Какие действия электрического тока сопровождают прохождение тока через металлы

Обновлено: 18.05.2024

Вспомним строение металлов: в узлах кристаллической решетки находятся положительные ионы, а электроны свободно перемещаются между этими узлами, создавая «электронный газ», занимающий весь объем металлического проводника. Поэтому электрический ток в металлах представляет собой упорядоченное движение электронов. В отсутствии электрического поля электроны движутся беспорядочно, хаотично, с достаточно большими скоростями.
Но когда подается электрическое поле от источника, а скорость его распространения составляет 300000км/с, то все электроны во всем объеме металлического проводника начинают упорядоченное движение с небольшой скоростью, которая составляет нескольких мм/с.
Для существования электрического тока необходимо: наличие свободных заряженных частиц, электрического поля (источника), потребителя и проводников электрического тока.
Электрический ток при прохождении через нагрузку, обладает различными действиями. Какие же действия мы можем наблюдать?
Тепловое действие. Для наблюдения за этим действием проведем опыт.
На двух изолированных стойках поместим длинный провод. В нескольких местах прикрепим легко свисающие кисточки бумажек. Провод подсоединим к регулируемому источнику (типа ЛАТР, чтобы можно было постепенно повышать напряжение). Включаем установку, медленно увеличиваем напряжение, при определенном значении провод начинает нагреваться, и бумажки загораются. Не забудьте о соблюдении техники безопасности: близко не должно находиться легко воспламеняемых веществ.
Обратим внимание на то, что во время опыта провод сильнее провисает. Это происходит из-за того, что он нагрелся, а при нагревании все тела расширяются, а проволока – удлиняется.
Механическое действие. Подключим небольшой вентилятор. Почему лопасти крутятся? Потому что при прохождении электрического тока через двигатель рамки в магнитном поле вращаются (механическое перемещение) и вращают лопасти вентилятора.
Магнитное действие. Рассмотрим опыт Эрстеда, который он провел в 1820 году. На установке по первому опыту мы во время включения тока поднесем магнитную стрелку на стойке. Стрелка отклонится от обычного направления в магнитном поле Земли и повернется перпендикулярно проводнику, фиксируя наличие более сильного магнитного поля около проводника, по которому течет ток. При выключении тока видим, что стрелочка отклоняется и вновь показывает направление на «север».
Химическое действие. В качестве нагрузки теперь включим в электрическую цепь два угольных электрода, вставленных в стеклянный стакан, в котором налит раствор медного купороса.
Предварительно необходимо зачистить электроды наждачной бумагой, для удаления каких-либо примесей. Включаем цепь в регулируемый источник…и через некоторое время выключаем и видим, что на отрицательном электроде (катоде) выделился тонкий слой меди.
Есть еще физиологическое действие электрического тока: действие на живые организмы. Впервые при препарировании лапок лягушки Луиджи Гальвани обнаружил сокращение мышц лапки. То – есть, при прохождении тока через организм, все мышцы сокращаются, пытаясь защитить организм от неприятных последствий.
Запомните! При обращении с электрическим током необходимо соблюдать меры предосторожности, чтобы ни каким образом не попасть под воздействия напряжения.
Направление электрического тока было придумано американским банкиром Бенджамином Франклином, который в свободное время занимался электричеством.
Он считал, что деньги из большой положительной кучи перетекают в маленькие отрицательные карманы клиентов. Поэтому предложил: ток идет от положительного полюса к отрицательному.
Это правило было принято во всем мире.
Лишь много позже, после открытия Томсоном электрона, поняли, что физическое (истинное) направление тока от «минуса» к « плюсу». Ток идет от мест на источнике, где накопилось избыточное количество электронов, в те места, где электронов не хватает.
Но уже были придуманы правила: правило буравчика, правило левой руки, правило правой руки, правило Ампера и другие для направления тока от «плюса» к « минусу». И было решено ничего не менять, а так и считать, что ток идет от «плюса» к «минусу».
Таким образом, мы рассмотрели, что собой представляет ток в металлах, какими действиями обладает ток и в чем отличие общепринятого направления тока от «плюса» к «минусу» от истинного физического направления.

1. Электрический ток в металлах, полупроводниках, жидкостях и газах. Действия тока

647px-Zinc-selenide-unit-cell-3D-balls.png

Металлы в твёрдом состоянии имеют кристаллическое строение.
Модель металла — кристаллическая решётка (рис. 1 ) , в узлах которой частицы совершают хаотичное колебательное движение.

Отрицательными ионами называют атомы и молекулы, присоединившие к себе лишние электроны — приобретшие отрицательный заряд .

Положительными ионами называют атомы и молекулы, потерявшие электроны — приобретшие положительный заряд .

Положительные ионы располагаются в узлах кристаллической решётки. Свободные электроны движутся в пространстве между ними (рис. 2 ).

В невозбуждённом состоянии атом любого вещества имеет одинаковое количество электронов и протонов, поэтому суммарный их заряд равен нулю. Говорят, что атом электрически нейтрален .

Процесс электризации тела представляет собой приобретение или потерю этим телом электронов и ионов. Подвижными носителями зарядов в твёрдых металлов являются только электроны. При электризации металлических тел с одного на другое переходят только электроны.

Свободным называется электрон, оторвавшийся и не присоединившийся к другим молекулам и атомам, существующий как самостоятельная частица.

Электрический ток в металлах обусловлен наличием свободных подвижных электронов, совокупность которых называют электронным газом .

Электрически нейтральным будет называться вещество, в котором количество положительных зарядов равно количеству отрицательных зарядов.

Оказывается, скорость движения электронов в проводнике чрезвычайно мала, всего лишь несколько миллиметров в секунду. Почему же тогда лампочка загорается сразу после нажатия на выключатель? Все дело в том, при включении света в проводнике возникает электрическое поле (скорость его распространения около 300 000 км/с), которое заставляет

электроны двигаться в одном направлении по всей длине проводника.

Подтверждением того, что ток в металлах обусловлен движением электронов, явились многочисленные опыты, например, опыт Мандельштама и Папалекси (1916 г.). Цель опыта состояла в проверке того, есть ли масса у носителя электрического тока — электрона. Если масса у электрона есть, то он должен подчиняться законам механики, в частности, закону инерции. К примеру, если движущийся проводник резко затормозить, то электроны ещё некоторое время будут двигаться в том же направлении по инерции.
Для этой проверки исследователи вращали катушку с проходящим током, а затем резко останавливали её. Возникающий бросок тока регистрировали с помощью телефона.
По щелчку тока в телефонах Мандельштам и Папалекси установили, что электрон обладает массой. Но измерить эту массу они не смогли. Поэтому этот опыт — качественный. Позже американские физики Толмен и Стюарт, используя ту же идею вращения катушки, измерили массу электрона. Для этого они измеряли возникающий при торможении катушки заряд на её выводах.

Электрический ток может существовать не только в металлах, но и в других средах: в полупроводниках, газах и растворах электролитов. Носители электрических зарядов в разных средах разные.

Так, в растворах электролитов (солей, кислот и щелочей) носителями являются положительные и отрицательные ионы, в газах — положительные и отрицательные ионы, а также электроны. В полупроводниках носителями заряда являются электроны и дырки (дырка — придуманная частица для объяснения механизма проводимости, по сути — свободное место, не занятое электроном).

transistor-903642_640.png

Полупроводники при низкой температуре не проводят электрический ток — являются диэлектриками. При воздействии на полупроводник светом, добавлением примесей или при нагревании появляются свободные носители зарядов, которые при своём направленном движении создают электрический ток. Полупроводник становится проводником.


Свойство полупроводников изменять электропроводность под воздействием света используется в фотосопротивлениях для создания сигнализации, при сортировке деталей.

В экстренных ситуациях они позволяют автоматически останавливать станки и конвейеры, предупреждая несчастные случаи.

При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения электронов: движение электронов показано зеленой стрелкой, а направление тока — красной стрелкой (рис. 4 ).

Current_notation.png

Используя это свойство, можно найти место обрыва фазового провода приборами, реагирующими на изменения в электромагнитном поле, к примеру, индикаторной отвёрткой с фазоискателем.

Магнитное действие тока используют в устройстве гальванометра. Для этой цели между полюсами магнита помещают легкую рамку с витками провода. При протекании тока она поворачивается, увлекая за собой стрелку (рис. 5 ).

814px-A_moving_coil_galvanometer._Wellcome_M0016397.png

Магнитное действие тока проявляется вне зависимости от агрегатного состояния вещества. При замыкании ключа можно наблюдать, как проволока, намотанная на гвоздь, начинает притягивать небольшие железные предметы. Это свойство широко используется в грузоподъёмных электромагнитах.

При прохождении электрического тока по проводнику в результате столкновений свободных электронов с его атомами и ионами проводник нагревается. Это явление проявляется в любых устройствах, имеющих нагревательный элемент: фен, плойка, электроплита, калорифер, стиральная машина, тостер, электровафельница и т.д. И даже спираль лампочки накаливания нагревается током до яркого накаливания. Под действием тока нагревается и провисает проволока.

Химическое действие тока применяется для покрытия одного металла слоем другого металла, например, при хромировании и никелировании.

Тест с ответами: “Ток в металлах”

1. В обычных условиях металлы электрически нейтральны. Это объясняется тем, что у них:
а) отрицательный заряд всех свободных электронов по абсолютному значению равен положительному заряду всех ионов +
б) число отрицательных ионов равно по абсолютному значению числу положительных ионов +
в) плохая электропроводимость

2. Электрический ток в металлах – это упорядоченное движение:
а) ионов
б) электронов +
в) протонов

3. Для того чтобы в проводнике возник электрический ток, необходимо:
а) наличие в нем электрических зарядов
б) иметь потребителя электрической энергии
в) создать в нем электрическое поле +

4. При прохождении тока через электролит положительно заряженные ионы перемещаются к:
а) катоду +
б) аноду
в) протону

5. Какое действие тока используется в электрических лампах:
а) магнитное
б) химическое
в) тепловое

6. За направление электрического тока условно принимают то направление, по которому движутся в проводнике:
а) электроны
б) положительные заряды +
в) положительные и отрицательные ионы

7. В каком году были обнаружены материалы, обладающие сверхпроводимостью при температурах около -100 градусов С:
а) 1980
б) 1987
в) 1986 +

8. Какими носителями электрического заряда создается ток в металлах:
а) только электронами +
б) ионами
в) электронами и ионами

9. Какое действие электрического тока сопровождает прохождение тока через металлы:
а) химическое
б) только магнитное
в) тепловое +

10. Какое действие электрического тока сопровождает прохождение тока через металлы:
а) химическое
б) магнитное +
в) только тепловое

11. Какое(ие) действия электрического тока всегда сопровождают его прохождение через любые среды:
а) магнитное +
б) химическое
в) тепловое

12. Какие еще (кроме свободных электронов) заряженные частицы имеются в металлах:
а) атомы
б) положительные ионы +
в) отрицательные ионы

13. Где они находятся в металлах:
а) в узлах кристаллической решетки +
б) каждый на определенном месте
в) на постоянном для каждого месте

14. Какое движение и каких частиц представляет собой электрический ток в металлах:
а) согласованное колебание ионов в узлах кристаллической решетки
б) упорядоченное смещение положительных ионов
в) упорядоченное (однонаправленное) движение свободных электронов +

15. Кристаллическая решетка металла, образуемая ионами, имеет положительный заряд. Почему же металлы электрически нейтральны:
а) потому что общий отрицательный заряд всех свободных электронов равен всему положительному заряду ионов +
б) потому что свободные электроны в металле, двигаясь хаотично, попадают на поверхность и экранируют положительный заряд решетки
в) потому что ионы сохраняют свое местоположение в твер­дом теле

16. При каком условии в металлическом проводнике возникает электрический ток:
а) при появлении в нем свободных электронов
б) при создании в нем электрического поля +
в) в случае перехода хаотического движения свободных электронов в упорядоченное движение

17. Какова скорость распространения электрического тока в цепи:
а) она равна скорости упорядоченного движения электронов в проводниках
б) она равна средней скорости хаотического движения электронов
в) она равна скорости распространения в цепи электрического поля +

18. Движение каких заряженных частиц в электрическом поле принято за направление тока:
а) электронов
б) частиц с положительным зарядом +
в) частиц с отрицательным зарядом

19. Опыты показывают, что при протекании тока по металлическому проводнику перенос вещества:
а) происходит редко
б) происходит
в) не происходит +

20. Ионы металла … участие в переносе электрического заряда:
а) принимают
б) не принимают +
в) принимают периодически

21. Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с:
а) инерцией электронов +
б) инерцией ионов
в) инерцией протонов

22. Идея таких опытов и первые качественные результаты (1913 г.) принадлежит русскому физику:
а) Попову
б) Папалекси +
в) Ватутину

23. Идея таких опытов и первые качественные результаты (1913 г.) принадлежит русскому физику:
а) Ватутину
б) Попову
в) Мандельштаму +

24. В этом году американский физик Р. Толмен и шотландский физик Б. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения:
а) 1926
б) 1916 +
в) 1906

25. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг:
а) стержня
б) другой катушки
в) своей оси +

26. Высокочувствительный прибор для измерения силы малых постоянных электрических токов:
а) амперметр
б) гальванометр +
в) вольтметр

27. Еще в этом году немецкий ученый П. Друде на основании гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов:
а) 1900 +
б) 1910
в) 1890

28. Из-за взаимодействия с ионами электроны могут:
а) оставаться в металле надолго
б) притянуть другой металл
в) покинуть металл +

29. Как ионы, образующие решетку, так и электроны участвуют в:
а) тепловом движении +
б) электрическом движении
в) постоянном движении

30. Согласно теории Друде–Лоренца, электроны обладают такой же средней энергией теплового движения, как и молекулы одноатомного идеального(ой):
а) жидкости
б) газа +
в) вещества

Электрический ток в электролитах

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза.

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией. Например, хлорид меди CuCl2 диссоциирует в водном растворе на ионы меди и хлора:

При подключении электродов к источнику тока ионы под действием электрического поля начинают упорядоченное движение: положительные ионы меди движутся к катоду, а отрицательно заряженные ионы хлора – к аноду (рис 1.15.1).

Достигнув катода, ионы меди нейтрализуются избыточными электронами катода и превращаются в нейтральные атомы, оседающие на катоде. Ионы хлора, достигнув анода, отдают по одному электрону. После этого нейтральные атомы хлора соединяются попарно и образуют молекулы хлора Cl2. Хлор выделяется на аноде в виде пузырьков.

Во многих случаях электролиз сопровождается вторичными реакциями продуктов разложения, выделяющихся на электродах, с материалом электродов или растворителей. Примером может служить электролиз водного раствора сульфата меди CuSO4 (медный купорос) в том случае, когда электроды, опущенные в электролит, изготовлены из меди.

Диссоциация молекул сульфата меди происходит по схеме

Нейтральные атомы меди отлагаются в виде твердого осадка на катоде. Таким путем можно получить химически чистую медь. Ион 4 вступает во вторичную реакцию с медным анодом:

Образовавшаяся молекула сульфата меди переходит в раствор.

Таким образом, при прохождении электрического тока через водный раствор сульфата меди происходит растворение медного анода и отложение меди на катоде. Концентрация раствора сульфата меди при этом не изменяется.


Электролиз водного раствора хлорида меди

Закон электролиза был экспериментально установлен английским физиком Майклом Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе:

Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

Величину k называют электрохимическим эквивалентом.

Масса выделившегося на электроде вещества равна массе всех ионов, пришедших к электроду:

Здесь m0 и q0 – масса и заряд одного иона, Q. Таким образом, электрохимический эквивалент k равен отношению массы m0 иона данного вещества к его заряду q0.

Так как заряд иона равен произведению валентности вещества n на элементарный заряд e (q0 = ne), то выражение для электрохимического эквивалента k можно записать в виде

Постоянная Фарадея численно равна заряду, который необходимо пропустить через электролит для выделения на электроде одного моля одновалентного вещества.

Закон Фарадея для электролиза приобретает вид:

Явление электролиза широко применяется в современном промышленном производстве.

Электрический ток в металлах

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику переноса вещества не происходит, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов. Идея таких опытов и первые качественные результаты (1913 г.) принадлежат русским физикам Л.И. Мандельштаму и Н.Д. Папалекси В 1916 году американский физик Р. Толмен и шотландский физик Б. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения, неопровержимо доказавшие, что ток в металлических проводниках обусловлен движением электронов.

Схема опыта Толмена и Стюарта показана на рис. 1.12.1. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.


Схема опыта Толмена и Стюарта

При торможении вращающейся катушки на каждый носитель заряда e действует тормозящая сила Eст поля сторонних сил:

Следовательно, в цепи при торможении катушки возникает электродвижущая сила

где l – длина проволоки катушки. За время торможения катушки по цепи протечет заряд q, равный

Здесь I – мгновенное значение силы тока в катушке, R – полное сопротивление цепи, υ0 – начальная линейная скорость проволоки.

Отсюда удельный заряд e / m свободных носителей тока в металлах равен:

Все величины, входящие в правую часть этого соотношения, можно измерить. На основании результатов опытов Толмена и Стюарта было установлено, что носители свободного заряда в металлах имеют отрицательный знак, а отношение заряда носителя к его массе близко к удельному заряду электрона, полученному из других опытов. Так было установлено, что носителями свободных зарядов в металлах являются электроны.

По современным данным модуль заряда электрона (элементарный заряд) равен

а его удельный заряд есть

Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема.

Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основании гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории. Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла (рис. 1.12.2).


Газ свободных электронов в кристаллической решетке металла. Показана траектория одного из электронов

Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер. Высота этого барьера называется работой выхода. При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера.

Из-за взаимодействия с кристаллической решеткой потенциальная энергия выхода электрона внутри проводника оказывается меньше, чем при удалении электрона из проводника. Электроны в проводнике находятся в своеобразной «потенциальной яме», глубина которой и называется потенциальным барьером.

Как ионы, образующие решетку, так и электроны участвуют в тепловом движении. Ионы совершают тепловые колебания вблизи положений равновесия – узлов кристаллической решетки. Свободные электроны движутся хаотично и при своем движении сталкиваются с ионами решетки. В результате таких столкновений устанавливается термодинамическое равновесие между электронным газом и решеткой. Согласно теории Друде–Лоренца, электроны обладают такой же средней энергией теплового движения, как и молекулы одноатомного идеального газа. Это позволяет оценить среднюю скорость При наложении внешнего электрического поля в металлическом проводнике кроме теплового движения электронов возникает их упорядоченное движение (дрейф), то есть электрический ток. Среднюю скорость t через поперечное сечение S проводника пройдут все электроны, находившиеся в объеме Число таких электронов равно n – средняя концентрация свободных электронов, примерно равная числу атомов в единице объема металлического проводника. Через сечение проводника за время Δt пройдет заряд или

Концентрация n атомов в металлах составляет 10 28 –10 29 м –3 .

Оценка по этой формуле для металлического проводника сечением 1 мм 2 , по которому течет ток 10 А, дает для средней скорости средняя скорость упорядоченного движения электронов в металлических проводниках на много порядков меньше средней скорости их теплового движения

Рис. 1.12.3 дает представление о характере движения свободного электрона в кристаллической решетке.


Движение свободного электрона в кристаллической решетке: а – хаотическое движение электрона в кристаллической решетке металла; b – хаотическое движение с дрейфом, обусловленным электрическим полем. Масштабы дрейфа

Малая скорость дрейфа на противоречит опытному факту, что ток во всей цепи постоянного тока устанавливается практически мгновенно. Замыкание цепи вызывает распространение электрического поля со скоростью c = 3·10 8 м/с. Через время порядка l / c (l – длина цепи) вдоль цепи устанавливается стационарное распределение электрического поля и в ней начинается упорядоченное движение электронов.

В классической электронной теории металлов предполагается, что движение электронов подчиняется законам механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а их взаимодействие с положительными ионами сводят только к соударениям. Предполагается также, что при каждом соударении электрон передает решетке всю накопленную в электрическом поле энергию и поэтому после соударения он начинает движение с нулевой дрейфовой скоростью.

Несмотря на то, что все эти допущения являются весьма приближенными, классическая электронная теория качественно объясняет законы электрического тока в металлических проводниках.

Закон Ома. В промежутке между соударениями на электрон действует сила, равная по модулю eE, в результате чего он приобретает ускорение где τ – время свободного пробега, которое для упрощения расчетов предполагается одинаковым для всех электронов. Среднее значение скорости дрейфа

Рассмотрим проводник длины l и сечением S с концентрацией электронов n. Ток в проводнике может быть записан в виде:

где U = El – напряжение на концах проводника. Полученная формула выражает закон Ома для металлического проводника. Электрическое сопротивление проводника равно:

а удельное сопротивление ρ и удельная проводимость ν выражаются соотношениями:

Закон Джоуля-Ленца.

К концу свободного пробега электроны под действием поля приобретают кинетическую энергию

Согласно сделанным предположениям вся эта энергия при соударениях передается решетке и переходит в тепло.

За время Δt каждый электрон испытывает Δt / τ соударений. В проводнике сечением S и длины l имеется nSl электронов. Отсюда следует, что выделяемое в проводнике за время Δt тепло равно:

Это соотношение выражает закон Джоуля-Ленца.

Таким образом, классическая электронная теория объясняет существование электрического сопротивления металлов, законы Ома и Джоуля–Ленца. Однако в ряде вопросов классическая электронная теория приводит к выводам, находящимся в противоречии с опытом.

Эта теория не может, например, объяснить, почему молярная теплоемкость металлов, также как и молярная теплоемкость диэлектрических кристаллов, равна 3R, где R – универсальная газовая постоянная (закон Дюлонга и Пти, см. ч. I, § 3.10). Наличие свободных электронов на сказывается на величине теплоемкости металлов.

Классическая электронная теория не может также объяснить температурную зависимость удельного сопротивления металлов. Теория дает соотношение T. Однако наиболее ярким примером расхождения теории и опытов является сверхпроводимость.

Согласно классической электронной теории, удельное сопротивление металлов должно монотонно уменьшаться при охлаждении, оставаясь конечным при всех температурах. Такая зависимость действительно наблюдается на опыте при сравнительно высоких температурах. При более низких температурах порядка нескольких кельвинов удельное сопротивление многих металлов перестает зависеть от температуры и достигает некоторого предельного значения. Однако наибольший интерес представляет удивительное явление сверхпроводимости, открытое датским физиком Х.Каммерлинг-Онесом в 1911 году. При некоторой определенной температуре Tкр, различной для разных веществ, удельное сопротивление скачком уменьшается до нуля (рис. 1.12.4). Критическая температура у ртути равна 4,1 К, у аллюминия 1,2 К, у олова 3,7 К. Сверхпроводимость наблюдается не только у элементов, но и у многих химических соединений и сплавов. Например, соединение ниобия с оловом (Ni3Sn) имеет критическую температуру 18 К. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах. В то же время такие «хорошие» проводники, как медь и серебро, не становятся сверхпроводниками при низких температурах.


Зависимость удельного сопротивления ρ от абсолютной температуры T при низких температурах: a – нормальный металл; b – сверхпроводник

Вещества в сверхпроводящем состоянии обладают исключительными свойствами. Практически наиболее важным их них является способность длительное время (многие годы) поддерживать без затухания электрический ток, возбужденный в сверхпроводящей цепи.

Классическая электронная теория не способна объяснить явление сверхпроводимости. Объяснение механизма этого явления было дано только через 60 лет после его открытия на основе квантово-механических представлений.

Научный интерес к сверхпроводимости возрастал по мере открытия новых материалов с более высокими критическими температурами. Значительный шаг в этом направлении был сделан в 1986 году, когда было обнаружено, что у одного сложного керамического соединения Tкр = 35 K. Уже в следующем 1987 году физики сумели создать новую керамику с критической температурой 98 К, превышающей температуру жидкого азота (77 К). Явление перехода веществ в сверхпроводящее состояние при температурах, превышающих температуру кипения жидкого азота, было названо высокотемпературной сверхпроводимостью. В 1988 году было создано керамическое соединение на основе элементов Tl–Ca–Ba–Cu–O с критической температурой 125 К.

В настоящее время ведутся интенсивные работы по поиску новых веществ с еще более высокими значениями Tкр. Ученые надеятся получить вещество в сверхпроводящем состоянии при комнатной температуре. Если это произойдет, это будет настоящей революцией в науке, технике и вообще в жизни людей.

Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен.

Читайте также: