Концентрация электронов в металле формула

Обновлено: 03.05.2024

Распределение электронов и дырок по квантовым состояниям в главных энергетических зонах кристалла. Уровень Ферми. Поверхность Ферми. Плотность квантовых состояний для энергетических зон с изотропным и анизотропным законом дисперсии.

Раздел 4. Статистика равновесных носителей заряда

4.1 Распределение электронов и дырок по квантовым состояниям в главных энергетических зонах кристалла. Уровень Ферми. Поверхность Ферми. Плотность квантовых состояний для энергетических зон с изотропным и анизотропным законом дисперсии.

4.2 Концентрация электронов и дырок в зонах для различных степеней вырождения электронного или дырочного газа.

4.3 Статистика примесных состояний. Функция распределения электронов и дырок по примесным состояниям. Плотность примесных состояний. Примесные зоны. Влияние температуры и концентрации примеси на концентрацию свободных электронов и дырок.

4.4 Плотность квантовых состояний в квантово-размерных структурах с квантовыми ямами, квантовыми нитями и квантовыми точками.

Для определения s твердого тела необходимо знать равновесную (темновую) концентрацию электронов (n) и дырок (p).

Для определения n и p необходимо знать параметры зон – плотность квантовых состояний и вероятность их дополнения – функцию распределения электронов и h + по состояниям.

Функции распределения электронов и дырок по квантовым состояниям разрешения зон (зона проводимости и валентная зона).

Электроны в металлах, полупроводниках подчиняются квантовой статистике. Вероятность заполнения уровня E при температуре T определяется функцией Ферми – Дирака:

Электроны проводимости – фермионы – частицы, обладающие полуцелым спином, и подчиняются принципом Паули:

F – уровень (энергия) Ферми, или электрохимический потенциал.

Основные свойства функции fФ-Д :

При T ® 0

При T = 0 функция терпит разрыв (то есть функция не определена).


Из графика следует, что f есть уровень, который разделяет занятые электронами состояния в зоне проводимости от свободных.

В металлах при T = 0: уровень F соответствует максимальной энергии электронов в зоне проводимости – энергии Ферми.

В

которая соответствует энергии EF.


Внутри сферы Ф – находятся электроны проводимости.

Проводимость по зоне проводимости - есть жесткое смещение сферы Ф в - пространстве под действием внешнего электрического поля на величину Dkx.

При температурах T > 0:

fФ-Д = 0,5 и F имеет смысл уровня, вероятность заполнения которого ½.

Функция fФ-Д претерпевает наибольшее изменение для энергий вблизи F.

При (E – F) >> kT функция fФ-Д переходит в классическую функцию Максвелла – Больцмана:

Ф-Д.


Уровень F ниже Ec на энергию не меньше kT.

В этом случае действует классическая статистика Максвелла – Больцмана и полупроводников, подчиняющиеся этой статистике – невырожденные (по концентрации).

Невырожденный полупроводник n-типа – полупроводник, в котором уровень F лежит ниже Ec в запрещенной зоне на величину не меньше kT.

Таким образом, в невырожденном полупроводнике на уровне f – нет электронов в отличие от металла!

Невырожденный полупроводник p-типа – уровень F лежит выше Ec на величину kT.

Плотность состояний N(E)

- это число квантовых состояний в зоне, приходящихся на единичный интервал энергии в кристалле единичного объема.

Предположим, что в интервале энергии: (E,E + dE) находится dS состояний.

Тогда для кристалла единичного объема: dS = N(E)dE пропорционально dE

N(E) = dS/dE – плотность состояний.

N(E) связана с формой поверхности равной энергии.

Интервалу dE соответствует шаровой слой объема , которым выделяют поверхности равной энергии:


E, E + dE = const

Число состояний

Плотность состояний в зоне проводимости

Эффективная масса – скалярная величина mn

N(E) = dS/dE dS – число состояний в интервале E, E + dE в кристалле единичного объема.

- пространства, заключается между поверхностями равной энергии.

E = const и E +dE = const


Найдем n

Поверхности E, E + dE заключают объем (поверхности – сферы; Таким образом

Для изотропной валентной зоны: (mp – эффективная масса дырки)

Таким образом, плотность состояний пропорциональна:

Зонная модель прямозонного полупроводника с использованием функций N(E)

Используется в физике полупроводниковых приборов.

Плотность состояний в зоне проводимости многодолинного (непрямозонного) полупроводника

Эффективная масса mn - тензорная величина.

Закон дисперсии

mC -1 , mU -1 , mZ -1 – компоненты эффективной массы.

Поверхности равной энергии – эллипсоидальные с полуосями.

a, b, c:

Объем эллипсоида: V = 4/3p * a b c

Объем , которым выделяют поверхности E и E + dE = const находят как приращение объема dV.

Таким образом, для одной долины:

Приведем эту формулу к виду для прямозонного полупроводника.

Для этого введем понятие эффективной массы для плотности состояний mnd:

N(E) = 2p (2 mnd / h 2 ) 3/2 (E – Ec) 1/2

Если поверхности – эллипсоиды вращения (электроны в Ge, Si)

m^ и mï½ определяется из эксперимента по циклотронному резонансу.

Смысл введения mnd

Позволяет многодолинную зону проводимости с анизотропной эффективной массой mn записать параболичной зоной с изотропной массой с одним абсолютным минимумом (нужно для вычисления концентраций).


Эффективная масса дырок для плотности состояний - mpd

V1 и V2 – стыкуются в точке

V1 – подзона тяжелых дырок с изотропной массой – mp1

V2 – подзона легких дырок с эффективной массой – mp2.

Плотность состояний для валентной зоны:

эффективная масса дырок для плотности состояний.

Таким образом, с введением mpd сложная V-зона заменяется параболичной невырожденной валентной зоной:

Модель полупроводников с mnd и mpd:


Концентрация электронов и дырок в условиях равновесия в темноте

Концентрация электронов в зоне проводимости.

В интервале E, E + dE в зоне проводимости кристалла единичного объема содержится dn-электронов:

В зоне проводимости: или

Введем новые переменные:

x= E – Ec/ kT – энергия электронов в единичном kT, отсчитывается от дна Ec.

Тогда от параметра Приближенные значения

сильновырожденный электронный газ (металлы, вырожденые полупроводники)

Концентрация электронов проводимости в невырожденных полупроводниках

Общая формула: NC – эффективная плотность состояний в зоне проводимости Рассмотрим:

dn – число электронов в интервале E, E + dE зоны проводимости для V = 1



* - это указывает на незначительную концентрацию электронов в зоне проводимости – что характерно для невырожденного полупроводника.

Электроны распределены в узком интервале энергий вблизи дна зоны проводимости.

Электропроводность полупроводника так же зависит по экспоненте от T:

- слабее зависит от T)

Концентрация электронов проводимости в сильновырожденном полупроводнике


Площадь под кривой

Таким образом, n не зависит от T – признак сильного вырождения электронного газа.

При T = 0 s ¹ 0 (как в металле)

Для промежуточной системы вырождения электронного газа:

Концентрация дырок в полупроводнике p-типа

Невырожденный дырочный газ (полупроводник):

Сильно вырожденный дырочный газ (полупроводник):

Сильновырожденный полупроводник p-типа:


Смысл Nc и Nv в статистике

Таким образом, при расчете n в невырожденном полупроводнике n-типа зону проводимости представляют как набор Nc числа уровней с одинаковой энергией Ec.

Nv – валентная зона состоит из Nv уровней с одинаковой энергией Ev.

Уравнение электрической нейтральности для полупроводников и диэлектриков

Для определения n, p необходимо знать положение уравнения Ферми. Его определяют из уравнения электронейтральности полупроводников (диэлектриков).

Смысл уравнения: в любом физически малом объеме полупроводника (диэлектрика) концентрация отрицательно свободных и связанных зарядов = концентрации свободных и связанных зарядов.

Свободные носители -

Связанные: дырки на уровнях донора – концентрация Pd (D + ) электроны – акцептора - na (A - ).

Собственный полупроводник

Уровень Ферми. Собственная концентрация носителей заряда.

G0 и R0 – скорости процессов.

Этому состоянию соответствует равенство n = p = ni

ni – собственная концентрация носителей заряда.

G0 – термическая генерация Энергия рекомбинирующих частиц(

Определение Fi

Уравнение электронейтральности: n = p

Для невырожденных собственных полупроводников: Откуда:

Fi линейно зависит от T.


Собственная концентрация ni

ni – зависит от DEg, плотности состояний в зонах и температурах:

.

Угловой коэффициент (

Таким образом, по ni (T) можно определить DEg при T = 0 k.

Произведение np в невырожденном полупроводнике

Используется для определения концентрации неосновных носителей заряда по известной концентрации основных носителей заряда.

Концентрация электронов в металле формула

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля.

Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов (опыт Толмена и Стьюарта):


Катушка с большим числом витков тонкой проволоки (рис. 9.1) приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру.Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся гальванометром.

При торможении вращающейся катушки на каждый носитель заряда e массой m действует тормозящая сила, которая играет роль сторонней силы, то есть силы неэлектрического происхождения:

Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью поля сторонних сил:

Следовательно, в цепи при торможении катушки возникает электродвижущая сила:

За время торможения катушки по цепи протечет заряд q, равный:

где – длина проволоки катушки, I – мгновенное значение силы тока в катушке, R – полное сопротивление цепи, – начальная линейная скорость проволоки.

Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема.

Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основе гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории. Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ.

Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла. Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер. Высота этого барьера называется работой выхода.

При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера. Согласно теории Друде–Лоренца, электроны обладают такой же средней энергией теплового движения, как и молекулы одноатомного идеального газа. Это позволяет оценить среднюю скорость теплового движения электронов по формулам молекулярно-кинетической теории:

При наложении внешнего электрического поля в металлическом проводнике кроме теплового движения электронов возникает их упорядоченное движение (дрейф), то есть электрический ток. Величина дрейфовой скорости электронов лежит в пределах 0,6 – 6 мм/c. Таким образом, средняя скорость упорядоченного движения электронов в металлических проводниках на много порядков меньше средней скорости их теплового движения.

Малая скорость дрейфа не противоречит опытному факту, что ток во всей цепи постоянного тока устанавливается практически мгновенно. Замыкание цепи вызывает распространение электрического поля со скоростью c = 3·10 8 м/с. Через время (l – длина цепи) вдоль цепи устанавливается стационарное распределение электрического поля и в ней начинается упорядоченное движение электронов.

В классической электронной теории металлов предполагается, что движение электронов подчиняется законам механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а их взаимодействие с положительными ионами сводят только к соударениям. Предполагается также, что при каждом соударении электрон передает решетке всю накопленную в электрическом поле энергию и поэтому после соударения он начинает движение с нулевой дрейфовой скоростью.

Несмотря на то, что все эти допущения являются весьма приближенными, классическая электронная теория качественно объясняет законы электрического тока в металлических проводниках: закон Ома, закон Джоуля – Ленца и объясняет существование электрического сопротивления металлов.

Электрическое сопротивление проводника:

Однако в ряде вопросов классическая электронная теория приводит к выводам, находящимся в противоречии с опытом. Эта теория не может, например, объяснить, почему молярная теплоемкость металлов, также как и молярная теплоемкость диэлектрических кристаллов, равна 3R (закон Дюлонга и Пти). Классическая электронная теория не может также объяснить температурную зависимость удельного сопротивления металлов: теория дает , в то время как из эксперимента получается зависимость ρ ~ T.

Наиболее ярким примером расхождения теории и опытов является сверхпроводимость.

Зонная модель электронной проводимости металлов

Качественное различие между металлами и полупроводниками (диэлектриками) состоит в характере зависимости удельной проводимости от температуры. У металлов с ростом температуры проводимость падает, а у полупроводников и диэлектриков растет. При Т ® 0 К у чистых металлов проводимость s ® ¥. У полупроводников и диэлектриков при Т ® 0 К, s ® 0. Качественного различия между полупроводниками и диэлектриками в отношении электропроводности, нет.

Проявление у одних веществ металлических свойств, а у других полупроводниковых и диэлектрических может быть последовательно объяснено только в рамках квантовой теории.

Согласно квантовым представлениям, энергия электронов в атоме может изменяться дискретным образом. Причем, согласно принципу Паули, в одном квантовом состоянии может находиться не более одного электрона. В результате электроны не собираются на каком-то одном энергетическом уровне, а последовательно заполняют разрешенные энергетические уровни в атоме, формируя его электронные оболочки.

При сближении большого числа атомов и образовании кристаллической структуры химические связи между атомами образуются за счет электронов, находящихся во внешних, валентных, электронных оболочках.

Согласно принципу Паули, атомы не могут сбиться в плотную массу, поскольку в этом случае в одном квантовом состоянии оказалось бы много частиц с полуцелым спином - собственным моментом количества движения (L = ħ/2). Такие частицы называются фермионами, и к ним, в частности, относятся электроны, протоны, нейтроны. Названы они так в честь итальянского физика Э. Ферми, впервые описавшего особенности поведения коллективов таких частиц. При сближении большого числа атомов в пределах твердого тела происходит расщепление исходного энергетического уровня валентного электрона в атоме на N подуровней, где N - число атомов, образующих кристалл. В результате образуется зона разрешенных энергетических уровней для электронов в твердом теле (рис.9.2).


В металлах внешние валентные оболочки заполнены не полностью, например, у атомов серебра во внешней оболочке 5s 1 находится один электрон, в то время как, согласно принципу Паули, могло бы находиться два электрона с различными ориентациями спинов, но второго электрона во внешней оболочке атома серебра просто нет. При сближении N атомов Ag и расщеплении внешнего энергетического уровня 5s 1 1 на N подуровней каждый из них заполняется уже двумя электронами с различными ориентациями спинов. В результате при сближении N атомов серебра возникает энергетическая зона, наполовину заполненная электронами. Энергия, соответствующая последнему заполненному электронному уровню при 0 К, называется энергией Ферми eFkTg. Расстояние между соседними энергетическими уровнями DЕ очень мало, поскольку N очень велико, до .

Расстояние между соседними разрешенными уровнями электронов в металлах много меньше энергии теплового движения электронов даже при самых низких температурах. Если поместить проводник в электрическое поле, включив его, например, в замкнутую цепь с источником ЭДС, то электроны начнут перемещаться из точки проводника с меньшим потенциалом к точке с большим потенциалом, так как их заряд отрицателен. Но движение в электрическом поле означает увеличение энергии электрона, а по квантовым представлениям, переход на более высокий энергетический уровень у электрона возможен, если этот соседний уровень свободен. В металлах таких свободных уровней для электронов, находящихся вблизи уровня Ферми, вполне достаточно, поэтому металлы являются хорошими проводниками электрического тока.

Однако эту проводимость обеспечивают не все свободные электроны металла, а лишь те из них, что расположены вблизи уровня Ферми. Концентрация таких электронов примерно равна nT/Tg, где Tg = 5×10 4 К – температура вырождения.

Урок 32. Электрический ток в металлах

Свободные электроны – это электроны, не связанные с определенными атомами.

Сверхпроводимость – физическое явление, заключающееся в скачкообразном падении до нуля сопротивления вещества.

Температурный коэффициент сопротивления - величина, равная относительному изменению электрического сопротивления участка электрической цепи или удельного сопротивления вещества при изменении температуры на 1 К.

Основная и дополнительная литература по теме урока:

Мякишев Г. Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 216-224.

Рымкевич А.П. Сборник задач по физике. 10-11 класс. - М.: Дрофа, 2009.- С.81-89.

М.М. Балашов О природе М., Просвещение, 1991г.

Е.А. Марон, А.Е. Марон Сборник качественных задач по физике. М., Просвещение, 2006

Я.И. Перельман Занимательная физика. М.: “Наука”, 1991.

Основное содержание урока

Все тела по проводимости электрического тока делятся на проводники, полупроводники и диэлектрики. Для того чтобы электрическую энергию доставить от источника тока потребителю составляют электрические цепи. В большинстве случаев в электрической цепи используются металлические провода. По физической природе зарядов – носителей электрического тока, электропроводность подразделяют на:

Какие заряженные частицы движутся в металлах при наличии тока?

После открытия в 1897 году английским ученым Дж. Дж. Томсоном электрона стали разрабатываться теории, объясняющие электропроводность металлов. Автором первой теории был Пауль Друде – немецкий физик. Эта теория нуждалась в опытном обосновании. В 1901 г. немецкий физик Э. Рикке поставил опыт по исследованию прохождения тока в металлах.

Результаты опыта свидетельствовали о том, что в переносе заряда в металлах ионы не участвуют. Впоследствии вопросом проводимости металлов заинтересовались и другие учёные. В 1913 году российские учёные Л. И. Мандельштам и Н. Д. Папалекси провели опыты по исследованию проводимости металлов. Суть опытов сводилась к тому, что катушка, на которую наматывали металлическую проволоку приводили во вращательное движение и резко тормозили. При торможении электроны продолжали двигаться по инерции и гальванометр, соединенный с катушкой фиксировал появление тока. По направлению отклонения стрелки гальванометра было установлено, что ток создается движением отрицательно заряженных частиц. На основании измерения отношения заряда частиц к их массе выяснилось, что ток создается движением свободных электронов. Аналогичный опыт был поставлен в 1916 году американскими учеными Т. Стюартом и Р. Толменом. Результаты опытов говорили, что ток в металлах создается движением электронов.


После анализа имеющихся данных о прохождении тока в металлах разными учеными была разработана современная классическая теория проводимости тока металлами. Основные положения электронной теории проводимости металлов.

1. Металл можно описать следующей моделью: кристаллическая решетка ионов погружена в идеальный электронный газ, состоящий из свободных электронов. У большинства металлов каждый атом ионизирован, поэтому концентрация свободных электронов приблизительно равна концентрации атомов 1023- 1029м-3 и почти не зависит от температуры.

2.Свободные электроны в металлах находятся в непрерывном хаотическом движении.

3. Электрический ток в металле образуется только за счет упорядоченного движения свободных электронов.

Опираясь на данную теорию удалось объяснить основные законы электрического тока в металлах. Исходя из электронной теории можно найти связь между силой тока в металлах и скоростью движения электронов.

Сила тока равна произведению заряда электрона, их концентрации, площади сечения проводника и средней скорости движения электронов:

Отсюда

Если в эту формулу подставлять числовые данные силы тока, концентрации и площади сечения для разных металлов, то мы увидим, что средняя скорость движения электронов составляет всего лишь какие-то доли миллиметра в секунду. Когда говорят о скорости распространения тока имеют в виду скорость распространения электрического поля в проводнике, которое равно скорости света.

На силу тока в проводнике влияет и сопротивление проводника. Опыт показывает, что сопротивление металлов зависит от температуры. Увеличение сопротивления можно объяснить тем, при повышении температуры увеличивается скорость и амплитуда хаотического движения ионов кристаллической решетки металла и свободных электронов. Это приводит к более частым их соударениям, что затрудняет направленное движение электронов, то есть увеличивает электрическое сопротивление.

зависимость сопротивления металлов от температуры выражается формулой:

При нагревании размеры проводника практически не меняются, в основном меняется удельное сопротивление. Учет зависимости сопротивления от температуры используется в термометрах сопротивления.

Формула зависимости удельного сопротивления металлического проводника от температуры имеет вид:

где ρ0 - удельное сопротивление при 0 градусов,

α - температурный коэффициент сопротивления.

Графиком зависимости ⍴(t) является прямая.


Хотя коэффициент α довольно мал, учет зависимости сопротивления от температуры при расчете нагревательных приборов совершенно необходим.

При понижении температуры сопротивление металлов должно уменьшаться. В 1911 году датский физик Х. Каммерлинг - Оннес открыл явление, названное сверхпроводимостью. Исследуя зависимость сопротивления ртути от температуры, он обнаружил, что при температуре 4,12 К сопротивление ртути исчезает. В сверхпроводящее состояние могут перейти многие химические соединения и сплавы. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах.

Вещества, находящиеся в сверхпроводящем состоянии, приобретают новые свойства. Наиболее важным из них является способность длительное время (многие годы) поддерживать без затухания электрический ток в проводниках.

Классическая электронная теория не способна объяснить явление сверхпроводимости. Теоретическое объяснение явления сверхпроводимости на основе квантово-механических представлений было дано учеными Дж. Бардиным, Дж. Шриффером (США) и Н. Н. Боголюбовым (СССР) в 1957 г.

В 1986 году была обнаружена высокотемпературная сверхпроводимость (при 100 К).

В настоящее время ведутся интенсивные работы по поиску новых веществ переходящими в сверхпроводящее состояние при более высокой температуре. Ученые надеются получить вещество в сверхпроводящем состоянии при комнатной температуре. Если удастся создать сверхпроводник при нормальной температуре, то будет решена проблема передачи электроэнергии по проводам без потерь.

Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен.

Открытие вещества, переходящего в сверхпроводящее состояние при комнатной температуре, позволило бы упростить решение многих технических вопросов. Во-первых, отсутствие сопротивления означает отсутствие каких-либо потерь на нагревание. Отсутствие нагревания и потерь энергии на него чрезвычайно важно для электродвигателей и электронной вычислительной техники, а также для передачи электроэнергии.

В сверхпроводниках из-за отсутствия сопротивления протекают чрезвычайно высокие токи, создающие сильные магнитные поля, что может применяться при термоядерном синтезе для удержания высокотемпературной плазмы в реакторе.

На сегодняшний момент в некоторых странах существует железнодорожная сеть с поездами на магнитной подушке. После открытия сверхпроводимости Камерлинг-Оннес, пытаясь создать сверхпроводящий электромагнит, обнаружил, что изменение тока, или же магнитные поля, разрушают эффект сверхпроводимости. Только к середине двадцатого века удалось создать сверхпроводящие электромагниты. На данный момент продолжаются исследования по изучению высокотемпературной сверхпроводимости.

Разбор типовых тренировочных заданий

1. Сопротивление железного проводника при 0 0 С и 600 0 С равны соответственно 2 Ом и 10 Ом. Каков температурный коэффициент железа?

Зависимость сопротивления металлов от температуры определяется формулой

Из этой формулы выразим температурный коэффициент железа – α

После подстановки числовых данных получаем

2. Какова скорость дрейфа электронов в медном проводе диаметром 5 мм, по которому к стартеру грузовика подводится ток 100 А. Молярная масса меди

Сила тока в проводнике равна:

Выразим скорость из этой формулы:

Концентрацию электронов найдем по формуле:

Число электронов найдём по формуле:

Площадь сечения равна:

Учитывая всё это запишем конечную формулу для расчёта скорости дрейфа электронов:

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику переноса вещества не происходит, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов. Идея таких опытов и первые качественные результаты (1913 г.) принадлежат русским физикам Л. И. Мандельштаму и Н. Д. Папалекси. В 1916 году американский физик Р. Толмен и шотландский физик Б. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения, неопровержимо доказавшие, что ток в металлических проводниках обусловлен движением электронов.

Схема опыта Толмена и Стюарта показана на рис. 1.12.1. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г . Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.

При торможении вращающейся катушки на каждый носитель заряда действует тормозящая сила которая играет роль сторонней силы, то есть силы неэлектрического происхождения. Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью поля сторонних сил:

Следовательно, в цепи при торможении катушки возникает электродвижущая сила , равная
где – длина проволоки катушки. За время торможения катушки по цепи протечет заряд , равный

Здесь – мгновенное значение силы тока в катушке, – полное сопротивление цепи, υ0 – начальная линейная скорость проволоки.

Отсюда удельный заряд свободных носителей тока в металлах равен:

Все величины, входящие в правую часть этого соотношения, можно измерить. На основании результатов опытов Толмена и Стюарта было установлено, что носители свободного заряда в металлах имеют отрицательный знак, а отношение заряда носителя к его массе близко к удельному заряду электрона, полученному из других опытов. Так было установлено, что носителями свободных зарядов в металлах являются электроны.

По современным данным модуль заряда электрона ( элементарный заряд ) равен
а его удельный заряд есть

Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема.

Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основании гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории . Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла (рис. 1.12.2).

Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер . Высота этого барьера называется работой выхода . При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера.

Из-за взаимодействия с кристаллической решеткой потенциальная энергия выхода электрона внутри проводника оказывается меньше, чем при удалении электрона из проводника. Электроны в проводнике находятся в своеобразной «потенциальной яме», глубина которой и называется потенциальным барьером.

Как ионы, образующие решетку, так и электроны участвуют в тепловом движении. Ионы совершают тепловые колебания вблизи положений равновесия – узлов кристаллической решетки. Свободные электроны движутся хаотично и при своем движении сталкиваются с ионами решетки. В результате таких столкновений устанавливается термодинамическое равновесие между электронным газом и решеткой. Согласно теории Друде–Лоренца, электроны обладают такой же средней энергией теплового движения, как и молекулы одноатомного идеального газа. Это позволяет оценить среднюю скорость теплового движения электронов по формулам молекулярно-кинетической теории. При комнатной температуре она оказывается примерно равной 10 5 м/с.

При наложении внешнего электрического поля в металлическом проводнике кроме теплового движения электронов возникает их упорядоченное движение (дрейф), то есть электрический ток. Среднюю скорость дрейфа можно оценить из следующих соображений. За интервал времени Δ через поперечное сечение проводника пройдут все электроны, находившиеся в объеме

Число таких электронов равно где – средняя концентрация свободных электронов, примерно равная числу атомов в единице объема металлического проводника. Через сечение проводника за время Δ пройдет заряд Отсюда следует:
или

Концентрация атомов в металлах находится в пределах 10 28 –10 29 м –3 .

Оценка по этой формуле для металлического проводника сечением 1 мм 2 , по которому течет ток 10 А, дает для средней скорости упорядоченного движения электронов значение в пределах 0,6–6 мм/c. Таким образом, средняя скорость упорядоченного движения электронов в металлических проводниках на много порядков меньше средней скорости их теплового движения Рис. 1.12.3 дает представление о характере движения свободного электрона в кристаллической решетке.

Движение свободного электрона в кристаллической решетке: а движение электрона в кристаллической решетке металла; b движение с дрейфом, обусловленным электрическим полем. Масштабы дрейфа сильно преувеличены

Малая скорость дрейфа на противоречит опытному факту, что ток во всей цепи постоянного тока устанавливается практически мгновенно. Замыкание цепи вызывает распространение электрического поля со скоростью . Через время порядка ( – длина цепи) вдоль цепи устанавливается стационарное распределение электрического поля и в ней начинается упорядоченное движение электронов.

Несмотря на то, что все эти допущения являются весьма приближенными, классическая электронная теория качественно объясняет законы электрического тока в металлических проводниках.

Закон Ома . В промежутке между соударениями на электрон действует сила, равная по модулю , в результате чего он приобретает ускорение Поэтому к концу свободного пробега дрейфовая скорость электрона равна
где τ – время свободного пробега, которое для упрощения расчетов предполагается одинаковым для всех электронов. Среднее значение скорости дрейфа равно половине максимального значения:

Рассмотрим проводник длины и сечением с концентрацией электронов . Ток в проводнике может быть записан в виде:
где = – напряжение на концах проводника. Полученная формула выражает закон Ома для металлического проводника. Электрическое сопротивление проводника равно:
а удельное сопротивление ρ и удельная проводимость ν выражаются соотношениями:

Закон Джоуля–Ленца. К концу свободного пробега электроны под действием поля приобретают кинетическую энергию

Согласно сделанным предположениям вся эта энергия при соударениях передается решетке и переходит в тепло.

За время Δ каждый электрон испытывает Δ соударений. В проводнике сечением и длины имеется электронов. Отсюда следует, что выделяемое в проводнике за время Δ тепло равно:

Это соотношение выражает закон Джоуля–Ленца.

Таким образом, классическая электронная теория объясняет существование электрического сопротивления металлов, законы Ома и Джоуля–Ленца. Однако в ряде вопросов классическая электронная теория приводит к выводам, находящимся в противоречии с опытом.

Эта теория не может, например, объяснить, почему молярная теплоемкость металлов, также как и молярная теплоемкость диэлектрических кристаллов, равна 3, где – универсальная газовая постоянная (закон Дюлонга и Пти, см. ч. I, § 3.10). Наличие свободных электронов на сказывается на величине теплоемкости металлов.

Классическая электронная теория не может также объяснить температурную зависимость удельного сопротивления металлов. Теория дает соотношение в то время как из эксперимента получается зависимость ρ ~ . Однако наиболее ярким примером расхождения теории и опытов является сверхпроводимость .

Согласно классической электронной теории, удельное сопротивление металлов должно монотонно уменьшаться при охлаждении, оставаясь конечным при всех температурах. Такая зависимость действительно наблюдается на опыте при сравнительно высоких температурах. При более низких температурах порядка нескольких кельвинов удельное сопротивление многих металлов перестает зависеть от температуры и достигает некоторого предельного значения. Однако наибольший интерес представляет удивительное явление сверхпроводимости , открытое датским физиком Х. Каммерлинг-Оннесом в 1911 году. При некоторой определенной температуре кр, различной для разных веществ, удельное сопротивление скачком уменьшается до нуля (рис. 1.12.4). Критическая температура у ртути равна 4,1 К, у аллюминия 1,2 К, у олова 3,7 К. Сверхпроводимость наблюдается не только у элементов, но и у многих химических соединений и сплавов. Например, соединение ниобия с оловом (Ni3Sn) имеет критическую температуру 18 К. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах. В то же время такие «хорошие» проводники, как медь и серебро, не становятся сверхпроводниками при низких температурах.

Вещества в сверхпроводящем состоянии обладают исключительными свойствами. Практически наиболее важным их них является способность длительное время (многие годы) поддерживать без затухания электрический ток, возбужденный в сверхпроводящей цепи.

Классическая электронная теория не способна объяснить явление сверхпроводимости. Объяснение механизма этого явления было дано только через 60 лет после его открытия на основе квантово-механических представлений.

Научный интерес к сверхпроводимости возрастал по мере открытия новых материалов с более высокими критическими температурами. Значительный шаг в этом направлении был сделан в 1986 году, когда было обнаружено, что у одного сложного керамического соединения кр = 35 K. Уже в следующем 1987 году физики сумели создать новую керамику с критической температурой 98 К, превышающей температуру жидкого азота (77 К). Явление перехода веществ в сверхпроводящее состояние при температурах, превышающих температуру кипения жидкого азота, было названо высокотемпературной сверхпроводимостью . В 1988 году было создано керамическое соединение на основе элементов с критической температурой 125 К.

В настоящее время ведутся интенсивные работы по поиску новых веществ с еще более высокими значениями кр. Ученые надеятся получить вещество в сверхпроводящем состоянии при комнатной температуре. Если это произойдет, это будет настоящей революцией в науке, технике и вообще в жизни людей.

Читайте также: