Концентрация электронов проводимости в металле

Обновлено: 05.10.2024

Свободные электроны – это электроны, не связанные с определенными атомами.

Сверхпроводимость – физическое явление, заключающееся в скачкообразном падении до нуля сопротивления вещества.

Температурный коэффициент сопротивления - величина, равная относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на 1 К.

Основная и дополнительная литература по теме урока:

Мякишев Г. Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 216-224.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. - М.: Дрофа, 2009.- С.81-89.

М.М. Балашов О природе М., Просвещение, 1991г.

Е.А. Марон, А.Е. Марон Сборник качественных задач по физике. М., Просвещение, 2006

Я.И. Перельман Занимательная физика. М.: “Наука”, 1991.

Основное содержание урока

Все тела по проводимости электрического тока делятся на проводники, полупроводники и диэлектрики. Для того чтобы электрическую энергию доставить от источника тока потребителю составляют электрические цепи. В большинстве случаев в электрической цепи используются металлические провода. По физической природе зарядов – носителей электрического тока, электропроводность подразделяют на:

Какие заряженные частицы движутся в металлах при наличии тока?

После открытия в 1897 году английским ученым Дж. Дж. Томсоном электрона стали разрабатываться теории, объясняющие электропроводность металлов. Автором первой теории был Пауль Друде – немецкий физик. Эта теория нуждалась в опытном обосновании. В 1901 г. немецкий физик Э. Рикке поставил опыт по исследованию прохождения тока в металлах.

Результаты опыта свидетельствовали о том, что в переносе заряда в металлах ионы не участвуют. Впоследствии вопросом проводимости металлов заинтересовались и другие учёные. В 1913 году российские учёные Л. И. Мандельштам и Н. Д. Папалекси провели опыты по исследованию проводимости металлов. Суть опытов сводилась к тому, что катушка, на которую наматывали металлическую проволоку приводили во вращательное движение и резко тормозили. При торможении электроны продолжали двигаться по инерции и гальванометр, соединенный с катушкой фиксировал появление тока. По направлению отклонения стрелки гальванометра было установлено, что ток создается движением отрицательно заряженных частиц. На основании измерения отношения заряда частиц к их массе выяснилось, что ток создается движением свободных электронов. Аналогичный опыт был поставлен в 1916 году американскими учеными Т. Стюартом и Р. Толменом. Результаты опытов говорили, что ток в металлах создается движением электронов.


После анализа имеющихся данных о прохождении тока в металлах разными учеными была разработана современная классическая теория проводимости тока металлами. Основные положения электронной теории проводимости металлов.

1. Металл можно описать следующей моделью: кристаллическая решетка ионов погружена в идеальный электронный газ, состоящий из свободных электронов. У большинства металлов каждый атом ионизирован, поэтому концентрация свободных электронов приблизительно равна концентрации атомов 1023- 1029м-3 и почти не зависит от температуры.

2.Свободные электроны в металлах находятся в непрерывном хаотическом движении.

3. Электрический ток в металле образуется только за счет упорядоченного движения свободных электронов.

Опираясь на данную теорию удалось объяснить основные законы электрического тока в металлах. Исходя из электронной теории можно найти связь между силой тока в металлах и скоростью движения электронов.

Сила тока равна произведению заряда электрона, их концентрации, площади сечения проводника и средней скорости движения электронов:

Отсюда

Если в эту формулу подставлять числовые данные силы тока, концентрации и площади сечения для разных металлов, то мы увидим, что средняя скорость движения электронов составляет всего лишь какие-то доли миллиметра в секунду. Когда говорят о скорости распространения тока имеют в виду скорость распространения электрического поля в проводнике, которое равно скорости света.

На силу тока в проводнике влияет и сопротивление проводника. Опыт показывает, что сопротивление металлов зависит от температуры. Увеличение сопротивления можно объяснить тем, при повышении температуры увеличивается скорость и амплитуда хаотического движения ионов кристаллической решетки металла и свободных электронов. Это приводит к более частым их соударениям, что затрудняет направленное движение электронов, то есть увеличивает электрическое сопротивление.

зависимость сопротивления металлов от температуры выражается формулой:

При нагревании размеры проводника практически не меняются, в основном меняется удельное сопротивление. Учет зависимости сопротивления от температуры используется в термометрах сопротивления.

Формула зависимости удельного сопротивления металлического проводника от температуры имеет вид:

где ρ0 - удельное сопротивление при 0 градусов,

α - температурный коэффициент сопротивления.

Графиком зависимости ⍴(t) является прямая.


Хотя коэффициент α довольно мал, учет зависимости сопротивления от температуры при расчете нагревательных приборов совершенно необходим.

При понижении температуры сопротивление металлов должно уменьшаться. В 1911 году датский физик Х. Каммерлинг - Оннес открыл явление, названное сверхпроводимостью. Исследуя зависимость сопротивления ртути от температуры, он обнаружил, что при температуре 4,12 К сопротивление ртути исчезает. В сверхпроводящее состояние могут перейти многие химические соединения и сплавы. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах.

Вещества, находящиеся в сверхпроводящем состоянии, приобретают новые свойства. Наиболее важным из них является способность длительное время (многие годы) поддерживать без затухания электрический ток в проводниках.

Классическая электронная теория не способна объяснить явление сверхпроводимости. Теоретическое объяснение явления сверхпроводимости на основе квантово-механических представлений было дано учеными Дж. Бардиным, Дж. Шриффером (США) и Н. Н. Боголюбовым (СССР) в 1957 г.

В 1986 году была обнаружена высокотемпературная сверхпроводимость (при 100 К).

В настоящее время ведутся интенсивные работы по поиску новых веществ переходящими в сверхпроводящее состояние при более высокой температуре. Ученые надеются получить вещество в сверхпроводящем состоянии при комнатной температуре. Если удастся создать сверхпроводник при нормальной температуре, то будет решена проблема передачи электроэнергии по проводам без потерь.

Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен.

Открытие вещества, переходящего в сверхпроводящее состояние при комнатной температуре, позволило бы упростить решение многих технических вопросов. Во-первых, отсутствие сопротивления означает отсутствие каких-либо потерь на нагревание. Отсутствие нагревания и потерь энергии на него чрезвычайно важно для электродвигателей и электронной вычислительной техники, а также для передачи электроэнергии.

В сверхпроводниках из-за отсутствия сопротивления протекают чрезвычайно высокие токи, создающие сильные магнитные поля, что может применяться при термоядерном синтезе для удержания высокотемпературной плазмы в реакторе.

На сегодняшний момент в некоторых странах существует железнодорожная сеть с поездами на магнитной подушке. После открытия сверхпроводимости Камерлинг-Оннес, пытаясь создать сверхпроводящий электромагнит, обнаружил, что изменение тока, или же магнитные поля, разрушают эффект сверхпроводимости. Только к середине двадцатого века удалось создать сверхпроводящие электромагниты. На данный момент продолжаются исследования по изучению высокотемпературной сверхпроводимости.

Разбор типовых тренировочных заданий

1. Сопротивление железного проводника при 0 0 С и 600 0 С равны соответственно 2 Ом и 10 Ом. Каков температурный коэффициент железа?

Зависимость сопротивления металлов от температуры определяется формулой

Из этой формулы выразим температурный коэффициент железа – α

После подстановки числовых данных получаем

2. Какова скорость дрейфа электронов в медном проводе диаметром 5 мм, по которому к стартеру грузовика подводится ток 100 А. Молярная масса меди

Сила тока в проводнике равна:

Выразим скорость из этой формулы:

Концентрацию электронов найдем по формуле:

Число электронов найдём по формуле:

Площадь сечения равна:

Учитывая всё это запишем конечную формулу для расчёта скорости дрейфа электронов:

Большая Энциклопедия Нефти и Газа

Концентрация электронов проводимости ( которые и осуществляют связь в металлическом кристалле) колеблется в тех же пределах. Это означает, что в среднем в образовании металлической связи участвуют по одному электрону от каждого атома. [5]

Концентрация электронов проводимости здесь не играет большой роли. Это намного превышает отношение с / а 1 633 решетки типа ПГУ, состоящей из шарообразных атомов. Можно думать, что падение электропроводности в перечисленных выше процессах плавления в основном вызвано резким возрастанием концентрации дефектов. [6]

Концентрация электронов проводимости п не изменяется и при отсутствии теплового движения. [7]

Удиэлектриков концентрация электронов проводимости при комнатной температуре на много порядков ниже, чем у металлов. И хотя с температурой концентрация, а с нею и электропроводность, быстро растет, абсолютные значения последней в области умеренно высоких температур еще очень малы. Диэлектрики скорее пригодны в этих интервалах температур к роли пассивных элементов схем в отличие от полупроводников, из которых создаются активные элементы. [8]

Поэтому концентрация электронов проводимости в металле почти пе зависит от температуры, и зависимость электрической проводимости металла от температуры обусловлена изменением подвижности электронов. Средняя длина свободного пробега электрона уменьшается при повышении температуры вследствие увеличения амплитуды тепловых колебаний решетки, а также при наличии дефектов и примесей, нарушающих упорядоченность кристаллической решетки. С уменьшением длины свободного пробега снижается подвижность носителей заряда, поэтому с увеличением температуры электрическая проводимость металлов падает. [9]

Тч концентрация электронов проводимости будет практически постоянной, а значение электропроводности даже начнет уменьшаться вследствие увеличения рассеяния электронов на колебаниях решетки. [10]

Изменение концентрации электронов проводимости ведет к значительному изменению фермиевской энергии электронов. В связи с этим можно ожидать изменения парциальной молярной свободной энергии или активности растворенного металла, если концентрация электронов проводимости изменяется при добавлении других легирующих элементов. [11]

У диэлектриков концентрация электронов проводимости при комнатной температуре на много порядков ниже, чем у металлов. И хотя с температурой концентрация, а с нею и электропроводность быстро растет, абсолютные значения последней в области умеренно высоких температур еще очень малы. Диэлектрики скорее пригодны в этих интервалах температур к роли пассивных элементов схем, в отличие от полупроводников, из которых создаются активные элементы. [12]

В полупроводниках концентрация электронов проводимости при комнатной температуре значительно меньше, чем у металлов, а число появляющихся под действием света фотоэлектронов относительно велико; так, например, при соответствующем освещении это число в CdS на четыре порядка превышает число темновых электронов проводимости. В других же менее фоточувствительных веществах число фотоэлектронов даже при не слишком интенсивном освещении достигает 20 - 30 % от общего числа электронов проводимости. Естественно, что уже одно это свойство некоторых полупроводников делает их крайне необходимыми материалами. [13]

Следовательно, концентрация электронов проводимости в полупроводниках типа п с донорной примесью является суммой концентрации электронов, перешедших с локальных уровней в зону проводимости, и электронов валентной зоны, перешедших в зону проводимости. Запрещенная зона между валентной зоной и зоной проводимости значительно больше запрещенной зоны между локальными уровнями и зоной проводимости, поэтому концентрация электронов, поступивших в зону проводимости с локальных уровней, значительно больше концентрации электронов, перешедших в зону проводимости из валентной зоны. [14]

В полупроводниках концентрация электронов проводимости резко возрастает с повышением температуры ( гл. [15]

Электрическая проводимость металлов обусловлена наличием в их кристаллических решетках свободных электронов, движение которых при наложении электрического поля даже небольшого напряжения получает направленность. С повышением температуры электрическая проводимость металлов уменьшается, так как при этом колебательные движения ионов в узлах кристаллической решетки металлов усиливаются, что препятствует направленному движению электронов. Наоборот, с понижением температуры электрическая проводимость увеличивается, и в области, близкой к абсолютному нулю, у многих металлов наблюдается сверхпроводимость. Значения электрической проводимости у различных металлов сильно расходятся. Их сравнение, однако, затруднено, так как при одинаковой температуре амплитуда колебаний атомов, от которой зависит электрическая проводимость, у разных металлов различна. [1]

Электрическая проводимость металла определяется произведением концентрации электронов на их подвижность. Подвижность электронов ип есть скорость, измеренная в см / сек, в поле, градиент которого равен 1 в [ см. Наряду с шириной запрещенной зоны АЕ, продолжительностью жизни т и концентрацией носителей зарядов при собственной проводимости, подвижность электронов ип представляет собой четвертую существенную величину, характеризующую полупроводник. В случае беспримесных полупроводников к току, образуемому электронами, добавляется еще ток, образуемый дырками. [2]

Электрическая проводимость металла зависит от числа и заряда электронов, участвующих в переносе тока, и среднего времени пробега между столкновениями. Эти же параметры при данной напряженности электрического поля определяют и скорость движения электрона. [3]

Электрическая проводимость металлов сильно зависит от температуры. С повышением температуры колебательные движения ионов в узлах решетки усиливаются, а это, в свою очередь, очень препятствует направленному движению электронов. [5]

Электрическая проводимость металлов сильно зависит от температуры. С понижением температуры тепловые колебания ионов в узлах сильно уменьшаются и электрическая проводимость увеличивается. При температурах, близких к абсолютному нулю, у большинства металлов проявляется сверхпроводимость. [6]

На электрическую проводимость металлов и сплавов влияют температура, концентрация примесей и атомы с некомпенсированными электронами. [7]

При изменении электрической проводимости немагнитных металлов от нуля, до бесконечности вносимое индуктивное сопротивление изменяется от нуля до некоторого предельного значения. При контроле ферромагнитных материалов знак вносимого сопротивления зависит от частоты. На низких частотах вносимое индуктивное сопротивление положительно, а на высоких - отрицательно. [8]

Становится понятной и электрическая проводимость металлов . [10]

В отличие от полупроводников электрическая проводимость металлов мало зависит от имеющихся в их структуре примесных дефектов. Однако примесные дефекты могут оказывать существенное влияние на другие свойства металлов. Так, механические характеристики металлов сильно зависят от наличия в их структуре междоузельных примесных дефектов. С учетом плотнейшей упаковки металлических кристаллов в междоузлия способны попадать лишь микрочастицы небольших размеров, такие, как атомы водорода, углерода, кислорода, азота. Кристаллы многих металлов часто поглощают большое количество указанных примесей. Например, количество водорода, поглощенного палладием или цирконием, обычно настолько велико, что его атомы заполняют почти все междоузлия в кристаллах указанных металлов. [12]

От чего зависит теплопроводность и электрическая проводимость металлов . [13]

В отличие от полупроводников, электрическая проводимость металлов понижается с повышением температуры. Однако и в жидком ( расплавленном) состоянии металлы проводят электрический ток. [14]

В настоящее время различия в электрической проводимости металлов , полупроводников и изоляторов объясняют на основе квантовой теории строения кристаллических веществ или так называемой теории энергетических зон. Сущность ее состоит в следующем. Электроны ближайших к ядру энергетических уровней атомов полностью насыщают эти уровни, находятся в устойчивых состояниях и образуют так называемую заполненную валентную зону. Электрическая проводимость и теплопроводность вещества не связаны с электронами этой зоны. В электрической проводимости могут участвовать только электроны ненасыщенных энергетических уровней. При этом полосы основных и возбужденных ( периферических) энергетических уровней разделяются промежуточными свободными полосами, которые не имеют возможных для электрона квантовых состояний. Эту энергетическую зону, промежуточную между зонами основных и возбужденных уровней, называют запрещенной зоной. [15]

В металлах концентрации свободных электронов не зависят от температуры, скорости электронов из-за вырождения очень слабо зависят от температуры, уровень химического потенциала также почти не зависит эт температуры. Поэтому термоэдс металлов очень мала. [31]

С повышением концентрации свободных электронов система постепенно переходит в состояние вырождения, когда применение предельного случая Больцмановской статистики вместо статистики Ферми-Дирака, которой подчинены электроны в полупроводнике, становится недопустимым. [32]

В металлах концентрации свободных электронов очень велики ( - 1022 см 3) и не зависят от темн-ры; электронный газ находится в вырожденном состоянии и поэтому уровень химнотенциала ( уровень Ферми), энергия и скорости электропов также почти не зависят от темн-ры. Поэтому термоэдс классических металлов очень мала. Сравнительно больших значений достигает термоэдс в таких полуметаллах, как Sb и Bi ( и их сплавах, в к-рых концентрация носителей значительно меньше, 1019 см-3), где она зависит от темп-ры, а также в нек-рых переходных металлах и их сплавах ( напр. В последнем случае концентрация носителей еще больше, чем в классических, и степень вырождения электронного газа очень велика, большие значения термоэдс - следствие того, что средняя энергия электронов, участвующих в переносе электрич. [33]

Рассмотрим увеличение концентрации свободных электронов в кубической гранецентрированной решетке ограниченного а-твердого раствора при добавлении элемента с более высоким номером группы периодической системы по сравнению с растворителем. [34]

Для нахождения концентраций свободных электронов ( дырок) следует перемножить число состояний в интервале энергий d в соответствующей зоне на вероятность их заполнения / ( или /) и просуммировать по всем возможным состояниям в зоне. [35]

В отдельных металлах концентрация свободных электронов бывает очень различной и, кроме того, проявляются индивидуальные особенности заполняющих узлы пространственной решетки нейтральных атомов и положительных ионов. Поэтому каждый металл наряду с общими свойствами обладает и своими собственными, для него характерными. В частности, отдельные металлы очень сильно различаются по температуре плавления и твердости. [36]

В обоих случаях концентрация свободных электронов , обусловливающих собственную проводимость, даже в темноте достаточна для того, чтобы вызвать измеримую хемосорбцию кислорода с последующим окислением германия. Германий всегда реагирует несколько быстрее, чем р-германий, так как в последнем концентрация присутствующих в меньшем количестве отрицательных переносчиков заряда на поверхности уменьшена. [37]

По прекращении освещения концентрация свободных электронов спадает экспоненциально с постоянной времени ( и при) - 1 сек. Концентрация свободных дырок спадает также экспоненциально ( и независимо) с постоянной времени ( vspng) 1 сек. Существенно, что в этом случае ( который мы далее будем называть случаем слабого возбуждения) с исчезновением свободных пар связаны две независимые постоянные времени. [38]

У большинства полупроводников концентрация свободных электронов на несколько порядков ниже числа свободных уровней. [39]

В отдельных металлах концентрация свободных электронов может быть очень различной. Кроме того, должны проявляться индивидуальные особенности нейтральных и положительных атомов, заполняющих узлы пространственной решетки. Поэтому наряду с общими свойствами каждый металл имеет и собственные, характерные для него. [41]

В результате этого концентрация свободных электронов в металле увеличивается и он заряжается отрицательно относительно раствора. Это приводит к уменьшению концентрации электронов в металле, и он заряжается положительно относительно раствора. Вообще говоря, количество осаждаемых или растворяемых ионов чрезвычайно мало, и оба процесса практически прекращаются, когда возникает разность потенциалов, препятствующая их протеканию. Если металл М имеет отрицательный потенциал, то скорость его ионизации уменьшается; в то же время скорость разряда ионов возрастает. [42]

Рассмотрим температурную зависимость концентрации свободных электронов . В соответствии с принципом Паули2, при температуре Т О К электроны располагаются по два на каждый уровень, начиная с самого нижнего до самого высокого, определяемого числом свободных электронов. В этом случае электронный газ полностью вырожден. Уровень, который отделяет полностью заполненные уровни от полностью незаполненных, называется уровнем Ферми ( энергией Ферми) Ef. [43]

Оценим теперь значения концентраций свободных электронов и дырок в кристаллах кремния и германия. [44]

Читайте также: