Коэффициент теплоотдачи от металла к воздуху таблица

Обновлено: 24.04.2024

Сколько тепла отдает воздуху помещения стояк или лежак системы отопления? На сколько градусов остывает вода в изолированной воздушной теплотрассе? Как правильно и экономично выполнить теплоизоляцию трубопровода? Используя представленную далее.

. программу в Excel, можно оперативно получить точные ответы на эти и другие вопросы!

Объект исследований — труба с теплоносителем — водой, окруженная воздушным пространством.

Очередные пользовательские функции (ПФ) Полковова Вячеслава Леонидовича выполняют автоматический расчет теплоотдачи трубы с теплоизоляцией поверхности и без таковой в любом пространственном положении.

Напомню, что пользовательской функцией (ПФ-функцией, UDF-функцией) в Excel называется программа (макрос), записанная на языке VBA в программном модуле файла, и имеющая вид:

Чуть подробнее о работе с пользовательскими функциями можно посмотреть в предыдущей статье на блоге и почитать в Интернете.

Расчет в Excel теплоотдачи трубы.

Для выполнения расчетов необходимо ввести в таблицу MS Excel исходные данные. Их – 13. Это — физические параметры теплоносителя (воды), температура окружающего воздуха, геометрические размеры трубы и слоя теплоизоляции, теплопроводность материалов и степень черноты наружных поверхностей трубы и изоляции.

Таблица Excel Расчет теплоотдачи трубы

В ячейках результатов автоматически выводится значение мощности тепловой отдачи трубы в Ваттах для четырёх вариантов, и температура остывания воды в градусах Цельсия за время движения по заданному участку трубопровода.

Все 22 пользовательские функции, задействованные в этой расчетной программе Excel, записаны каждая в своем Module в папке Modules. Доступ к папке — в Редакторе Visual Basic.

Теория, алгоритмы, литература.

Трубы, в системах теплоснабжения, могут выполнять две функции — транспортировать теплоноситель к месту его использования и служить сами отопительным прибором (регистром).

При реализации любой из вышеперечисленных функций необходимо производить количественную оценку эффективности её выполнения.

Основные показатели для систем транспорта тепловой энергии определены нормативными документами СО 153-34.20.523-2003 в 4 частях.

В любом случае возникает необходимость оперативного и точного расчёта:

  • параметров теплообмена между трубой и окружающей её средой;
  • затрат энергии на транспортирование теплоносителя (воды) через трубу.

Теплоотдача «голой» трубы

Параметры, знание которых позволяет рассчитывать тепловые процессы в системе «вода — труба — воздух», собраны и показаны в блоке исходных данных таблицы из предыдущей части статьи.

На рисунке ниже приведена эквивалентная схема теплоотдачи голой трубы.

Чертеж Теплоотдача

При расчётах теплоотдачи трубы удобно использовать метод аналогии между теплотехникой и электротехникой, принимая:

По аналогии с законом Ома получаем следующее уравнение:

q=dt/Rt=(tвода— tвозд)/(Rвн+Rтр+Rнар), Вт.

Термическое сопротивление между двумя средами – водой и воздухом – препятствует всем формам теплообмена между ними:

  • конвективному;
  • контактному;
  • излучением.

Каждая из перечисленных форм теплообмена имеет свою специфику и описывается соответствующими аналитическими выражениями.

1. Конвективный теплообмен между движущейся водой и твёрдой цилиндрической стенкой

Rвн=1/(αвн·Fвн) – термическое внутреннее сопротивление, °С/Вт, где:

  • αвн – средний по длине трубы коэффициент теплоотдачи от движущейся воды внутренней поверхности трубы, Вт/(м²·°С);
  • Fвн — площадь смачиваемой внутренней стенки трубы, м².

αвн=Nuвода·λвода/Dтр – коэффициент теплоотдачи на внутренней поверхности трубы, Вт/(м²·°С), где:

Число Нуссельта (Nuвода) для движущейся воды в цилиндрической трубе, равно:

Nuвода=С·Reвода m ·Prвода n ·K — число Нуссельта для движущейся воды в цилиндрической трубе, где:

2. Термическое сопротивление твёрдой стенки цилиндрической трубы

Rтр=Ln(Dнар/Dтр)/(λтр·2·π·Lтр) — термическое сопротивление стенки трубы, °С/Вт, где:

3. Конвективный и лучистый теплообмены между твёрдой цилиндрической стенкой трубы и окружающим воздухом

Rнар=1/[(αкл)·Fнар] – термическое наружное сопротивление, °С/Вт, где:

  • αк – средний по длине трубы коэффициент конвективной теплоотдачи, Вт/(м²·°С);
  • αл – средний по длине трубы коэффициент лучистой теплоотдачи, Вт/(м²·°С);
  • Fнар — площадь омываемой воздухом наружной стенки трубы, м².

αк=Nuвозд·λвозд/Dнар — коэффициент теплоотдачи за счёт конвекции, Вт/(м²·°С), где:

Nuвозд=С·(Grвозд·Prвозд) n ·K — число Нуссельта для воздуха, омывающего цилиндрическую горизонтальную трубу, где:

  • Grвозд – критерий Грасгофа для воздуха;
  • Prвозд – критерий Прандтля для воздуха;
  • С,m и n – индексы, значения которых зависит от характера потока воздуха, омывающего трубу.

Если Grвозд·Prвозд≤10 9 — ламинарный поток воздуха: С=0,47; n=0,26; К=1.

Если Grвозд·Prвозд>10 9 — турбулентный поток воздуха: С=0,2; n=0,33; К=1.

Grвозд=g·β·ρвозд²·dtнар·Dнар³/μвозд² — число Грасгофа для воздуха, омывающего горизонтальную трубу, где:

  • g– ускорение свободного падения, м/с²;
  • β– температурный коэффициент объёмного расширения для воздуха, 1/К;
  • ρвозд – объёмная плотность воздуха, кг/м³;
  • dtнар – разность температур между наружной стенкой трубы и воздухом, °С;
  • μвозд — динамическая вязкость воздуха, Н·с/м² (Па·с).

qл=eизл·С0·[(T0+tвозд+dtнар) 4 -(T0+tвозд) 4 ] — удельный тепловой поток за счёт излучения, Вт/м², где:

  • eизл – излучательная способность (степень черноты) поверхности трубы;
  • С0– постоянная Стефана-Больцмана, С0=5,67·10 -8 Вт/(м²·К 4 ).

αл=qл/dtнар — коэффициент теплоотдачи за счёт излучения, Вт/(м²·К).

4. Перепад температур между наружной стенкой трубы и воздухом

Значение разности температур между наружной стенкой трубы и воздухом (dtнар) находится с помощью метода итераций при использовании следующих равенств:

Rнар=φ(dtнар) -> dtнар=Rнар·q -> Rнар=φ(dtнар) n раз, или до момента Δ(dtнар) ≈ 0.

5. Итоговые обобщения алгоритма

При движении воды по трубе изменяются физические параметры воды и, следовательно, меняются режимы теплообмена. Для «длинных» труб погрешности расчёта могут быть очень большими, даже при использовании усреднённых значений физических параметров (Р, t) воды.

Одним из вариантов повышения точности расчётов является разбиение трубы на участки небольших размеров, физические параметры воды на которых изменяются в «приемлемых границах». При этом параметры воды на выходе предыдущего участка являются входными параметрами воды последующего участка.

Рассмотренный выше алгоритм расчета разработан для горизонтально расположенных труб.

Аналогичный алгоритм расчёта и аналитические зависимости используются и при расчёте теплоотдачи вертикальной трубы. Незначительные отличия в формулах и новые значения индексов представлены далее.

Nuвозд=С·(Grвозд·Prвозд) n — критерий Нуссельта для воздуха, омывающего цилиндрическую вертикальную трубу, где:

Grвозд=g·β·ρвозд²·dtнар·Lтр³/μвозд² — критерий Грасгофа для воздуха, омывающего вертикальную трубу.

Если Grвозд·Prвозд≤10 9 — ламинарный поток воздуха: С=0,59; n=0,25.

Если Grвозд·Prвозд>10 9 — турбулентный поток воздуха: С=0,021; n=0,4.

6. Пользовательские функции

Для автоматизации рутинных расчетов были разработаны перечисленные ниже пользовательские функции (ПФ), предназначенные для вычисления параметров теплообмена между «голой» трубой и внешней воздушной средой:

  1. ПФ для расчёта теплоотдачи горизонтальной «голой» трубы с водой в воздушном пространстве:

РтрГГ=qТрВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), Вт.

  1. ПФ для вычисления тепловой мощности вертикальной «голой» трубы, заполненной движущейся водой и окруженной воздушной средой:

РтрВГ=qТрВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), Вт.

  1. ПФ для расчёта разности между температурами воды на входе и выходе горизонтальной «голой» трубы при теплообмене с воздушной средой:

dtтрГГ=dtТрВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), °С.

  1. ПФ для вычисления изменения температуры воды на участке от входа до выхода из вертикальной «голой» трубы, находящейся в воздушном пространстве:

dtтрВГ=dtТрВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, kэ, Lтр, етр), °С.

Теплоотдача изолированной трубы

На следующем рисунке приведена эквивалентная схема к расчету теплоотдачи изолированной трубы.

Чертеж Теплоотдача изолированной трубы

Расчётный алгоритм для теплоизолированной трубы отличается от алгоритма для «голой» трубы учётом дополнительного термического сопротивления теплоизоляции.

Rиз=Ln(Dиз/Dнар)/(λиз·2·π·Lтр) – термическое сопротивление изоляции, °С/Вт, где:

q=dt/Rt=(tвода— tвозд)/(Rвн+Rтр+Rиз+Rнар) — тепловой поток от воды через стенку трубы, слой изоляции к окружающему водуху, Вт.

Остальные формулы — те же, что и в расчетах «голой» трубы.

Для упрощения расчётов теплоотдачи изолированных труб были разработаны похожие на предыдущие четыре пользовательские функции:

  1. ПФ для расчёта теплоотдачи изолированной горизонтальной трубы:

РтрГИ=qТрИзолВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), Вт.

  1. ПФ для вычисления тепловой мощности изолированной вертикальной трубы:

РтрВИ=qТрИзолВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), Вт.

  1. ПФ для определения падения температуры воды в теплоизолированной горизонтальной трубе:

dtтрГИ=dtТрИзолВодаВоздухГор(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), °С.

  1. ПФ для расчёта разности между температурами воды на входе и выходе теплоизолированной вертикальной трубы:

dtтрВИ=dtТрИзолВодаВоздухВерт(Pвода, Gвода, tвода, tвозд, Dтр, hтр, λтр, hиз, λиз, kэ, Lтр, eиз), °С.

Влияние степени черноты наружной поверхности на мощность теплового потока «голых» и изолированных труб

В рассмотренном ниже примере расчёты теплоотдачи выполнены с использованием пользовательских функций для «голой» и теплоизолированной труб со степенью черноты наружных поверхностей в диапазоне e=0,1…1,0.

Таблицы и графики Влияние степени черноты на теплоотдачу

Графики наглядно демонстрируют, что коэффициент излучения наружной поверхности теплоизоляции не значительно влияет на относительную мощность теплового потока. В то же время степень черноты внешней стенки «голой» трубы оказывает весьма существенное влияние на теплоотдачу! Это означает, что для «голых» труб необходимо более точно в расчётах задавать значение коэффициента излучения их наружных поверхностей. Для теплоизолированных труб точность задания степени черноты поверхности изоляции менее критична.

Коэффициенты излучения поверхностей различных материалов существенно отличаются и часто значительно зависят от температуры.

Коэффициент теплоотдачи поверхность — воздух

В статье рассмотрен расчет мощности теплового потока от горизонтальных и вертикальных плоских поверхностей тела, помещенного в «безразмерное» воздушное пространство при принудительной и естественной конвекции с учетом радиационной составляющей теплоотдачи.

Зная коэффициент теплоотдачи на поверхности (α), разделяющей твердое тело и окружающее это тело воздушное пространство, очень просто определить мощность теплового потока (Q) по известной разности температур (Δt).

Q=α*A*Δt, Вт – мощность теплового потока от или к поверхности тела.

Основная сложность расчета заключается в определении коэффициента конвективной теплоотдачи (αк)! Автоматизировать в первую очередь решение этой трудоемкой задачи поможет Excel.

Нестабильность процесса естественной конвекции у поверхностей различной формы и расположения в пространстве породила большое разнообразие эмпирических формул для вычисления коэффициента конвективной теплоотдачи (αк). Неизбежные погрешности экспериментальных данных привели к тому, что результаты вычислений для одних и тех же поверхностей и условий по формулам разных авторов отличаются друг от друга на 20% и более.

После тщательного детального ознакомления с материалами современных западных изданий по теплообмену (список литературы – в конце статьи) были выбраны формулы, рекомендованные к применению большинством авторов, для использования в представленной далее программе в Excel.

Схемы теплообмена:

На представленных ниже рисунках показаны 8 вариантов схем, для которых программа может выполнить вычисления.

Розовый цвет пластин свидетельствует о том, что они горячее окружающего воздуха. Голубой цвет – пластины холоднее воздуха.

На схемах 1а и 1б воздух принудительно движется (вентилятор, ветер) вдоль поверхности пластины независимо от её ориентации в пространстве. На всех остальных схемах окружающий воздух находится в спокойном состоянии (помещение, полный штиль), а положение пластин сориентировано в пространстве.

Принудительная конвекция: Схемы 1а и 1б

Естественная конвекция: Схемы 2а и 2б


Естественная конвекция: Схемы 4а и 4б

Расчет в Excel:

Таблица Excel: Коэффициент теплоотдачи поверхность - воздух расчет в Excel

Формулы алгоритма программы:

t0=(tв+tп)/2

l0=L – для схем 1а и 1б

l0=(B*L)/(2*(B+L)) – для схем 2а, 2б, 3а, 3б, 4а, 4б

Для определения теплофизических параметров воздуха при определяющей температуре (t0) в диапазоне -70°C … +1200°C использованы формулы из предыдущей статьи на сайте.

Re=w*l0

Gr=g*β*|tп— tв|*l0 3 /ν 2

Ra=Gr*Pr

Таблица формул, ограничений и определяющих параметров

αк=Nu*λ/l0

αр=ε*0,00000005670367*((tп+273,15) 4 — (tв+273,15) 4 )/(tп-tв)) – при tвtп

*) αр=0 – при tв>tп

α=αкр

q=α*(tп-tв)

Q=q*B*L

*) Нагрев поверхностей Солнцем или иными источниками теплового излучения программой игнорируется.

Вычисление теплофизических параметров воздуха и числа Нуссельта, как видно из вышеприведенных формул, являются ключевыми и самыми трудоемкими при определении конвективного коэффициента теплоотдачи.

Тестирование программы проводилось на примерах из книг, представленных в конце статьи. Отклонения результатов в основном не выходили за пределы ±5%.

Замечание:

В отечественной теплотехнической литературе для решения рассмотренных задач широко используются формулы второй половины прошлого века М.А. Михеева и В.П. Исаченко, которые в современной западной литературе не упоминаются. Беглый сравнительный анализ результатов расчетов по формулам разных авторов дал противоречивые и неоднозначные ответы. Если при принудительной конвекции результаты фактически идентичны, то при естественной конвекции отличаются порой на 30% и более, но иногда почти совпадают…

Литература:

Прошу уважающих труд автора скачать файл с программой после подписки на анонсы статей!

P. S. (01.11.2020)

Дополнение по естественной конвекции у вертикальной поверхности:

Если построить графики по вышеприведенным формулам Черчилля и Чу для числа Нуссельта при естественной конвекции у вертикальной изотермической поверхности (схемы 2а и 2б), то можно увидеть, что при Ra=10 9 кривые не совпадают!

График функции Nu=f(Ra)

По этому поводу авторы формул Черчилль и Чу дают примерно следующее пояснение: «уравнение, основанное на исследованиях Черчилля и Усаги Nu=(0,825+0,387*Ra 1/6 /(1+(0,492/Pr) 9/16 ) 8/27 ) 2 дает хорошие результаты для средней теплопередачи при свободной конвекции у изотермической вертикальной пластины во всем диапазоне значений Ra и Pr от 0 до ∞, даже если оно не работает для обозначения дискретного перехода от ламинарного к турбулентному потоку». Линхарды в [1] отмечают, что рассматриваемое уравнение чуть менее точно для ламинарных условий при Ra и рекомендуют в этом диапазоне использовать первое уравнение тех же авторов Nu=0,68+0,67*Ra ¼ /(1+(0,492/Pr) 9/16 ) 4/9 . Хотя, судя по графикам, в диапазоне Ra для воздуха обе функции чрезвычайно близки друг к другу.

Еще один нюанс, который встретился только у Линхардов в [1]: «свойства флюида следует оценивать при t0=(tв+tп)/2 за одним исключением, если флюид – газ, то коэффициент объемного расширения β следует определять при t0=tв». Но сами авторы зависимостей Черчилль и Чу о таком условии ничего не пишут. По этому поводу в их статье [7], говорится, что «для больших температурных перепадов, когда физические свойства существенно различаются, Ид рекомендует оценивать физические свойства как средние значения температуры поверхности и объема, а Уайли дает более подробные теоретические указания для режима ламинарного пограничного слоя».

Максимальная относительная ошибка для Nu=(0,825+0,387*Ra 1/6 /(1+(0,492/Pr) 9/16 ) 8/27 ) 2 , если β=1/tв вместо β=2/( tв+tп), составляет в процентах:

ε=(((tв+tп)/(2*tв)) 1/3 -1)*100%, или

ε=((|(tп— tв)|/(2*tв)+1) 1/3 -1)*100%

График функции e=f(dt)

Как видно из графика при температуре среды - воздуха tв=20°C=293,15K и при перепаде температур поверхности и воздуха Δt=|tп— tв| °C максимальная погрешность ε не превышает 5%.

При Δt>90 °C расхождение результатов быстро нарастает.

Правы Линхарды или множество других авторов, рассчитывающих все свойства флюидов при одном значении определяющей температуры t0=(tв+tп)/2? Однозначного ответа у меня нет.

(По материалам Обри Джаффера [8].)

Эмпирические уравнения для суммарного коэффициента теплоотдачи:

В инженерных расчетах для быстрого приближенного определения суммарного коэффициента теплоотдачи, учитывающего и конвекцию, и излучение на границе поверхность тела – среда, можно использовать более простые зависимости, приведенные в [9].

При расчете тепловых потерь через наружные поверхности тел, которые находятся в спокойном воздухе закрытых помещений, можно применить нижеприведенные формулы. Результаты вычислений по этим формулам достаточно близки к результатам более точных расчетов.

α=9,74+0,07*(tп-tв), Вт/(м2*°C) при tп °C

α=9,3+0,058*tп, Вт/(м2*°C) при tп=50…350 °C

On-line калькуляторы для расчетов коэффициентов конвективной теплоотдачи от плоских, цилиндрических и сферических поверхностей:

Инструменты представлены Группой исследований теплопередачи (HTRG). Группа была создана в 2014 году преподавателями Лаборатории теплотехники и жидкостей факультета машиностроения инженерной школы Сан-Карлоса (EESC) Университета Сан-Паулу (USP) для проведения передовых, качественных фундаментальных и прикладных исследований по вопросам теплопередачи для многофазных и однофазных систем.

Коэффициент теплоотдачи от металла к воздуху таблица


Нужно подсчитать количество тепловыделений от открытых (неизолированных) частей оборудования ЦТП. Задвижек, теплообмеников и.т.д.
Есть формула ,
Q = S x K(коэффициент теплопередачи) x (t поверности-t вн.возд)
Фигурирует коэффициент теплопередачи K(коэффициент теплопередачи) Найти его не смог. Помогите, специалисты.

Ещё вопрос.
Расчитал, и получилось тепловыделения 530 Вт на 1м2 оборудования при понижении температуры на 1 К.
А мне необходимы потери теплоты в час. как перевести , подстроить формулу для этого расчёта?

Нет ничего невозможного если Заказчик адекватен и при деньгах


А вообще то "К" зависит от скорости. На форуме есть прога "СКВ", там есть блок расчета теплоизбытков от нагретых поверхностей, т не только.

1. S-площадь, м_2 - считаете для труб, задвижек и пр.
2. К-коэф. теплопередачи - принимаете.
3. tповерхн. - известно максимальное значение, например 110 градС
4. tвнутр возд - задаетесь или принимаете по нормам, напр, 10 градС
5. Считаете (умножением)!
6. Получились тепловыделения, напр, 1000 Вт. Это и есть теплопоступления в течение одного часа.
7. Задача решена!


ок, спасибо, sergeymgu. Это и надо было уяснить. только внутр воздух точно не 10 град )) около 25, 30. Но это уже лирика.

Всё рассчитал. Получил теплопотери труб с изоляцией + теплопоступления от оборудования ЦТП на 0,171 ГКалл/ч .
как считаете, нормально?? ЦТП на 11 ГКалл/ч 24 теплообменника.

Уважаемый Stan, пишите пожалуйста еденицы измерения.
Если Вы считаете что надо брать 30 Вт/м2*К - то я с Вами поспорю потомучто это много.
Если же 30 ккал/час*м2*К то я соглашусь.

sergeymgu Дата Сегодня, 13:26

6. Получились тепловыделения, напр, 1000 Вт. Это и есть теплопоступления в течение одного часа.

Уважаемый sergeymgu также корректно отнеситесь к единицам измерения. В ваттах измеряется МОЩНОСТЬ. Тепло (количество энергии) измеряется в Вт*час или ккал!

Коффициент теплоотдачи равен сумме коэффециентов теплоотдачи конвекцией и излучением. Эти элементарные вещи лучше и надежнее проконтролировать, воспользовавшись популярным хэлпиком, называемым "Nik15" - Научно инженерный калькулятор, свободно распространяемый через интернет.


А так же: 1 Вт = 0,24 кал/с = 0,86 ккал/ч; 1 МВт = 0,86 Гкал/ч.
Кроме того: 1 кВт-ч = 3,6 МДж; 1 МДж*240 = 1 ккал/м3.

Глава 4. Теплопередача в химической аппаратуре, основные зависимости и расчетные формулы (стр. 3 )

Испарительный теплообменник оконного кондиционера сделан из алюминия, с применением медных трубок.


Испарительный теплообменник оконного кондиционера сделан из алюминия, с применением медных трубок.

Коэффициент теплоотдачи для разных материалов

Что такое теплопроводность

Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:

  1. Молекул.
  2. Атомов.
  3. Электронов и других частиц структуры металла.

Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.

Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.

Показатели для стали

Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.

Существуют и другие особенности теплопроводности:

  1. Для стали, которая не имеет примесей, значение составляет 70 Вт/(м* К).
  2. У углеродистых и высоколегированных сталей проводимость намного ниже. За счет увеличения концентрации примесей она существенно снижается.
  3. Само термическое воздействие также может оказывать воздействие на структуру металла. Как правило, после нагрева структура меняет значение проводимости, что связано с изменением кристаллической решетки.

Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.

База знаний по трехмерному проектированию в Pro/Engineer, Creo, Solidworks, электронике на STM32

Обучение САПР. Важные параметры некоторых материалов, используемые при тепловых расчетах

В этой таблице представлены такие важные параметры как Коэффициент теплопроводности λ
и
Удельная теплоемкость ср
, которые необходимы для проведения тепловых расчетов по статьям Creo 3. Расчет радиатора охлаждения с принудительной вентиляцией и Solidworks 2013. Тепловой расчет радиатора охлаждения с принудительной вентиляцией в Solidworks Simulation.

В следующей таблице представлены Коэффициенты конвекции h или α

(другое название
Коэффициенты конвективной теплоотдачи
и
Коэффициенты конвективной теплопередачи
), необходимые для оценочных расчетов

Влияние концентрации углерода

Концентрация углерода в стали влияет на величину теплопередачи:

  1. Низкоуглеродистые стали имеют высокий показатель проводимости. Именно поэтому они используются при изготовлении труб, которые затем применяются при создании трубопровода системы отопления. Значение коэффициента варьирует в пределе от 54 до 47 Вт/(м* К).
  2. Средним коэффициентом для распространенных углеродистых сталей является значение от 50 до 90 Вт/(м* К). Именно поэтому подобный материал используется при изготовлении деталей различных механизмов.
  3. У металлов, которые не содержат различных примесей, коэффициент составляет 64 Вт/(м* К). Это значение несущественно изменяется при термическом воздействии.

Таким образом, рассматриваемый показатель у легированных сплавов может меняться в зависимости от температуры эксплуатации.

В статье рассмотрен расчет мощности теплового потока от горизонтальных и вертикальных плоских поверхностей тела, помещенного в «безразмерное» воздушное пространство при принудительной и естественной конвекции с учетом радиационной составляющей теплоотдачи.
Зная коэффициент теплоотдачи на поверхности (α), разделяющей твердое тело и окружающее это тело воздушное пространство, очень просто определить мощность теплового потока (Q) по известной разности температур (Δt).

  • α=αк+αр, Вт/(м 2 *К) – суммарный коэффициент теплоотдачи на границе воздух – поверхность тела αк=?, Вт/(м 2 *К) – коэффициент конвективной теплоотдачи
  • αр=ε*5,67*10 -8 *((tп+273,15) 4 — (tв+273,15) 4 )/(tп-tв)), Вт/(м 2 *К) – коэффициент радиационной теплоотдачи (теплоотдачи излучением), ε – степень черноты поверхности
    tп, °C – температура поверхности

Основная сложность расчета заключается в определении коэффициента конвективной теплоотдачи (αк)! Автоматизировать в первую очередь решение этой трудоемкой задачи поможет Excel.

Нестабильность процесса естественной конвекции у поверхностей различной формы и расположения в пространстве породила большое разнообразие эмпирических формул для вычисления коэффициента конвективной теплоотдачи (αк). Неизбежные погрешности экспериментальных данных привели к тому, что результаты вычислений для одних и тех же поверхностей и условий по формулам разных авторов отличаются друг от друга на 20% и более.

Схемы теплообмена:

Расчет в Excel:


t=(tв+tп)/2

l=L – для схем 1а и 1б

l=(B*L)/(2*(B+L)) – для схем 2а, 2б, 3а, 3б, 4а, 4б

Для определения теплофизических параметров воздуха при определяющей температуре (t) в диапазоне -70°C … +1200°C использованы формулы из предыдущей статьи на сайте.

Re=w*l/ν

Gr=g*β*|tп— tв|*l 3 /ν 2


αк=Nu*λ/l

αр=ε*0,00000005670367*((tп+273,15) 4 — (tв+273,15) 4 )/(tп-tв)) – при tв *) αр= – при tв>tп

α=αк+αр

q=α*(tп-tв)

Замечание:

Литература:

Прошу уважающих труд автора скачать файл с программой после подписки на анонсы статей!

Значение в быту и производстве

Почему важно учитывать коэффициент теплопроводности? Подобное значение указывается в различных таблицах для каждого металла и учитывается в нижеприведенных случаях:

  1. При изготовлении различных теплообменников. Тепло является одним из важных носителей энергии. Его используют для обеспечения комфортных условий проживания в жилых и иных помещениях. При создании отопительных радиаторов и бойлеров важно обеспечить быструю и полную передачу тепла от теплоносителя к конечному потребителю.
  2. При изготовлении отводящих элементов. Часто можно встретить ситуацию, когда нужно провести не подачу тепла, а отвод. Примером назовем случай отвода тепла от режущей кромки инструмента или зубьев шестерни. Для того чтобы металл не терял свои основные эксплуатационные качества, обеспечивается быстрый отвод тепловой энергии.
  3. При создании изоляционных прослоек. В некоторых случаях материал не должен проводить передачу тепловой энергии. Для подобных условий эксплуатации выбирается металл, который обладает низким коэффициентом проводимости тепла.

Определяется рассматриваемый показатель при проведении испытаний в различных условиях. Как ранее было отмечено, коэффициент проводимости тепла может зависеть от температуры эксплуатации. Поэтому в таблицах указывается несколько его значений.

Дополнение по естественной конвекции у вертикальной поверхности:


По этому поводу авторы формул Черчилль и Чу дают примерно следующее пояснение: «уравнение, основанное на исследованиях Черчилля и Усаги Nu=(0,825+0,387*Ra 1/6 /(1+(0,492/Pr) 9/16 ) 8/27 ) 2 дает хорошие результаты для средней теплопередачи при свободной конвекции у изотермической вертикальной пластины во всем диапазоне значений Ra и Pr от до ∞, даже если оно не работает для обозначения дискретного перехода от ламинарного к турбулентному потоку». Линхарды в [1] отмечают, что рассматриваемое уравнение чуть менее точно для ламинарных условий при Ra 9 и рекомендуют в этом диапазоне использовать первое уравнение тех же авторов Nu=0,68+0,67*Ra ¼ /(1+(0,492/Pr) 9/16 ) 4/9 . Хотя, судя по графикам, в диапазоне Ra 7 для воздуха обе функции чрезвычайно близки друг к другу.

Еще один нюанс, который встретился только у Линхардов в [1]: «свойства флюида следует оценивать при t=(tв+tп)/2 за одним исключением, если флюид – газ, то коэффициент объемного расширения β следует определять при t=tв». Но сами авторы зависимостей Черчилль и Чу о таком условии ничего не пишут. По этому поводу в их статье [7], говорится, что «для больших температурных перепадов, когда физические свойства существенно различаются, Ид рекомендует оценивать физические свойства как средние значения температуры поверхности и объема, а Уайли дает более подробные теоретические указания для режима ламинарного пограничного слоя».

Максимальная относительная ошибка для Nu=(0,825+0,387*Ra 1/6 /(1+(0,492/Pr) 9/16 ) 8/27 ) 2 , если β=1/tв вместо β=2/( tв+tп), составляет в процентах:

ε=(((tв+tп)/(2*tв)) 1/3 -1)*100%, или

ε=((|(tп— tв)|/(2*tв)+1) 1/3 -1)*100%


Как видно из графика при температуре среды — воздуха tв=20°C=293,15K и при перепаде температур поверхности и воздуха Δt=|tп— tв| 90 °C расхождение результатов быстро нарастает.

Правы Линхарды или множество других авторов, рассчитывающих все свойства флюидов при одном значении определяющей температуры t=(tв+tп)/2? Однозначного ответа у меня нет.

Что представляет собой биметаллический радиатор

По сути, биметаллический обогреватель представляет собой смешанную конструкцию, воплотившую преимущества стальных и алюминиевых систем отопления. Устройство радиатора основывается на следующих элементах:

  • Обогреватель состоит из двух корпусов – внутреннего стального и наружного алюминиевого;
  • За счет внутренней оболочки из стали биметаллический корпус не боится агрессивной горячей воды, выдерживает высокое давление и обеспечивает высокую прочность соединения отдельных секций радиатора в одну батарею;
  • Алюминиевый корпус лучше всего передает и рассеивает поток тепла в воздухе, не боится коррозии наружной поверхности.

В качестве подтверждения высокой теплоотдачи биметаллического корпуса можно использовать сравнительную таблицу. Среди ближайших конкурентов – радиаторов из чугуна ЧГ, стали ТС, алюминия АА и АЛ, биметаллический радиатор БМ обладает одним из наилучших показателей теплоотдачи, высоким рабочим давлением и коррозионной стойкостью.

Теплоотдача стали и алюминия

В реальности дела обстоят еще хуже, большинство производителей указывает величину теплоотдачи в виде значения тепловой мощности в час для одной секции. То есть, на упаковке может быть указано, что теплоотдача биметаллической секции радиатора составляет 200 Вт.

Делается это вынужденно, данные приводят не к единице площади или перепаду температур в один градус, для того чтобы упростить восприятие покупателем конкретных технических характеристик теплоотдачи радиатора, одновременно сделав маленькую рекламу.

Как улучшить теплоотдачу

Указанный коэффициент мощности конвектора в его техпаспорте, имеет место быть, практически при идеальных условиях. На деле, величина теплового потока несколько снижена,и это обусловлено большими теплопотерями.

В первую очередь, для повышения коэффициента необходимо уменьшить потерю тепла – провести работы по утеплению дома, особое внимание, уделив крыше, так как через нее уходит около 70% теплого воздуха и оконным и дверным проемам.

Сравнение показателей: анализ и таблица

Помимо материала, из которого изготовлен прибор, на коэффициент мощности влияет межосевое расстояние – высота между осями верхнего и нижнего выходов. Также существенное влияние на КПД оказывает величина теплопроводности.

Что такое теплопроводность и теплопередача. Теплопроводность металлов и других материалов.


Тепло - это одна из форм энергии, которая заключена в движении атомов в веществе. Энергию этого движения мы и измеряем термометром, хоть и не напрямую.
Как и все другие виды энергии, теплота может передаваться от тела к телу. Происходит это всегда, когда есть тела разной температуры. При этом им необязательно даже находиться в соприкосновении, так существует несколько способов передачи тепла. А именно:

Теплопроводность. Это передача тепла при непосредственном контакте двух тел. (Тело может быть и одно, если его части разной температуры.) При этом чем больше разность температур тел и чем больше площадь их контакта - тем больше тепла передаётся каждую секунду. Помимо этого, количество передаваемого тепла зависит от материала - например, большинство металлов хорошо проводят тепло, а дерево и пластик - гораздо хуже. Величину, характеризующую эту способность передавать тепло, тоже называют теплопроводностью (более корректно – коэффициент теплопроводности), что может приводить к некоторой путанице.

Если необходимо измерить теплопроводность какого-либо материала, то обычно это проводят в следующем эксперименте: изготовляется стержень из интересующего материала и один его конец поддерживается при одной температуре, а другой - при отличной, например более низкой, температуре. Пусть, например, холодный конец будет помещён в воду со льдом - таким образом будет поддерживаться постоянная температура, а измеряя скорость таяния льда можно судить о количестве полученного тепла. Деля количество тепла (а вернее - мощность) на разность температур и поперечное сечение стержня и умножая на его длину, получаем коэффициент теплопроводности, измеряющийся, как следует из вышенаписанного, в Дж*м/К*м 2 *с, то есть в Вт/К*м. Ниже вы видите таблицу теплопроводности некоторых материалов.

Материал Теплопроводность, Вт/(м·K)
Алмаз 1001—2600
Серебро 430
Медь 401
Оксид бериллия 370
Золото 320
Алюминий 202—236
Кремний 150
Латунь 97—111
Хром 107
Железо 92
Платина 70
Олово 67
Оксид цинка 54
Сталь 47
Оксид алюминия 40
Кварц 8
Гранит 2,4
Бетон сплошной 1,75
Базальт 1,3
Стекло 1-1,15
Термопаста КПТ-8 0,7
Вода при нормальных условиях 0,6
Кирпич строительный 0,2—0,7
Древесина 0,15
Нефтяные масла 0,12
Свежий снег 0,10—0,15
Стекловата 0,032-0,041
Каменная вата 0,034-0,039
Воздух (300 K, 100 кПа) 0,022

Как видно, теплопроводность различается на много порядков. Удивительно хорошо проводят тепло алмаз и оксиды некоторых металлов (по сравнению с другими диэлектриками), плохо проводят тепло воздух, снег и термопаста КПТ-8.

Но мы привыкли считать, что воздух хорошо проводит тепло, а вата - нет, хотя она может на 99% состоять из воздуха. Дело в конвекции. Горячий воздух легче холодного, и "всплывает" наверх, порождая постоянную циркуляцию воздуха вокруг нагретого или сильно охлаждённого тела. Конвекция на порядок улучшает теплопередачу: при её отсутствии было бы очень затруднительно вскипятить кастрюлю воды, не перемешивая её постоянно. А в диапазоне от 0°С до 4°С вода при нагревании сжимается, что приводит к конвекции в противоположном от привычного направлении. Это приводит к тому, что независимо от температуры воздуха, на дне глубоких озёр температура всегда устанавливается равной 4°C

Для уменьшения теплоотдачи из пространства между стенками термосов откачивают воздух. Но надо отметить, что теплопроводность воздуха мало зависит от давления вплоть до 0,01мм рт.ст, то есть границы глубокого вакуума. Этот феномен объясняется теорией газов.

Ещё один способ теплопередачи - это излучение. Все тела излучают энергию в виде электромагнитных волн, но только достаточно сильно нагретые (~600°С) излучают в видимом нами диапазоне. Мощность излучения даже при комнатной температуре достаточно большая - порядка 40мВт с 1см 2 . В пересчёте на площадь поверхности человеческого тела (~1м 2 ) это составит 400Вт. Спасает лишь то, что в привычном нам окружении все тела вокруг также излучают с примерно той же мощностью. Мощность излучения, кстати, сильно зависит от температуры (как T 4 ) , согласно закону Стефана-Больцмана. Расчёты показывают, что, например, при 0°С мощность теплового излучения примерно в полтора раза слабее, чем при 27°С.

В отличие от теплопроводности, излучение может распространяться в полном вакууме - именно благодаря нему живые организмы на Земле получают энергию Солнца. Если теплопередача излучением нежелательна, то её минимизируют, ставя непрозрачные перегородки между холодным и горячим объектами, либо уменьшают поглощение излучения (и испускание, кстати, в ровно той же степени), покрывая поверхность тонким зеркальным слоем металла, например, серебра.

Читайте также: