Как изменяется химическая активность металлов в периодах

Обновлено: 05.07.2024

Химическую активность металла оценивают обычно по способности его атомов отдавать валентные электроны (восстановительные свойства). Мерой прочности связи электронов с ядром в атомах является энергия иони-за-

ции I, т. е. количество энергии, необходимое для отрыва электрона от невоз­бужденного атома.

В подгруппах s- и р-элементов (сверху вниз) наблюдается значительное увеличение радиуса атома и снижение энергии ионизации. Самые низкие значения энергии ионизации (4–5 эВ/моль) у щелочных металлов.

В соединениях s-металлы имеют постоянные степени окисления, равные номеру группы; их оксиды за исключением бериллия (соединения бериллия амфотерны) проявляют основные свойства; гидриды солеподобны, решетки их построены из положительных ионов металлов и анионов водорода (ВаН2).

Образование связей у s- и p-металлов осуществляется главным образом за счет s- и p-электронов, но, по мере увеличения в подгруппе главного кван­тового числа, sp-гибридные орбитали становятся менее устойчивыми и связи могут образовывать только p-электроны, поэтому в соединениях они могут проявлять переменные степени окисления (SnCl2, SnCl4). Оксиды их амфотер-ны и реже обладают кислотными свойствами (исключение составляют In2O и Tl2O, проявляющие основные свойства). Гидриды – полимерные (AlH3↑) или газообразные (SnH4, PbH4) соединения с ковалентным типом связи.

В больших периодах между s- и p-элементами расположены d-металлы, получившие название переходных. В образовании связей у них могут прини­мать участие электроны s-, p- и d-подуровней, поэтому эти элементы (кроме Zn и Cd ) в соединениях могут проявлять переменную степень окисления. Характер их оксидов зависит от степени окисления металла. Оксиды с низ­кой степенью окисления элемента преимущественно основные. При наличии кислородных вакансий некоторые из них представляют собой металлоподоб-ные вещества с металлической проводимостью или полупроводники. Оксиды с промежуточной степенью окисления металла обладают амфотерными свой­ствами, а с высшей - главным образом кислотными. Гидриды – кристалличе­ские вещества с металлической проводимостью.

В подгруппах d-элементов с увеличением радиуса атомов энергия ио­низации понижается, а затем, вследствие лантаноидного сжатия, повышается.

Зависимость активности металлов от энергии ионизации


Период s-металлы I, эВ/моль d-металлы I, эВ/моль
4 5 6 КRb Cs 4,34 4,18 3,89 СиAg Au 7,72 7,57 9,22

В связи с этим в подгруппах s-металлов химическая активность сверху вниз увеличивается, в подгруппах d-элементов – убывает (табл. 11.2).

Закономерности изменения химических свойств элементов. Характеристика элементов

Перечислим закономерности изменения свойств, проявляемые в пределах периодов:

— металлические свойства уменьшаются;

— неметаллические свойства усиливаются;

— степень окисления элементов в летучих водородных соединениях возрастает от $–4$ до $–1$;

— оксиды от основных через амфотерные сменяются кислотными оксидами;

— гидроксиды от щелочей через амфотерные сменяются кислотами.

Д. И. Менделеев в $1869$ г. сделал вывод — сформулировал Периодический закон, который звучит так:

Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от относительных атомных масс элементов.

Систематизируя химические элементы на основе их относительных атомных масс, Менделеев уделял большое внимание также свойствам элементов и образуемых ими веществ, распределяя элементы со сходными свойствами в вертикальные столбцы — группы.

Иногда, в нарушение выявленной им закономерности, Менделеев ставил более тяжелые элементы с меньшими значениями относительных атомных масс. Например, он записал в свою таблицу кобальт перед никелем, теллур перед йодом, а когда были открыты инертные (благородные) газы, — аргон перед калием. Такой порядок расположения Менделеев считал необходимым потому, что иначе эти элементы попали бы в группы несходных с ними по свойствам элементов, в частности щелочной металл калий попал бы в группу инертных газов, а инертный газ аргон — в группу щелочных металлов.

Д. И. Менделеев не мог объяснить эти исключения из общего правила, не мог объяснить и причину причину периодичности свойств элементов и образованных ими веществ. Однако он предвидел, что эта причина кроется в сложном строении атома, внутреннее строение которого в то время не было изучено.

В соответствии с современными представлениями о строении атома, основой классификации химических элементов являются заряды их атомных ядер, и современная формулировка периодического закона такова:

Свойства химических элементов и образованных ими веществ находятся в периодической зависимости от зарядов их атомных ядер.

Периодичность в изменении свойств элементов объясняется периодической повторяемостью в строении внешних энергетических уровней их атомов. Именно число энергетических уровней, общее число расположенных на них электронов и число электронов на внешнем уровне отражают принятую в Периодической системе символику, т.е. раскрывают физический смысл номера периода, номера группы и порядкового номера элемента.

Строение атома позволяет объяснить и причины изменения металлических и неметаллических свойств элементов в периодах и группах.

Периодический закон и Периодическая система химических элементов Д. И. Менделеева обобщают сведения о химических элементах и образованных ими веществах и объясняют периодичность в изменении их свойств и причину сходства свойств элементов одной и той же группы. Эти два важнейших значения Периодического закона и Периодической системы дополняет еще одно, которое заключается в возможности прогнозировать, т.е. предсказывать, описывать свойства и указывать пути открытия новых химических элементов.

Общая характеристика металлов главных подгрупп I±III групп в связи с их положением в Периодической системе химических элементов Д. И. Менделеева и особенностями строения их атомов

Химические элементы — металлы

Большинство химических элементов относят к металлам — $92$ из $114$ известных элементов.

Все металлы, кроме ртути, в обычном состоянии — твердые вещества и имеют ряд общих свойств.

Металлы — это ковкие, пластичные, тягучие вещества, имеющие металлический блеск и способны проводить тепло и электрический ток.

Атомы элементов-металлов отдают электроны внешнего (а некоторые и предвнешнего) электронного слоя, превращаясь в положительные ионы.

Это свойство атомов металлов, как вы знаете, определяется тем, что они имеют сравнительно большие радиусы и малое число электронов (в основном от $1$ до $3$ на внешнем слое).

Исключение составляют лишь $6$ металлов: атомы германия, олова, свинца на внешнем слое имеют $4$ электрона, атомы сурьмы и висмута — $5$, атомы полония — $6$.

Для атомов металлов характерны небольшие значения электроотрицательности (от $0.7$ до $1.9$) и исключительно восстановительные свойства, т.е. способность отдавать электроны.

Вы уже знаете, что в Периодической системе химических элементов Д. И. Менделеева металлы находятся ниже диагонали бор — астат, а также выше ее, в побочных подгруппах. В периодах и главных подгруппах действуют известные вам закономерности в изменении металлических, а значит, восстановительных свойств атомов элементов.

Химические элементы, расположенные вблизи диагонали бор — астат ($Be, Al, Ti, Ge, Nb, Sb$), обладают двойственными свойствами: в одних своих соединениях ведут себя как металлы, в других проявляют свойства неметаллов.

В побочных подгруппах восстановительные свойства металлов с увеличением порядкового номера чаще всего уменьшаются.

Это можно объяснить тем, что на прочность связи валентных электронов с ядром у атомов этих металлов в большей степени влияет величина заряда ядра, а не радиус атома. Величина заряда ядра значительно увеличивается, притяжение электронов к ядру усиливается. Радиус атома при этом хотя и увеличивается, но не столь значительно, как у металлов главных подгрупп.

Простые вещества, образованные химическими элементами — металлами, и сложные металлосодержащие вещества играют важнейшую роль в минеральной и органической «жизни» Земли. Достаточно вспомнить, что атомы (ионы) элементов металлов являются составной частью соединений, определяющих обмен веществ в организме человека, животных. Например, в крови человека найдено $76$ элементов, из них только $14$ не являются металлами. В организме человека некоторые элементы- металлы (кальций, калий, натрий, магний) присутствуют в большом количестве, т.е. являются макроэлементами. А такие металлы, как хром, марганец, железо, кобальт, медь, цинк, молибден присутствуют в небольших количествах, т.е. это микроэлементы.

Особенности строения металлов главных подгрупп I–III групп.

Щелочные металлы — это металлы главной подгруппы I группы. Их атомы на внешнем энергетическом уровне имеют по одному электрону. Щелочные металлы — сильные восстановители. Их восстановительная способность и химическая активность возрастают с увеличением порядкового номера элемента (т.е. сверху вниз в Периодической таблице). Все они обладают электронной проводимостью. Прочность связи между атомами щелочных металлов уменьшается с увеличением порядкового номера элемента. Также снижаются их температуры плавления и кипения. Щелочные металлы взаимодействуют со многими простыми веществами — окислителями. В реакциях с водой они образуют растворимые в воде основания (щелочи).

Щелочноземельными элементами называются элементы главной подгруппы II группы. Атомы этих элементов содержат на внешнем энергетическом уровне по два электрона. Они являются восстановителями, имеют степень окисления $+2$. В этой главной подгруппе соблюдаются общие закономерности в изменении физических и химических свойств, связанные с увеличением размера атомов по группе сверху вниз, также ослабевает и химическая связь между атомами. С увеличением размера иона ослабевают кислотные и усиливаются основные свойства оксидов и гидроксидов.

Главную подгруппу III группы составляют элементы бор, алюминий, галлий, индий и таллий. Все элементы относятся к $p$-элементам. На внешнем энергетическом уровне они имеют по три $(s^2p^1)$ электрона, чем объясняется сходство свойств. Степень окисления $+3$. Внутри группы с увеличением заряда ядра металлические свойства увеличиваются. Бор — элемент-неметалл, а у алюминия уже металлические свойства. Все элементы образуют оксиды и гидроксиды.

Характеристика переходных элементов ± меди, цинка, хрома, железа по их положению в Периодической системе химических элементов Д. И. Менделеева и особенностям строения их атомов

Большинство элементов-металлов находится в побочных группах Периодической системы.

В четвертом периоде у атомов калия и кальция появляется четвертый электронный слой, заполняется $4s$-подуровень, так как он имеет меньшую энергию, чем $3d$-подуровень. $K, Ca — s$-элементы, входящие в главные подгруппы. У атомов от $Sc$ до $Zn$ заполняется электронами $3d$-подуровень.

Рассмотрим, какие силы действуют на электрон, который добавляется в атом при возрастании заряда ядра. С одной стороны, притяжение атомным ядром, что заставляет электрон занимать самый нижний свободный энергетический уровень. С другой стороны, отталкивание уже имеющимися электронами. Когда на энергетическом уровне оказывается $8$ электронов (заняты $s-$ и $р-$орбитали), их общее отталкивающее действие так сильно, что следующий электрон попадает вместо расположенной по энергии ниже $d-$орбитали на более высокую $s-$орбиталь следующего уровня. Электронное строение внешних энергетических уровней у калия $. 3d^4s^1$, у кальция — $. 3d^4s^2$.

Последующее прибавление еще одного электрона у скандия приводит к началу заполнения $3d$-орбитали вместо еще более высоких по энергии $4р$-орбиталей. Это оказывается энергетически выгоднее. Заполнение $3d$-орбитали заканчивается у цинка, имеющего электронное строение $1s^2s^2p^3s^3p^3d^4s^2$. Следует отметить, что у элементов меди и хрома наблюдается явление «провала » электрона. У атома меди десятый $d$-электрон перемещается на третий $3d$-подуровень.

Электронная формула меди $. 3d^4s^1$. У атома хрома на четвертом энергетическом уровне ($s$-орбиталь) должно быть $2$ электрона. Однако один из двух электронов переходит на третий энергетический уровень, на незаполненную $d$-орбиталь, его электронная формула $. 3d^4s^1$.

Таким образом, в отличие от элементов главных подгрупп, где происходит постепенное заполнение электронами атомных орбиталей внешнего уровня, у элементов побочных подгрупп заполняются $d$-орбитали предпоследнего энергетического уровня. Отсюда и название: $d$-элементы.

Все простые вещества, образованные элементами подгрупп Периодической системы, являются металлами. Благодаря большему числу атомных орбиталей, чем у элементов-металлов главных подгрупп, атомы $d$-элементов образуют большое число химических связей между собой и потому создают более прочную кристаллическую решетку. Она прочнее и механически, и по отношению к нагреванию. Поэтому металлы побочных подгрупп — самые прочные и тугоплавкие среди всех металлов.

Известно, если атом имеет более трех валентных электронов, то элемент проявляет переменную валентность. Это положение относится к большинству $d$-элементов. Максимальная их валентность, как у элементов главных подгрупп, равна номеру группы (хотя есть и исключения). Элементы с равным числом валентных электронов входят в группу под одним номером $(Fe, Co, Ni)$.

У $d$-элементов изменение свойств их оксидов и гидроксидов в пределах одного периода при движении слева направо, т.е. с увеличением их валентности, происходит от основных свойств через амфотерные к кислотным. Например, хром имеет валентности $+2, +3, +6$; а его оксиды: $CrO$ — основной, $Cr_O_3$ — амфотерный, $CrO_3$ — кислотный.

Общая характеристика неметаллов главных подгрупп IV±VII групп в связи с их положением в Периодической системе химических элементов Д. И. Менделеева и особенностями строения их атомов

Химические элементы – неметаллы

Самой первой научной классификацией химических элементов было деление их на металлы и неметаллы. Эта классификация не утратила своей значимости и в настоящее время.

Неметаллы — это химические элементы, для атомов которых характерна способность принимать электроны до завершения внешнего слоя благодаря наличию, как правило, на внешнем электронном слое четырех и более электронов и малому радиусу атомов по сравнению с атомами металлов.

Это определение оставляет в стороне элементы VIII группы главной подгруппы — инертные, или благородные, газы, атомы которых имеют завершенный внешний электронный слой. Электронная конфигурация атомов этих элементов такова, что их нельзя отнести ни к металлам, ни к неметаллам. Они являются теми объектами, которые разделяют элементы на металлы и неметаллы, занимая между ними пограничное положение. Инертные, или благородные, газы («благородство» выражается в инертности) иногда относят к неметаллам, но формально, по физическим признакам. Эти вещества сохраняют газообразное состояние вплоть до очень низких температур. Так, гелий Не переходит в жидкое состояние при $t°= –268,9 °С$.

Инертность в химическом отношении у этих элементов относительна. Для ксенона и криптона известны соединения с фтором и кислородом: $KrF_2, XeF_2, XeF_4$ и др. Несомненно, в образовании этих соединений инертные газы выступали в роли восстановителей.

Из определения неметаллов следует, что для их атомов характерны высокие значения электроотрицательности. Она изменяется в пределах от $2$ до $4$. Неметаллы — это элементы главных подгрупп, преимущественно $р$-элементы, исключение составляет водород — s-элемент.

Все элементы-неметаллы (кроме водорода) занимают в Периодической системе химических элементов Д. И. Менделеева верхний правый угол, образуя треугольник, вершиной которого является фтор $F$, а основанием — диагональ $B — At$.

Однако следует особо остановиться на двойственном положении водорода в Периодической системе: в главных подгруппах I и VII групп. Это не случайно. С одной стороны, атом водорода, подобно атомам щелочных металлов, имеет на внешнем (и единственном для него) электронном слое один электрон (электронная конфигурация $1s^1$), который он способен отдавать, проявляя свойства восстановителя.

В большинстве своих соединений водород, как и щелочные металлы, проявляет степень окисления $+1$. Но отдача электрона атомом водорода происходит труднее, чем у атомов щелочных металлов. С другой стороны, атому водорода, как и атомам галогенов, до завершения внешнего электронного слоя недостает одного электрона, поэтому атом водорода может принимать один электрон, проявляя свойства окислителя и характерную для галогена степень окисления — $1$ в гидридах (соединениях с металлами, подобных соединениям металлов с галогенами — галогенидам). Но присоединение одного электрона к атому водорода происходит труднее, чем у галогенов.

Свойства атомов элементов – неметаллов

У атомов неметаллов преобладают окислительные свойства, т.е. способность присоединять электроны. Эту способность характеризует значение электроотрицательности, которая закономерно изменяется в периодах и подгруппах.

Фтор — самый сильный окислитель, его атомы в химических реакциях не способны отдавать электроны, т.е. проявлять восстановительные свойства.

Конфигурация внешнего электронного слоя.


В периоде:
— заряд ядра увеличивается;
— радиус атома уменьшается;
— число электронов на внешнем слое увеличивается;
— электроотрицательность увеличивается;
— окислительные свойства усиливаются;
— неметаллические свойства усиливаются.
В главной подгруппе:
— заряд ядра увеличивается;
— радиус атома увеличивается;
— число электронов на внешнем слое не изменяется;
— электроотрицательность уменьшается;
— окислительные свойства ослабевают;
— неметаллические свойства ослабевают.

Другие неметаллы могут проявлять восстановительные свойства, хотя и в значительно более слабой степени по сравнению с металлами; в периодах и подгруппах их восстановительная способность изменяется в обратном порядке по сравнению с окислительной.


Химических элементов-неметаллов всего $16$! Совсем немного, если учесть, что известно $114$ элементов. Два элемента-неметалла составляют $76%$ массы земной коры. Это кислород ($49%$) и кремний ($27%$). В атмосфере содержится $0.03%$ массы кислорода в земной коре. Неметаллы составляют $98.5%$ массы растений, $97.6%$ массы тела человека. Неметаллы $C, H, O, N, S, Р$ — органогены, которые образуют важнейшие органические вещества живой клетки: белки, жиры, углеводы, нуклеиновые кислоты. В состав воздуха, которым мы дышим, входят простые и сложные вещества, также образованные элементами-неметаллами (кислород $О_2$, азот $N_2$, углекислый газ $СО_2$, водяные пары $Н_2О$ и др.).

Водород — главный элемент Вселенной. Многие космические объекты (газовые облака, звезды, в том числе и Солнце) более чем наполовину состоят из водорода. На Земле его, включая атмосферу, гидросферу и литосферу, только $0.88%$. Но это по массе, а атомная масса водорода очень мала. Поэтому небольшое содержание его только кажущееся, и из каждых $100$ атомов на Земле $17$ — атомы водорода.

1. Общая характеристика элементов металлов

Из \(118\) известных на данный момент химических элементов \(96\) образуют простые вещества с металлическими свойствами, поэтому их называют металлическими элементами .

Металлические химические элементы в природе могут встречаться как в виде простых веществ, так и в виде соединений. То, в каком виде встречаются металлические элементы в природе, зависит от химической активности образуемых ими металлов.

Металлические элементы, образующие химически активные металлы ( Li–Mg ), в природе чаще всего встречаются в виде солей (хлоридов, фторидов, сульфатов, фосфатов и других).

Соли, образуемые этими металлами, являются главной составной частью распространённых в земной коре минералов и горных пород.

shutterstock_499534720.png

calcite-728720_640.png

В растворённом виде соли натрия, кальция и магния содержатся в природных водах. Кроме того, соли активных металлов — важная составная часть живых организмов. Например, фосфат кальция Ca 3 ( P O 4 ) 2 является главной минеральной составной частью костной ткани.

Металлические химические элементы, образующие металлы средней активности ( Al–Pb ), в природе чаще всего встречаются в виде оксидов и сульфидов.

гематит.png

galena-337703_640.png

Металлические элементы, образующие химически неактивные металлы ( Cu–Au ), в природе чаще всего встречаются в виде простых веществ.

Stringer156_nugget.jpg
silver-4437577_640.png
самородная платина.png
Рис. \(7\). Самородное золото Au Рис. \(8\). Самородное серебро Ag Рис. \(9\). Самородная платина Pt

Исключение составляют медь и ртуть, которые в природе встречаются также в виде химических соединений.

1024px-MoreMalachite.png

В Периодической системе химических элементов металлы занимают левый нижний угол и находятся в главных (А) и побочных (Б) группах.

Рис. \(13\). Положение металлов в Периодической системе. Знаки металлических химических элементов расположены ниже ломаной линии B — Si — As — Te

В электронной оболочке атомов металлов на внешнем энергетическом уровне, как правило, содержится от \(1\) до \(3\) электронов. Исключение составляют только металлы \(IV\)А, \(V\)А и \(VI\)А группы, у которых на наружном энергетическом уровне находятся соответственно четыре, пять или шесть электронов.

В атомах металлов главных подгрупп валентные электроны располагаются на внешнем энергетическом уровне, а у металлов побочных подгрупп — ещё и на предвнешнем энергетическом уровне.

Радиусы атомов металлов больше, чем у атомов неметаллов того же периода. В силу отдалённости положительно заряженного ядра атомы металлов слабо удерживают свои валентные электроны.

Рис. \(14\). Характер изменения радиусов атомов химических элементов в периодах и в группах. Радиусы атомов металлов существенно больше, чем радиусы атомов неметаллов, находящихся в том же периоде

Главное отличительное свойство металлов — это их сравнительно невысокая электроотрицательность (ЭО) по сравнению с неметаллами.

Таблица электроотрицательности RU (1).png

Рис. \(15\). Величины относительных электроотрицательностей (ОЭО) некоторых химических элементов (по Л. Полингу). ОЭО металлических химических элементов уступает соответствующей величине неметаллических химических элементов

Атомы металлов, вступая в химические реакции, способны только отдавать электроны, то есть окисляться, следовательно, в ходе превращений могут проявлять себя в качестве восстановителей .

Как изменяются свойства химических элементов в подгруппах периодической системы Менделеева

Основная закономерность этого изменения заключается в усилении металлического характера элементов по мере роста Z. Особенно отчетливо эта закономерность проявляется в IIIа—VIIa-подгруппах. Для металлов I А—III А-подгрупп наблюдается рост химической активности. У элементов IVА — VIIА-подгрупп по мере увеличения Z наблюдается ослабление химической активности элементов. У элементов b-подгрупп изменение химической активности более сложно.

Теория периодической системы была разработана Н. Бором и другими учеными в 20-х гг. ХХ в. и основана на реальной схеме формирования электронных конфигураций атомов. Согласно этой теории, по мере роста Z заполнение электронных оболочек и подоболочек в атомах элементов, входящих в периоды периодической системы, происходит в следующей последовательности:

Номера периодов
1 2 3 4 5 6 7
1s 2s2p 3s3p 4s3d4p 5s4d5p 6s4f5d6p 7s5f6d7p

На основании теории периодической системы можно дать следующее определение периода: период есть совокупность элементов, начинающаяся элементом со значением n. равным номеру периода, и l=0 (s-элементы) и заканчивающаяся элементом с тем же значением n и l = 1 (р-элементы) (см. Атом). Исключение составляет первый период, содержащий только 1s-элементы. Из теории периодической системы следуют и числа элементов в периодах: 2, 8, 8. 18, 18, 32.

На рисунке символы элементов каждого типа (s-, р-, d- и f-элементы) изображены на определенном цветовом фоне: s-элементы — на красном, р-элементы — на оранжевом, d-элементы — на синем, f-элементы — на зеленом. В каждой клетке приведены порядковые номера и атомные массы элементов, а также электронные конфигурации внешних электронных оболочек, которые в основном и определяют химические свойства элементов.

Из теории периодической системы следует, что к а-подгруппам принадлежат элементы с и, равным номеру периода, и l=0 и 1. К b-подгруппам относятся те элементы, в атомах которых происходит достройка оболочек, ранее остававшихся незавершенными. Именно поэтому первый, второй и третий периоды не содержат элементов b-подгрупп.

Структура периодической системы химических элементовтесно связана со строением атомов химических элементов. По мере роста Z периодически повторяются сходные типы конфигурации внешних электронных оболочек. А именно они определяют основные особенности химического поведения элементов. Эти особенности по-разному проявляются для элементов A-подгрупп (s- и р-элементы), для элементов b-подгрупп (переходные d-элементы) и элементов f-семейств — лантаноидов и актиноидов. Особый случай представляют элементы первого периода — водород и гелий. Для водорода характерна высокая химическая активность, потому что его единственный b-электрон легко отщепляется. В то же время конфигурация гелия (1st) весьма устойчива, что обусловливает его полную химическую бездеятельность.

У элементов А-подгрупп происходит заполнение внешних электронных оболочек (с n, равным номеру периода); поэтому свойства этих элементов заметно изменяются по мере роста Z. Так, во втором периоде литий (конфигурация 2s) — активный металл, легко теряющий единственный валентный электрон; бериллий (2s~) — также металл, но менее активный вследствие того, что его внешние электроны более прочно связаны с ядром. Далее, бор (2з'р) имеет слабо выраженный металлический характер, а все последующие элементы второго периода, у которых происходит построение 2р-подоболочки, являются уже неметаллами. Восьмиэлектронная конфигурация внешней электронной оболочки неона (2s~р~) — инертного газа — очень прочна.

Химические свойства элементов второго периода объясняются стремлением их атомов приобрести электронную конфигурацию ближайшего инертного газа (конфигурацию гелия — для элементов от лития до углерода или конфигурацию неона — для элементов от углерода до фтора). Вот почему, например, кислород не может проявлять высшей степени окисления, равной номеру группы: ведь ему легче достичь конфигурации неона путем приобретения дополнительных электронов. Такой же характер изменения свойств проявляется у элементов третьего периода и у s- и р-элементов всех последующих периодов. В то же время ослабление прочности связи внешних электронов с ядром в А-подгруппах по мере роста Z проявляется в свойствах соответствующих элементов. Так, для s-элементов отмечается заметный рост химической активности по мере роста Z, а для р-элементов — нарастание металлических свойств.

В атомах переходных d-элементов достраиваются не завершенные ранее оболочки со значением главного квантового числа и, на единицу меньшим номера периода. За отдельными исключениями, конфигурация внешних электронных оболочек атомов переходных элементов — ns . Поэтому все d-элементы являются металлами, и именно поэтому изменения свойств 1-элементов по мере роста Z не так резки, как мы это видели у s и р-элементов. В высших степенях окисления d-элементы проявляют определенное сходство с р-элементами соответствующих групп периодической системы.

Особенности свойств элементов триад (VIII b-подгруппа) объясняются тем, что d-подоболочки близки к завершению. Вот почему железо, кобальт, никель и платиновые металлы, как правило, не склонны давать соединения высших степеней окисления. Исключение составляют лишь рутений и осмий, дающие оксиды RuO4 и OsO4. У элементов I- и II B-подгрупп d-подоболочка фактически оказывается завершенной. Поэтому они проявляют степени окисления, равные номеру группы.

В атомах лантаноидов и актиноидов (все они металлы) происходит достройка ранее не завершенных электронных оболочек со значением главного квантового числа и на две единицы меньше номера периода. В атомах этих элементов конфигурация внешней электронной оболочки (ns2) сохраняется неизменной. В то же время f-электроны фактически не оказывают влияния на химические свойства. Вот почему лантаноиды так сходны.

У актиноидов дело обстоит гораздо сложнее. В интервале зарядов ядер Z = 90 — 95 электроны бd и 5/ могут принимать участие в химических взаимодействиях. А отсюда следует, что актиноиды проявляют гораздо более широкий диапазон степеней окисления. Например, для нептуния, плутония и америция известны соединения, где эти элементы выступают в семи валентном состоянии. Только у элементов, начиная с кюрия (Z = = 96), становится устойчивым трехвалентное состояние. Таким образом, свойства актиноидов значительно отличаются от свойств лантаноидов, и оба семейства поэтому нельзя считать подобными.

Семейство актиноидов заканчивается элементом с Z = 103 (лоуренсий). Оценка химических свойств курчатовия (Z = 104) и нильсбория (Z = 105) показывает, что эти элементы должны быть аналогами соответственно гафния и тантала. Поэтому ученые полагают, что после семейства актиноидов в атомах начинается систематическое заполнение 6d-подоболочки.

Конечное число элементов, которое охватывает периодическая система, неизвестно. Проблема ее верхней границы — это, пожалуй, основная загадка периодической системы. Наиболее тяжелый элемент, который удалось обнаружить в природе,— это плутоний (Z = = 94). Достигнутый предел искусственного ядерного синтеза — элемент с порядковым номером 107. Остается открытым вопрос: удастся ли получить элементы с большими порядковыми номерами, какие и сколько? На него нельзя пока ответить сколь-либо определенно.

Читайте также: