят электрический ток

Атомные кристаллические решетки
В узлах атомной кристаллической решетки находятся отдельные атомы.
Ковалентная химическая связь.
В данных решетках молекулы отсутствуют. Весь кристалл следует рассматривать как гигантскую молекулу. Примером веществ с таким типом кристаллических решеток могут служить аллотропные модификации углерода: алмаз, графит; а также бор, кремний, красный фосфор, германий. Простые по составу.
Атомные кристаллические решетки имеют не только простые, но и сложные. Например, оксид алюминия, оксид кремния. Все эти вещества имеют очень высокие температуры плавления (у алмаза свыше 35000С) , прочны и тверды, нелетучи, практически нерастворимы в жидкостях.

Металлические кристаллические решетки
Металлическая связь. Связь в металлах между положительными ионами посредством обобществленных электронов.
общие физические свойства для металлов характерны: блеск, электропроводность, теплопроводность, пластичность.
Вещества с металлической связью имеют металлические кристаллические решетки
В узлах таких решеток находятся атомы и положительные ионы металлов, а в объеме кристалла свободно перемещаются валентные электроны. Электроны электростатически притягивают положительные ионы металлов. Этим объясняется стабильность решетки.

Молекулярные кристаллические решетки
Эти вещества являются неметаллами. Простые по составу. Химическая связь внутри молекул ковалентная неполярная. Летучие, легкоплавкие, малорастворимые в воде.
в узлах решетки нах. молекулы.
молекулярную кристаллическую решетку могут иметь не только твердые простые вещества: благородные газы, H2,O2,N2, I2, O3, белый фосфор Р4, но и сложные: твердая вода, твердые хлороводород и сероводород. Большинство твердых органических соединений имеют молекулярные кристаллические решетки (нафталин, глюкоза, сахар) .
В узлах решеток находятся неполярные или полярные молекулы. Несмотря на то, что атомы внутри молекул связаны прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного взаимодействия.

ИОННЫЕ
Ионными называют кристаллические решетки, в узлах которых находятся ионы. Их образуют вещества с ионной связью. Ионные кристаллические решётки имеют соли, некоторые оксиды и гидроксиды металлов.
Связи между ионами в кристалле очень прочные и устойчивые. Поэтому вещества с ионной решёткой обладают высокой твёрдостью и прочностью, тугоплавки и нелетучи.

АТОМНЫЕ
Атомными называют кристаллические решётки, в узлах которых находятся отдельные атомы, которые соединены очень прочными ковалентными связями.
В природе встречается немного веществ с атомной кристаллической решёткой. К ним относятся бор, кремний, германий, кварц, алмаз. Вещества с АКР имеют высокие температуры плавления, обладают повышенной твёрдостью. Алмаз-самый твёрдый природный материал.
МОЛЕКУЛЯРНЫЕ
Молекулярными называют кристаллические решётки, в узлах которых располагаются молекулы. Химические связи в них ковалентные, как полярные, так и неполярные. Связи в молекулах прочные, но между молекулами связи не прочные.
Вещества с МКР имеют малую твёрдость, плавятся при низкой температуре, летучие, при обычных условиях находятся в газообразном или жидком состоянии
МЕТАЛЛИЧЕСКИЕ
Металлическими называют решётки, в узлах которых находятся атомы и ионы металла.
Для металлов характерны физические свойства: пластичность, ковкость, металлический блеск, высокая электро- и теплопроводность

молекулярная кристаллическая решетка, в узлах которой распологаются молекулы, например Cl2,I2,H2, Br2 и т. д
атомная кристаллическая решетка, в узлах которой находятся отдельные атомы, которые соединены очень прочными ковалентными связями, например алмаз
металлическая кристаллическая решетка, в узлах которой распологаются атомы и ионы металла, ну это все металлы Na, K, Mg, Ca и другие
ионная кристаллическая решетка в узлах которой находятся ионы, их образуют вещества с ионной связью. это соли, некоторые оксиды и гидроксиды металлов, самый простой пример NaCl, KI


Молекулярные кристаллические решетки
Эти вещества являются неметаллами. Простые по составу. Химическая связь внутри молекул ковалентная неполярная. Летучие, легкоплавкие, малорастворимые в воде.
в узлах решетки нах. молекулы.
молекулярную кристаллическую решетку могут иметь не только твердые простые вещества: благородные газы, H2,O2,N2, I2, O3, белый фосфор Р4, но и сложные: твердая вода, твердые хлороводород и сероводород. Большинство твердых органических соединений имеют молекулярные кристаллические решетки (нафталин, глюкоза, сахар) .
В узлах решеток находятся неполярные или полярные молекулы. Несмотря на то, что атомы внутри молекул связаны прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного взаимодействияв узлах атомных кристаллических решеток находятся отдельные атомы

Ионные кристаллические решетки

Данные типы кристаллических решеток присутствуют в соединениях с ионным типом связи. В этом случае узлы решетки содержат ионы, обладающие противоположным электрическим зарядом. Благодаря электромагнитному полю, силы межионного взаимодействия оказываются достаточно сильными, и это обуславливает физические свойства вещества. Обычными характеристиками являются тугоплавкость, плотность, твердость и возможность проводить электрический ток. Ионные типы кристаллических решеток имеются у таких веществ, как поваренная соль, нитрат калия и прочие. физические типы кристаллических решеток

Атомные кристаллические решетки

Этот тип строения вещества присущ элементам, структуру которых определяет ковалентная химическая связь. Типы кристаллических решеток подобного рода содержат в узлах отдельные атомы, связанные между собой крепкими ковалентными связями. Подобный тип связи возникает тогда, когда два одинаковых атома «делятся» электронами, тем самым образуют общую пару электронов для соседних атомов. Благодаря такому взаимодействию ковалентные связи равномерно и сильно связывают атомы в определенном порядке. Химические элементы, которые содержат атомные типы кристаллических решеток, обладают твердостью, высокой температурой плавления, плохо проводят электрический ток и химически неактивны. Классическими примерами элементов с подобным внутренним строением можно назвать алмаз, кремний, германий, бор.

ЧТО ДЕЛАТЬ В СЛУЧАЕ ОХРИПЛОСТИ ИЛИ ПОТЕРИ ГОЛОСА?

Голос человека – настоящее сокровище, которое многие не берегут. Важнейшим фактором, который влияет на голос, является состояние ЛОР-органов. Поэтому ларингит сопровождается охриплостью и даже полной потерей голоса. В случае потери голоса следует…
Читать далее.
SlickJump®
Есть противопоказания. Посоветуйтесь с врачом.

Молекулярные кристаллические решетки

Вещества, имеющие молекулярный тип кристаллической решетки, представляют собой систему устойчивых, взаимодействующих, плотноупакованных между собой молекул, которые расположены в узлах кристаллической решетки. В подобных соединениях молекулы сохраняют свое пространственное положение в газообразной, жидкой и твердой фазе. В узлах кристалла молекулы удерживаются слабыми ван-дер-ваальсовыми силами, которые в десятки раз слабее сил ионного взаимодействия. молекулярный тип кристаллической решетки

Образующие кристалл молекулы могут быть как полярными, так и неполярными. Из-за спонтанного движения электронов и колебания ядер в молекулах электрическое равновесие может смещаться – так возникает мгновенный электрический момент диполя. Соответствующим образом ориентированные диполи создают силы притяжения в решетке. Двуокись углерода и парафин являются типичными примерами элементов с молекуляной кристаллической решеткой.

Женская грудь требует особого внимания и заботы.

Не секрет, что мастопатия — это широко распространенное заболевание, от которого страдают многие женщины. Но не все знают, что его развитие может быть фоном для возникновения более серьезных.
Читать далее.
SlickJump®

Металлические кристаллические решетки

Металлическая связь гибче и пластичней ионной, хотя может показаться, что обе они базируются на одном и том же принципе. Типы кристаллических решеток металлов объясняют их типичные свойства – такие, например, как механическая прочность, тепло- и электропроводность, плавкость.

Отличительной особенностью металлической кристаллической решетки является наличие положительно заряженных ионов металла (катионов) в узлах этой решетки. Между узлами находятся электроны, которые непосредственно участвуют в создании электрического поля вокруг решетки. Количество электронов, перемещающихся внутри этой кристаллической решетки, называется электронным газом. типы кри

Химическая связь. Типы химической связи


Темы кодификатора ЕГЭ: Ковалентная химическая связь, ее разновидности и механизмы образования. Характеристики ковалентной связи (полярность и энергия связи). Ионная связь. Металлическая связь. Водородная связь

Сначала рассмотрим связи, которые возникают между частицами внутри молекул. Такие связи называют внутримолекулярными.

Химическая связь между атомами химических элементов имеет электростатическую природу и образуется за счет взаимодействия внешних (валентных) электронов, в большей или меньшей степени удерживаемых положительно заряженными ядрами связываемых атомов.

Ключевое понятие здесь – ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ . Именно она определяет тип химической связи между атомами и свойства этой связи.

Электроотрицательность χ – это способность атома притягивать (удерживать) внешние (валентные) электроны. Электроотрицательность определяется степенью притяжения внешних электронов к ядру и зависит, преимущественно, от радиуса атома и заряда ядра.

Электроотрицательность сложно определить однозначно. Л.Полинг составил таблицу относительных электроотрицательностей (на основе энергий связей двухатомных молекул). Наиболее электроотрицательный элемент – фтор со значением 4 .

Электроотрицательность

Важно отметить, что в различных источниках можно встретить разные шкалы и таблицы значений электроотрицательности. Этого не стоит пугаться, поскольку при образовании химической связи играет роль разность электроотрицательностей атомов, а она примерно одинакова в любой системе.

Если один из атомов в химической связи А:В сильнее притягивает электроны, то электронная пара смещается к нему. Чем больше разность электроотрицательностей атомов, тем сильнее смещается электронная пара.

Если значения электроотрицательностей взаимодействующих атомов равны или примерно равны: ЭО(А)≈ЭО(В) , то общая электронная пара не смещается ни к одному из атомов: А : В . Такая связь называется ковалентной неполярной.

Если электроотрицательности взаимодействующих атомов отличаются, но не сильно (разница электроотрицательностей примерно от 0,4 до 2: 0,4 ), то электронная пара смещается к одному из атомов. Такая связь называется ковалентная полярная .

Если электроотрицательности взаимодействующих атомов отличаются существенно (разница электроотрицательностей больше 2: ΔЭО>2 ), то один из электронов практически полностью переходит к другому атому, с образованием ионов . Такая связь называется ионная .

Основные типы химических связей — ковалентная, ионная и металлическая связи. Рассмотрим их подробнее.

Ковалентная химическая связь

Ковалентная связь – это химическая связь , образованная за счет образования общей электронной пары А:В . При этом у двух атомов перекрываются атомные орбитали. Ковалентная связь образуется при взаимодействии атомов с небольшой разницей электроотрицательностей (как правило, между двумя неметаллами) или атомов одного элемента.

Основные свойства ковалентных связей

Эти свойства связи влияют на химические и физические свойства веществ.

Направленность связи характеризует химическое строение и форму веществ. Углы между двумя связями называются валентными. Например, в молекуле воды валентный угол H-O-H равен 104,45 о , поэтому молекула воды — полярная, а в молекуле метана валентный угол Н-С-Н 109 о 28′.


Насыщаемость — это способность атомов образовывать ограниченное число ковалентных химических связей. Количество связей, которые способен образовывать атом, называется валентностью.

Полярность связи возникает из-за неравномерного распределения электронной плотности между двумя атомами с различной электроотрицательностью. Ковалентные связи делят на полярные и неполярные.

Поляризуемость связи — это способность электронов связи смещаться под действием внешнего электрического поля (в частности, электрического поля другой частицы). Поляризуемость зависит от подвижности электронов. Чем дальше электрон находится от ядра, тем он более подвижен, соответственно и молекула более поляризуема.


Ковалентная неполярная химическая связь

Существует 2 вида ковалентного связывания – ПОЛЯРНЫЙ и НЕПОЛЯРНЫЙ .

Пример . Рассмотрим строение молекулы водорода H2. Каждый атом водорода на внешнем энергетическом уровне несет 1 неспаренный электрон. Для отображения атома используем структуру Льюиса – это схема строения внешнего энергетического уровня атома, когда электроны обозначаются точками. Модели точечных структур Льюиса неплохо помогают при работе с элементами второго периода.

H . + . H = H:H

Таким образом, в молекуле водорода одна общая электронная пара и одна химическая связь H–H. Эта электронная пара не смещается ни к одному из атомов водорода, т.к. электроотрицательность у атомов водорода одинаковая. Такая связь называется ковалентной неполярной .

Ковалентная неполярная (симметричная) связь – это ковалентная связь, образованная атомами с равной элетроотрицательностью (как правило, одинаковыми неметаллами) и, следовательно, с равномерным распределением электронной плотности между ядрами атомов.

Дипольный момент неполярных связей равен 0.

Ковалентная полярная химическая связь

Ковалентная полярная связь – это ковалентная связь, которая возникает между атомами с разной электроотрицательностью (как правило, разными неметаллами) и характеризуется смещением общей электронной пары к более электроотрицательному атому (поляризацией).

Электронная плотность смещена к более электроотрицательному атому – следовательно, на нем возникает частичный отрицательный заряд (δ-), а на менее электроотрицательном атоме возникает частичный положительный заряд (δ+, дельта +).

Чем больше различие в электроотрицательностях атомов, тем выше полярность связи и тем больше дипольный момент . Между соседними молекулами и противоположными по знаку зарядами действуют дополнительные силы притяжения, что увеличивает прочность связи.

Полярность связи влияет на физические и химические свойства соединений. От полярности связи зависят механизмы реакций и даже реакционная способность соседних связей. Полярность связи зачастую определяет полярность молекулы и, таким образом, непосредственно влияет на такие физические свойства как температуре кипения и температура плавления, растворимость в полярных растворителях.

Механизмы образования ковалентной связи

Ковалентная химическая связь может возникать по 2 механизмам:

1. Обменный механизм образования ковалентной химической связи – это когда каждая частица предоставляет для образования общей электронной пары один неспаренный электрон:

А . + . В= А:В

2. Донорно-акцепторный механизм образования ковалентной связи – это такой механизм, при котором одна из частиц предоставляет неподеленную электронную пару, а другая частица предоставляет вакантную орбиталь для этой электронной пары:

А: + B= А:В

При этом один из атомов предоставляет неподеленную электронную пару ( донор ), а другой атом предоставляет вакантную орбиталь для этой пары ( акцептор ). В результате образования связи оба энергия электронов уменьшается, т.е. это выгодно для атомов.

Ковалентная связь, образованная по донорно-акцепторному механизму, не отличается по свойствам от других ковалентных связей, образованных по обменному механизму. Образование ковалентной связи по донорно-акцепторному механизму характерно для атомов либо с большим числом электронов на внешнем энергетическом уровне (доноры электронов), либо наоборот, с очень малым числом электронов (акцепторы электронов). Более подробно валентные возможности атомов рассмотрены в соответствующей статье.

Ковалентная связь по донорно-акцепторному механизму образуется:

– в молекуле угарного газа CO (связь в молекуле – тройная, 2 связи образованы по обменному механизму, одна – по донорно-акцепторному): C≡O;

– в ионе аммония NH4 + , в ионах органических аминов, например, в ионе метиламмония CH3-NH2 + ;

– в комплексных соединениях, химическая связь между центральным атомом и группами лигандов, например, в тетрагидроксоалюминате натрия Na[Al(OH)4] связь между алюминием и гидроксид-ионами;

– в азотной кислоте и ее солях — нитратах: HNO3, NaNO3, в некоторых других соединениях азота;

– в молекуле озона O3.

Основные характеристики ковалентной связи

Ковалентная связь, как правило, образуется между атомами неметаллов. Основными характеристиками ковалентной связи являются длина, энергия, кратность и направленность.

Кратность химической связи

Кратность химической связи — это число общих электронных пар между двумя атомами в соединении. Кратность связи достаточно легко можно определить из значения валентности атомов, образующих молекулу.

Например , в молекуле водорода H2 кратность связи равна 1, т.к. у каждого водорода только 1 неспаренный электрон на внешнем энергетическом уровне, следовательно, образуется одна общая электронная пара.

В молекуле кислорода O2 кратность связи равна 2, т.к. у каждого атома на внешнем энергетическом уровне есть по 2 неспаренных электрона: O=O.

В молекуле азота N2 кратность связи равна 3, т.к. между у каждого атома по 3 неспаренных электрона на внешнем энергетическом уровне, и атомы образуют 3 общие электронные пары N≡N.

Длина ковалентной связи

Длина химической связи – это расстояние между центрами ядер атомов, образующих связь. Ее определяют экспериментальными физическими методами. Оценить величину длины связи можно примерно, по правилу аддитивности, согласно которому длина связи в молекуле АВ приблизительно равна полусумме длин связей в молекулах А2 и В2:

Длину химической связи можно примерно оценить по радиусам атомов, образующих связь, или по кратности связи, если радиусы атомов не сильно отличаются.

При увеличении радиусов атомов, образующих связь, длина связи увеличится.

Например . В ряду: C–C, C=C, C≡C длина связи уменьшается.

Длина связи, нм

При увеличении кратности связи между атомами (атомные радиусы которых не отличаются, либо отличаются незначительно) длина связи уменьшится.

Энергия связи

Мерой прочности химической связи является энергия связи. Энергия связи определяется энергией, необходимой для разрыва связи и удаления атомов, образующих эту связь, на бесконечно большое расстояние друг от друга.

Ковалентная связь является очень прочной. Ее энергия составляет от нескольких десятков до нескольких сотен кДж/моль. Чем больше энергия связи, тем больше прочность связи, и наоборот.

Прочность химической связи зависит от длины связи, полярности связи и кратности связи. Чем длиннее химическая связь, тем легче ее разорвать, и тем меньше энергия связи, тем ниже ее прочность. Чем короче химическая связь, тем она прочнее, и тем больше энергия связи.

Например , в ряду соединений HF, HCl, HBr слева направо прочность химической связи уменьшается, т.к. увеличивается длина связи.

Ионная химическая связь

the_four_chemical_bonds_by_katyjsst-d6j8c5a

Ионная связь — это химическая связь, основанная на электростатическом притяжении ионов.

Ионы образуются в процессе принятия или отдачи электронов атомами. Например, атомы всех металлов слабо удерживают электроны внешнего энергетического уровня. Поэтому для атомов металлов характерны восстановительные свойства — способность отдавать электроны.

Пример. Атом натрия содержит на 3 энергетическом уровне 1 электрон. Легко отдавая его, атом натрия образует гораздо более устойчивый ион Na + , с электронной конфигурацией благородного газа неона Ne. В ионе натрия содержится 11 протонов и только 10 электронов, поэтому суммарный заряд иона -10+11 = +1:

+11 Na ) 2 ) 8 ) 1 — 1e = +11 Na + ) 2 ) 8

Пример. Атом хлора на внешнем энергетическом уровне содержит 7 электронов. Чтобы приобрести конфигурацию стабильного инертного атома аргона Ar, хлору необходимо присоединить 1 электрон. После присоединения электрона образуется стабильный ион хлора, состоящий из электронов. Суммарный заряд иона равен -1:

+17 Cl ) 2 ) 8 ) 7 + 1e = +17 Cl — ) 2 ) 8 ) 8

Обратите внимание:

  • Свойства ионов отличаются от свойств атомов!
  • Устойчивые ионы могут образовывать не только атомы, но и группы атомов. Например: ион аммония NH4 + , сульфат-ион SO4 2- и др. Химические связи, образованные такими ионами, также считаются ионными;
  • Ионную связь, как правило, образуют между собой металлы и неметаллы (группы неметаллов);

Образовавшиеся ионы притягиваются за счет электрического притяжения: Na + Cl — , Na2 + SO4 2- .

Наглядно обобщим различие между ковалентными и ионным типами связи:

gradation of polar bond

Металлическая химическая связь

Металлическая связь — это связь, которую образуют относительно свободные электроны между ионами металлов, образующих кристаллическую решетку.

У атомов металлов на внешнем энергетическом уровне обычно расположены от одного до трех электронов. Радиусы у атомов металлов, как правило, большие — следовательно, атомы металлов, в отличие от неметаллов, достаточно легко отдают наружные электроны, т.е. являются сильными восстановителями.

Отдавая электроны, атомы металлов превращаются в положительно заряженные ионы . Оторвавшиеся электроны относительно свободно перемещаются между положительно заряженными ионами металлов. Между этими частицами возникает связь, т.к. общие электроны удерживают катионы металлов, расположенные слоями, вместе , создавая таким образом достаточно прочную металлическую кристаллическую решетку . При этом электроны непрерывно хаотично двигаются, т.е. постоянно возникают новые нейтральные атомы и новые катионы.

Межмолекулярные взаимодействия

Отдельно стоит рассмотреть взаимодействия, возникающие между отдельными молекулами в веществе — межмолекулярные взаимодействия . Межмолекулярные взаимодействия — это такой вид взаимодействия между нейтральными атомами, при котором не появляются новые ковалентные связи. Силы взаимодействия между молекулами обнаружены Ван-дер Ваальсом в 1869 году, и названы в честь него Ван-дар-Ваальсовыми силами. Силы Ван-дер-Ваальса делятся на ориентационные , индукционные и дисперсионные . Энергия межмолекулярных взаимодействий намного меньше энергии химической связи.

Ориентационные силы притяжения возникают между полярными молекулами (диполь-диполь взаимодействие). Эти силы возникают между полярными молекулами. Индукционные взаимодействия — это взаимодействие между полярной молекулой и неполярной. Неполярная молекула поляризуется из-за действия полярной, что и порождает дополнительное электростатическое притяжение.

Особый вид межмолекулярного взаимодействия — водородные связи. Водородные связи — это межмолекулярные (или внутримолекулярные) химические связи, возникающие между молекулами, в которых есть сильно полярные ковалентные связи — H-F, H-O или H-N . Если в молекуле есть такие связи, то между молекулами будут возникать дополнительные силы притяжения.

Механизм образования водородной связи частично электростатический, а частично — донорно–акцепторный. При этом донором электронной пары выступают атом сильно электроотрицательного элемента (F, O, N), а акцептором — атомы водорода, соединенные с этими атомами. Для водородной связи характерны направленность в пространстве и насыщаемость .

Водородную связь можно обозначать точками: Н ··· O. Чем больше электроотрицательность атома, соединенного с водородом, и чем меньше его размеры, тем крепче водородная связь. Она характерна прежде всего для соединений фтора с водородом , а также к ислорода с водородом , в меньшей степени азота с водородом .

Водородные связи

Водородные связи возникают между следующими веществами:

— фтороводород HF (газ, раствор фтороводорода в воде — плавиковая кислота), вода H2O (пар, лед, жидкая вода):

— раствор аммиака и органических аминов — между молекулами аммиака и воды;

— органические соединения, в которых связи O-H или N-H: спирты, карбоновые кислоты, амины, аминокислоты, фенолы, анилин и его производные, белки, растворы углеводов — моносахаридов и дисахаридов.

Водородная связь оказывает влияние на физические и химические свойства веществ. Так, дополнительное притяжение между молекулами затрудняет кипение веществ. У веществ с водородными связями наблюдается аномальное повышение температуры кипения.

Например , как правило, при повышении молекулярной массы наблюдается повышение температуры кипения веществ. Однако в ряду веществ H2O-H2S-H2Se-H2Te мы не наблюдаем линейное изменение температур кипения.


А именно, у воды температура кипения аномально высокая — не меньше -61 о С, как показывает нам прямая линия, а намного больше, +100 о С. Эта аномалия объясняется наличием водородных связей между молекулами воды. Следовательно, при обычных условиях (0-20 о С) вода является жидкостью по фазовому состоянию.

Тренировочный тест по теме «Химические связи» — 10 вопросов, при каждом прохождении новые.

Читайте также: