Конденсатор в металлическом корпусе

Обновлено: 04.10.2024

Конденсатор – это устройство, способное накапливать электрический заряд.

Такую же функцию выполняет и аккумуляторная батарея, но в отличие от неё конденсатор может моментально отдать весь накопленный заряд.

Количество заряда, которое способен накопить конденсатор, называют «емкостью». Эта величина измеряется в фарадах.

Содержание статьи

Принцип работы конденсаторов

При подсоединении цепи к источнику электрического тока через конденсатор начинает течь электрический ток. В начале прохождения тока через конденсатор его сила имеет максимальное значение, а напряжение – минимальное. По мере накопления устройством заряда сила тока падает до полного исчезновения, а напряжение увеличивается.

В процессе накопления заряда электроны скапливаются на одной пластинке, а положительные ионы – на другой. Между пластинами заряд не перетекает из-за присутствия диэлектрика. Так устройство накапливает заряд. Это явление называется накоплением электрических зарядов, а конденсатор –накопителем электрического поля.

Устройство конденсаторов

Конструкции современных конденсаторов отличаются разнообразием, но можно выделить несколько типичных вариантов:

Пакетная конструкция

Используется в стеклоэмалевых, керамических и стеклокерамических конденсаторах. Пакеты образованы чередующимися слоями обкладок и диэлектрика. Обкладки могут изготавливаться из фольги, а могут представлять собой слои на диэлектрических пластинах – напыленный или нанесенный вжиганием.

Каждый пакетный конденсатор имеет верхнюю и нижнюю обкладки, имеющие контакты с торцов пакета. Выводы изготавливаются из проволоки или ленточных полосок. Пакет опрессовывается, герметизируется, покрывается защитной эмалью.

Трубчатая конструкция

Такую конструкцию могут иметь высокочастотные конденсаторы. Они представляют собой керамическую трубку с толщиной стенки 0,25 мм. На ее наружную и внутреннюю стороны способом вжигания наносится серебряный проводящий слой. Снаружи деталь обрабатывается изоляционным веществом. Внутреннюю обкладку выводят на наружный слой для присоединения к ней гибкого вывода.

Дисковая конструкция

Эта конструкция, как и трубчатая, применяется при изготовлении высокочастотных конденсаторов.

Диэлектриком в дисковых конденсаторах является керамический диск. На него вжигают серебряные обкладки, к которым подсоединены гибкие выводы.

Литая секционированная конструкция

Применяется в монолитных многослойных керамических конденсаторах, используемых в современной аппаратуре, в том числе с интегральными микросхемами. Деталь, имеющая 2 паза, изготавливается литьем керамики. Пазы заполняют серебряной пастой, которую закрепляют методом вживания. К серебряным вставкам припаивают гибкие выводы.

Рулонная конструкция

Характерна для бумажных пленочных низкочастотных конденсаторов с большой емкостью. Бумажная лента и металлическая фольга сворачиваются в рулон. В металлобумажных конденсаторах на бумажную ленту наносят металлический слой толщиной до 1 мкм.

Где используются конденсаторы

Конденсаторы применяются практически во всех современных устройствах: сабвуферах, электродвигателях, автомобилях, насосах, электроинструменте, кондиционерах, холодильниках, мобильных телефонах и т.п.

В зависимости от выполняемых функций их разделяют на общего назначения и узкоспециальные.

К конденсаторам общего назначения относятся низковольтные накопители, которые используются в большинстве видов электроаппаратуры.

К узкоспециализированным относятся высоковольтные, импульсные, помехоподавляющие, дозиметрические ипусковые конденсаторы.

Функции, выполняемые конденсаторами:

  • фильтрация высокочастотных помех;
  • сведение к минимуму пульсаций;
  • разделение сигнала на постоянные и переменные компоненты;
  • накопление энергии;
  • создание резонанса с катушкой индуктивности, что позволяет усилить сигнал.

Поведение конденсатора в цепях постоянного и переменного тока

В цепях постоянного тока заряженный конденсатор образует разрыв, мешающий протеканию тока. Если напряжение приложить к обкладкам разряженной детали, то ток потечет. При этом конденсатор будет заряжаться, сила тока падать, напряжение на обкладках повышаться. При достижении равенства напряжения на обкладках и источника электропитания течение тока прекращается.

При постоянном напряжении конденсатор удерживает заряд при включенном питании. После выключения заряд сбрасывается через нагрузки, присутствующие в цепи.

Переменный ток заряженный конденсатор тоже не пропускает. Но за один период синусоиды дважды происходит зарядка и разрядка накопителя, поэтому ток получает возможность протекать через конденсаторв периодего разрядки.

Виды и классификация конденсаторов

Конденсаторы различных типов приспособлены к разным условиям работы, направлены на выполнение определенных задач и обладают различными побочными эффектами.

Основной признак, по которому классифицируют конденсатор, – это вид диэлектрика. Именно диэлектрический материал определяет многие характеристики конденсатора.

Электролитические конденсаторы

В электролитических конденсаторах анодом служит металлическая пластина, диэлектриком – оксидная пленка, а катодом – твердый, жидкий или гелеобразный электролит. Наличие гелеобразного электролита делает устройство полярным, то есть ток через него может протекать только в одном направлении. Представители этого семейства – алюминиевые и танталовые конденсаторы.

Алюминиевые электролитические конденсаторы имеют емкость от 0,1 до нескольких тысяч мкФ. Обычно они применяются на звуковых частотах. Электрохимическая ячейка плотно упакована, что обеспечивает большую эффективную индуктивность, которая не позволяет использовать алюминиевые накопители на сверхвысоких частотах.

В танталовых конденсаторах катод изготавливается из диоксида марганца. Сочетание значительной площади поверхности анода и диэлектрических характеристик оксида тантала обеспечивает высокую удельную емкость (емкость в единице объема или массы диэлектрика). Это значит, что танталовые конденсаторы гораздо компактнее алюминиевых такой же емкости.

У танталовых конденсаторов есть свои недостатки. Устройства ранних поколений грешат отказами, возможны возгорания. Они могут произойти при подаче слишком высокого пускового тока, который меняет структурное состояние диэлектрика. Дело в том, что оксид тантала в аморфном состоянии является хорошим диэлектриком. При подаче большого пускового тока оксид тантала из аморфного состояния переходит в кристаллическое и превращается в проводник. Кристаллический оксид тантала еще больше увеличивает силу тока, что и приводит к возгоранию. Современные танталовые конденсаторы производятся по передовым технологиям и практически не дают отказов, не вздуваются, не возгораются.

Пленочные и металлопленочные конденсаторы

Пленочные конденсаторы имеют диэлектрический слой из полимерной пленки, расположенный между слоями металлофольги.

Такие устройства имеют небольшую емкость (от 100 пФ до нескольких мкФ), но могут работать при высоких напряжениях – до 1000 В.

Существует целое семейство пленочных конденсаторов, но для всех видов характерны небольшие емкость и индуктивность. Благодаря малой индуктивности, эти приборы используются в высокочастотных схемах.

Основные различия между конденсаторами с разными типами пленок:

  • Конденсаторы с диэлектриком в виде полипропиленовой пленки применяются в цепях, в которых предъявляются высокие требования к температурной и частотной стабильности. Они подходят для систем питания, подавления ЭМП.
  • Конденсаторы с диэлектриком в виде полиэстеровой пленки обладают низкой стоимостью и способны выдерживать высокие температуры при пайке. Частотная стабильность, по сравнению с полипропиленовыми видами, ниже.
  • Конденсаторы с диэлектриком из поликарбонатной и полистиреновой пленки, которые использовались в старых схемах, сегодня уже неактуальны.

Керамические конденсаторы

В керамических конденсаторах в качестве диэлектрика используются керамические пластины.

Керамические конденсаторы отличаются небольшой емкостью – от одного пФ до нескольких десятков мкФ.

Керамика имеет пьезоэлектрический эффект (способность диэлектрика поляризоваться под воздействием механических усилий), поэтому некоторые виды этих конденсаторов обладают микрофонным эффектом. Это нежелательное явление, при котором часть электроцепи воспринимает вибрации, как микрофон, что становится причиной помех.

Бумажные и металлобумажные конденсаторы

В качестве диэлектрика в этих конденсаторах используется бумага, часто промасленная. Устройства с промасленной бумагой отличаются большими размерами. Модели с непромасленной бумагой более компактны, но они имеют существенный недостаток – увеличивают энергопотери под воздействием влаги даже в герметичной упаковке. В последнее время эти детали используются редко.

Основные параметры конденсаторов

Емкость

Этот показатель характеризует способность конденсатора накапливать электрический заряд. Емкость тем больше, чем больше площадь проводниковых обкладок и чем меньше толщина диэлектрического слоя. Также эта характеристика зависит от материала диэлектрика. На приборе указывается номинальная емкость. Реальная емкость, в зависимости от эксплуатационных условий, может отличаться от номинальной в значительных пределах. Стандартные варианты номинальной емкости – от единиц пикофарад до нескольких тысяч микрофарад. Некоторые модели могут иметь емкость в несколько десятков фарад.

Классические конденсаторы имеют положительную емкость, то есть чем больше приложенное напряжение, тем больше накопленный заряд. Но сегодня в стадии разработки находятся устройства с уникальными свойствами, которые ученые называют «антиконденсаторами». Они обладают отрицательной емкостью, то есть с ростом напряжения их заряд уменьшается, и наоборот. Внедрение таких антиконденсаторов в электронную промышленность позволит ускорить работу компьютеров и снизить риск их перегрева.

Что будет, если поставить накопитель большей/меньшей емкости, по сравнению с требуемой? Если речь идет о сглаживании пульсаций напряжения в блоках питания, то установка конденсатора с емкостью, превышающей нужную величину (в разумных пределах – до 90% от номинала), в большинстве случаев улучшает ситуацию. Монтаж конденсатора с меньшей емкостью может ухудшить работу схемы. В других случаях возможность установки детали с параметрами, отличающимися от заданных, определяют конкретно для каждого случая.

Удельная емкость

Отношение номинальной емкости к объему (или массе) диэлектрика. Чем тоньше диэлектрический слой, тем выше удельная емкость, но тем меньше его напряжение пробоя.

Плотность энергии

Это понятие относится к электролитическим конденсаторам. Максимальная плотность характерна для больших конденсаторов, в которых масса корпуса значительно ниже, чем масса обкладок и электролита.

Номинальное напряжение

Его значение отражается на корпусе и характеризует напряжение, при котором конденсатор работает в течение срока службы с колебанием параметров в заданных пределах. Эксплуатационное напряжение не должно превышать номинальное значение. Для многих конденсаторов с повышением температуры номинальное напряжение снижается.

Полярность

К полярным относятся электролитические конденсаторы, имеющие положительный и отрицательный заряды. На устройствах отечественного производства обычно ставился знак «+» у положительного электрода. На импортных приборах обозначается отрицательный электрод, возле которого стоит знак «-». Такие конденсаторы могут выполнять свои функции только при корректном подключении полярности напряжения. Этот факт объясняется химическими особенностями реакции электролита с диэлектриком.

Что будет, если перепутать полярность конденсатора? Обычно в этом случае приборы выходят из строя. Это происходит из-за химического разрушения диэлектрика, которое вызывает рост силы тока, вскипание электролита и, как следствие, вздутие корпуса и вероятный взрыв.

К группе неполярных конденсаторов относится большинство накопителей заряда. Эти детали обеспечивают корректную работу при любом порядке подключения выводов в цепь.

Паразитные параметры конденсаторов

Конденсаторы, помимо основных характеристик, имеют так называемые «паразитные параметры», которые искажают рабочие свойства колебательного контура. Их необходимо учитывать при проектировании схемы.

К таким параметрам относятся собственное сопротивление и индуктивность, которые разделяются на следующие составляющие:

  • Электрическое сопротивление изоляции (r), которое определяется по формуле: r = U/Iут, в которой U – напряжение источника питания, Iут – ток утечки.
  • Эквивалентное последовательное сопротивление (ЭПС, англ. ESR). Эта величина зависит от электрического сопротивления материала обкладок, выводов, контактов между ними, потерями в диэлектрическом слое. ЭПС возрастает с ростом частоты тока, подаваемого на накопитель. В большинстве случаев эта характеристика не принципиальна. Исключение составляют электролитические накопители, устанавливаемые в фильтрах импульсных блоков питания.
  • Эквивалентная последовательная индуктивность – L. На низких частотах этот параметр, обусловленный собственной индуктивностью обкладок и выводов, не учитывается.

К паразитным параметрам также относится Vloss – незначительная величина, выражаемая в процентах, которая показывает, насколько падает напряжение сразу после прекращения зарядки конденсатора.

Обозначение конденсаторов на схеме

На чертежах конденсатор с постоянной емкостью обозначают двумя параллельными черточками - обкладками. Их подписывают буквой «C». Рядом с буквой ставят порядковый номер элемента на схеме и значение емкости в пФ или мкФ.

В конденсаторах переменной емкости параллельные черточки перечеркиваются диагональной чертой со стрелкой. Подстроечные модели обозначаются двумя параллельными линиями, перечеркнутыми диагональной чертой с черточкой на конце. На обозначении полярных конденсаторов указывается положительно заряженная обкладка.

Особенности соединения нескольких конденсаторов в цепи

Соединение нескольких конденсаторов между собой может быть последовательным или параллельным.

Последовательное

Последовательное соединение позволяет подавать на обкладки большее напряжение, чем на отдельно стоящую деталь. Напряжение распределяется в зависимости от емкости каждого накопителя. Если емкости деталей равны, то напряжение распределяется поровну.

Получаемая емкость в такой цепи находится по формуле:

Если провести вычисления, то станет понятно, что увеличение напряжения в цепи достигается существенным падением емкости. Например, если в цепь подсоединить последовательно два конденсатора емкостью 10 мкФ, то общая емкость будет равна всего 5 мкФ.

Параллельное

Это наиболее распространенный на практике способ, позволяющий увеличить общую емкость в схеме. Параллельное соединение позволяет создать один большой конденсатор с суммарной площадью проводящих пластин. Общая емкость системы представляет собой сумму емкостей соединенных деталей.

Напряжение на всех элементах будет одинаковым.

Маркировка конденсаторов

В маркировке конденсатора, независимо от его типа, присутствуют два обязательных параметра – емкость и номинальное напряжение. Наиболее распространена цифровая маркировка, указывающая величину сопротивления. В ней используется три или четыре цифры.

Кратко суть трехфциферной маркировки: первые две цифры, находящиеся слева, указывают значение емкости в пикофарадах. Самая правая цифра показывает, сколько нулей надо прибавить к стоящим слева цифрам. Результат получается в пикофарадах. Пример: 154 = 15х104 пФ. На конденсаторах зарубежного производства пФ обозначаются как mmf.

В кодовом обозначении с четырьмя цифрами емкость в пикофарадах обозначают первые три цифры, а четвертая указывает на количество нулей, которые требуется добавить. Например: 2353=235х103 пФ.

Для обозначения емкости также может применяться буквенно-цифровая маркировка, содержащая букву R, которая указывает место установки десятичной запятой. Например, 0R8=0,8 пФ.

На корпусе значение напряжения указывается числом, после которого ставятся буквы: V, WV (что означает «рабочее напряжение»). Если указание на допустимое напряжение отсутствует, то конденсатор может использоваться только в низковольтных цепях.

Помимо емкости и напряжения, на корпусе могут указываться и другие характеристики детали:

  • Материал диэлектрика. Б – бумага, С – слюда, К – керамика.
  • Степень защиты от внешних воздействий. Г – герметичное исполнение, О – опрессованный корпус.
  • Конструкция. М – монолит, Б – бочонок, Д – диск, С – секционный вариант.
  • Режим по току. И – импульсный, У – универсальный, Ч – только постоянный ток, П – переменный/постоянный.

Как проверить работоспособность конденсатора

Для проверки конденсатора на работоспособность используют мультиметр. Прежде чем проверить накопитель, необходимо определить, какой именно прибор находится в схеме – полярный (электролитический) или неполярный.

Проверка полярного конденсатора

При проверке полярного конденсатора необходимо соблюдать правильную полярность подключения щупов: плюсовой должен быть прижат к плюсовой ножке, минусовой – к минусу. Если вы перепутаете полярность, конденсатор выйдет из строя.

После выпайки детали ее кладут на свободное пространство. Мультиметр включают в режим измерения сопротивления («прозвонки»).

Щупами дотрагиваются до выводов прибора с соблюдением полярности. Правильная ситуация, когда на дисплее появляется первое значение, которое начинает постепенно расти. Максимальное значение, которое должно быть достигнуто для исправного устройства, – 1. Если вы только прикоснулись щупами к выводам, а на экране появилась сразу цифра 1, значит, прибор неисправен. Появление на экране «0» означает, что внутри детали произошло короткое замыкание.

Проверка неполярного конденсатора

В этом случае проверка предельно простая. Диапазон измерений выставляют на отметку 2 МОм. Щупы присоединяют к выводам конденсатора в любом порядке. Полученное значение должно превышать двойку. Если на дисплее высвечивается значение менее 2 МОм, то деталь неисправна.

Как зарядить и разрядить конденсатор

Для зарядки накопителя его подсоединяют к источнику постоянного тока. Зарядка прекращается, когда напряжение источника питания сравнивается по величине с напряжением на обкладках.

Разрядка конденсатора может понадобиться для безопасной разборки бытовых приборов и электронных устройств. Накопители электронных устройств разряжают с помощью обычной диэлектрической отвертки. Для разрядки крупных накопителей, которые устанавливаются в бытовых приборах, необходимо собрать специальное разрядное устройство.

Виды конденсаторов и их применение

Конденсатор — это электрический (электронный) компонент, состоящий из двух проводников (обкладок), разделенных между собой слоем диэлектрика. Существует много видов конденсаторов. В основном они делятся по материалу из которого изготовлены обкладки и по типу используемого диэлектрика между ними.

модель конденсатора

Виды конденсаторов

У бумажного конденсатора диэлектриком, разделяющим фольгированные обкладки, является специальная конденсаторная бумага. В электронике бумажные конденсаторы могут применяться как в цепях низкой частоты, так и в высокочастотных цепях.

бумажный вид конденсатора

Хорошим качеством электрической изоляции и повышенной удельной емкостью обладают герметичные металлобумажные конденсаторы, у которых вместо фольги (как в бумажных конденсаторах) используется вакуумное напыление металла на бумажный диэлектрик.

Бумажный конденсатор не имеет большую механическую прочность, поэтому его начинку помещают в металлический корпус, служащий механической основой его конструкции.

В электролитических конденсаторах, в отличии от бумажных, диэлектриком является тонкий слой оксида металла, образованный электрохимическим способом на положительной обложке из того же металла.

структура электролитического конденсатора

Вторую обложку представляет собой жидкий или сухой электролит. Материалом, создающим металлический электрод в электролитическом конденсаторе, может быть, в частности, алюминий и тантал. Традиционно, на техническом жаргоне «электролитом» называют алюминиевые конденсаторы с жидким электролитом.

Но, на самом деле, к электролитическим также относятся и танталовые конденсаторы с твердым электролитом (реже встречаются с жидким электролитом). Почти все электролитические конденсаторы поляризованы, и поэтому они могут работать только в цепях с постоянным напряжением с соблюдением полярности.

В случае инверсии полярности, может произойти необратимая химическая реакция внутри конденсатора, ведущая к разрушению конденсатора, вплоть до его взрыва по причине выделяемого внутри него газа.


К электролитическим конденсаторам так же относится, так называемые, суперконденсаторы (ионисторы) обладающие электроемкостью, доходящей порой до нескольких тысяч Фарад.

Алюминиевые электролитические конденсаторы

В качестве положительного электрода используется алюминий. Диэлектрик представляет собой тонкий слой триоксида алюминия (Al2O3),

  • работают корректно только на малых частотах;
  • имеют большую емкость.

Характеризуются высоким соотношением емкости к размеру: электролитические конденсаторы обычно имеют большие размеры, но конденсаторы другого типа, одинаковой емкости и напряжением пробоя были бы гораздо больше по размеру.

алюминиевый вид конденсатора

Характеризуются высокими токами утечки, имеют умеренно низкое сопротивление и индуктивность.

Танталовые электролитические конденсаторы

Это вид электролитического конденсатора, в котором металлический электрод выполнен из тантала, а диэлектрический слой образован из пентаоксида тантала (Ta2O5).

танталовый вид конденсатора

  • высокая устойчивость к внешнему воздействию;
  • компактный размер: для небольших (от нескольких сотен микрофарад), размер сопоставим или меньше, чем у алюминиевых конденсаторов с таким же максимальным напряжением пробоя;
  • меньший ток утечки по сравнению с алюминиевыми конденсаторами.

Полимерные конденсаторы

В отличие от обычных электролитических конденсаторов, современные твердотельные конденсаторы вместо оксидной пленки, используемой в качестве разделителя обкладок, имеют диэлектрик из полимера. Такой вид конденсатора не подвержен раздуванию и утечке заряда.

полимерный вид конденсатора

Физические свойства полимера способствуют тому, что такие конденсаторы отличаются большим импульсным током, низким эквивалентным сопротивлением и стабильным температурным коэффициентом даже при низких температурах.

Полимерные конденсаторы могут заменять электролитические или танталовые конденсаторы во многих схемах, например, в фильтрах для импульсных блоков питания, или в преобразователях DC-DC.

Пленочные конденсаторы

В данном виде конденсатора диэлектриком является пленка из пластика, например, полиэстер (KT, MKT, MFT), полипропилен (KP, MKP, MFP) или поликарбонат (KC, MKC).

пленочный вид конденсатора

Электроды могут быть напыленными на эту пленку (MKT, MKP, MKC) или изготовлены в виде отдельной металлической фольги, сматывающейся в рулон или спрессованной вместе с пленкой диэлектрика (KT, KP, KC). Современным материалом для пленки конденсаторов является полифениленсульфид (PPS).

Общие свойства пленочных конденсаторов (для всех видов диэлектриков):

  • работают исправно при большом токе;
  • имеют высокую прочность на растяжение;
  • имеют относительно небольшую емкость;
  • минимальный ток утечки;
  • используется в резонансных цепях и в RC-снабберах.

Отдельные виды пленки отличаются:

  • температурными свойствами (в том числе со знаком температурного коэффициента емкости, который является отрицательным для полипропилена и полистирола, и положительным для полиэстера и поликарбоната)
  • максимальной рабочей температурой (от 125 °C, для полиэстера и поликарбоната, до 100 °C для полипропилена и 70 °С для полистирола)
  • устойчивостью к электрическому пробою, и следовательно максимальным напряжением, которое можно приложить к определенной толщине пленки без пробоя.

Конденсаторы керамические

Этот вид конденсаторов изготавливают в виде одной пластины или пачки пластин из специального керамического материала. Металлические электроды напыляют на пластины и соединяют с выводами конденсатора. Используемые керамические материалы могут иметь очень разные свойства.

керамический вид конденсатора

Разнообразие включает в себя, прежде всего, широкий диапазон значений относительной электрической проницаемости (до десятков тысяч) и такая величина имеется только у керамических материалов.

Столь высокое значение проницаемости позволяет производить керамические конденсаторы (многослойные) небольших размеров, емкость которых может конкурировать с емкостью электролитических конденсаторов, и при этом работающих с любой поляризацией и характеризующихся меньшими утечками.

Керамические материалы характеризуются сложной и нелинейной зависимостью параметров от температуры, частоты, напряжения. В виду малого размера корпуса — данный вид конденсаторов имеет особую маркировку.

Конденсаторы с воздушным диэлектриком

регулируемый вид конденсатора

Здесь диэлектриком является воздух. Такие конденсаторы отлично работают на высоких частотах, и часто выполняются как конденсаторы переменной емкости (для настройки).

Конденсаторы для «чайников»


Если вы регулярно занимаетесь созданием электрических схем, вы наверняка использовали конденсаторы. Это стандартный компонент схем, такой же, как сопротивление, который вы просто берёте с полки без раздумий. Мы используем конденсаторы для сглаживания пульсаций напряжения/тока, для согласования нагрузок, в качестве источника энергии для маломощных устройств, и других применений.


Но конденсатор – это не просто пузырёк с двумя проводочками и парой параметров – рабочее напряжение и ёмкость. Существует огромный массив технологий и материалов с разными свойствами, применяемых для создания конденсаторов. И хотя в большинстве случаев для любой задачи сгодится практически любой конденсатор подходящей ёмкости, хорошее понимание работы этих устройств может помочь вам выбрать не просто нечто подходящее, а подходящее наилучшим образом. Если у вас когда-нибудь была проблема с температурной стабильностью или задача поиска источника дополнительных шумов – вы оцените информацию из этой статьи.

Начнём с простого

Лучше начать с простого и описать основные принципы работы конденсаторов, прежде чем переходить к настоящим устройствам. Идеальный конденсатор состоит из двух проводящих пластинок, разделённых диэлектриком. Заряд собирается на пластинах, но не может перетекать между ними – диэлектрик обладает изолирующими свойствами. Так конденсатор накапливает заряд.

Ёмкость измеряется в фарадах: конденсатор в один фарад выдаёт напряжение в один вольт, если в нём находится заряд в один кулон. Как и у многих других единиц системы СИ, у неё непрактичный размер, поэтому, если не брать в расчёт суперконденсаторы, о которых мы здесь говорить не будем, вы скорее всего встретитесь с микро-, нано- и пикофарадами. Ёмкость любого конденсатора можно вывести из его размеров и свойств диэлектрика – если интересно, формулу для этого можно посмотреть в Википедии. Запоминать её не нужно, если только вы не готовитесь к экзамену – но в ней содержится один полезный факт. Ёмкость пропорциональна диэлектрической проницаемости εr использованного диэлектрика, что в результате привело к появлению в продаже различных конденсаторов, использующих разные диэлектрические материалы для достижения больших ёмкостей или улучшения характеристик напряжения.

Паразитные индуктивность и сопротивление реального конденсатора

С использованием диэлектриков в конденсаторах есть одна проблемка, наряду с тем, что диэлектрик с нужными характеристиками обладает неприятными побочными эффектами. У всех конденсаторов есть небольшие паразитные сопротивление и индуктивность, которые иногда могут влиять на его работу. Электрические постоянные меняются от температуры и напряжения, пьезоэлектричества или шума. Некоторые конденсаторы стоят слишком дорого, у некоторых существуют состояния отказа. И вот мы подошли к основной части статьи, в которой расскажем о разных типах конденсаторов, и об их свойствах, полезных и вредных. Мы не будем освещать все возможные технологии, хотя большинство обычных мы опишем.

Алюминиевые электролитические


Алюминиевые электролитические конденсаторы используют анодно-оксидированный слой на алюминиевом листе в качестве одной пластины-диэлектрика, и электролит из электрохимической ячейки в качестве другой пластины. Наличие электрохимической ячейки делает их полярными, то есть напряжение постоянного тока должно прикладываться в одном направлении, и анодированная пластина должна быть анодом, или плюсом.

На практике их пластины выполнены в виде сэндвича из алюминиевой фольги, завёрнутой в цилиндр и расположенной в алюминиевой банке. Рабочее напряжение зависит от глубины анодированного слоя.

У электролитических конденсаторов наибольшая среди распространённых ёмкость, от 0,1 до тысяч мкФ. Из-за плотной упаковки электрохимической ячейки у них наблюдается большая эквивалентная последовательная индуктивность (equivalent series inductance, ESI, или эффективная индуктивность), из-за чего их нельзя использовать на высоких частотах. Обычно они используются для сглаживания питания и развязывания, а также связывания на аудиочастотах.

Танталовые электролитические



Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы изготавливаются в виде спечённого танталового анода с большой площадью поверхности, на которой выращивается толстый слой оксида, а затем в качестве катода размещается электролит из диоксида марганца. Комбинация большой площади поверхности и диэлектрических свойств оксида тантала приводит к высокой ёмкости в пересчёте на объём. В результате такие конденсаторы выходят гораздо меньше алюминиевых конденсаторов сравнимой ёмкости. Как и у последних, у танталовых конденсаторов есть полярность, поэтому постоянный ток должен идти в строго одном направлении.

Их доступная ёмкостью варьируется от 0,1 до нескольких сотен мкФ. У них гораздо меньше сопротивление утечки и эквивалентное последовательное сопротивление (ESR), в связи с чем они используются в тестировании, измерительных приборах и высококачественных аудиоустройствах – там, где эти свойства полезны.

В случае танталовых конденсаторов необходимо особенно следить за тем, чтобы они не вышли из строя — бывает, что в таком случае они загораются. Аморфный оксид тантала – хороший диэлектрик, а в кристаллической форме он становится хорошим проводником. Неправильное использование танталового конденсатора – например, подача слишком большого пускового тока может привести к переходу диэлектрика в другую форму, что увеличит проходящий через него ток. Правда, репутация, связанная с возгораниями, появилась у более ранних поколений танталовых конденсаторов, и улучшенные методы производства привели к созданию более надёжной продукции.

Полимерные плёнки

Целое семейство конденсаторов использует полимерные плёнки в качестве диэлектриков, а плёнка либо находится между витыми или перемежающимися слоями металлической фольги, либо имеет металлизированный слой на поверхности. Их рабочее напряжение может доходить до 1000 В, но высокими ёмкостями они не обладают – это обычно от 100 пФ до единиц мкФ. У каждого вида плёнки есть свои плюсы и минусы, но в целом всё семейство отличается более низкими ёмкостью и индуктивностью, чем у электролитических. Посему они используются в высокочастотных устройствах и для развязывания в электрически шумных системах, а также в системах общего назначения.

Полипропиленовые конденсаторы используются в схемах, требующих хорошей тепловой и частотной стабильности. Также они используются в системах питания, для подавления ЭМП, в системах, использующих переменные токи высокого напряжения.

Полиэстеровые конденсаторы, хотя и не обладают такими температурными и частотными характеристиками, получаются дешёвыми и выдерживают большие температуры при пайке для поверхностного монтажа. В связи с этим они используются в схемах, предназначенных для использования в некритичных приложениях.

Полиэтилен-нафталатовые конденсаторы. Не обладают стабильными температурными и частотными характеристиками, но могут выдерживать гораздо большие температуры и напряжения по сравнению с полиэстеровыми.

Полиэтилен-сульфидовые конденсаторы обладают температурными и частотными характеристиками полипропиленовых, и в дополнение выдерживают высокие температуры.

В старом оборудовании можно наткнуться на поликарбонатные и полистиреновые конденсаторы, но сейчас они уже не используются.

Керамика


История керамических конденсаторов довольно длинная – они использовались с первых десятилетий прошлого века и по сей день. Ранние конденсаторы представляли собою один слой керамики, металлизированной с обеих сторон. Более поздние бывают и многослойными, где пластины с металлизацией и керамика перемежаются. В зависимости от диэлектрика их ёмкости варьируются от 1 пФ до десятков мкФ, а напряжения достигают киловольт. Во всех отраслях электроники, где требуется малая ёмкость, можно встретить как однослойные керамические диски, так и многослойные пакетные конденсаторы поверхностного монтажа.

Проще всего классифицировать керамические конденсаторы по диэлектрикам, поскольку именно они придают конденсатором все свойства. Диэлектрики классифицируют по трёхбуквенным кодам, где зашифрована их рабочая температура и стабильность.

C0G лучшая стабильность в ёмкости по отношению к температуре, частоте и напряжению. Используются в высокочастотных схемах и других контурах высокого быстродействия.

X7R не обладают такими хорошими характеристиками по температуре и напряжению, посему используются в менее критичных случаях. Обычно это развязывание и различные универсальные приложения.

Y5V обладают гораздо большей ёмкостью, но характеристики температуры и напряжения у них ещё ниже. Также используются для развязывания и в различных универсальных приложениях.

Поскольку керамика часто обладает и пьезоэлектрическими свойствами, некоторые керамические конденсаторы демонстрируют и микрофонный эффект. Если вы работали с высокими напряжениями и частотами в аудиодиапазоне, например, в случае ламповых усилителей или электростатики, вы могли услышать, как «поют» конденсаторы. Если вы использовали пьезоэлектрический конденсатор для обеспечения частотной стабилизации, вы могли обнаружить, что его звук модулируется вибрацией его окружения.

Как мы уже упоминали, статья не ставит целью охватить все технологии конденсаторов. Взглянув в каталог электроники вы обнаружите, что некоторые технологии, имеющиеся в наличии, здесь не освещены. Некоторые предложения из каталогов уже устарели, или же имеют такую узкую нишу, что с ними чаще всего и не встретишься. Мы надеялись лишь развеять некоторые тайны по поводу популярных моделей конденсаторов, и помочь вам в выборе подходящих компонентов при разработке собственных устройств. Если мы разогрели ваш аппетит, вы можете изучить нашу статью по катушкам индуктивности.

Вся правда о конденсаторах: волшебные свойства загадочных баночек

Было ли лучшее время для энтузиастов и любителей Hi-Fi, чем конец 1970-х и начало 1980-х годов? С одной стороны, так много всего происходило с развитием цифрового аудио, а с другой — наблюдался рост субъективизма. Внезапно проигрыватели и усилители стали оценивать не по уровню детонации, выходной мощности и гармоническим искажениям, а по их звучанию! И можно было даже всерьёз говорить о звучании кабелей. В этой новой атмосфере всё, что когда-то считалось само собой разумеющимся в области Hi-Fi, стало кандидатом на переоценку.


Пристальному изучению подверглось и влияние на звук пассивных электронных компонентов — резисторов, индуктивностей и конденсаторов. В особенности, конденсаторов. Знающие люди начали обсуждать такие явления как эквивалентное последовательное сопротивление (ESR) и диэлектрическое поглощение.

Сегодня мы нечасто слышим об этой теме, но не потому, что проблема была исчерпана. Скорее всего, разработчики нынче уделяют столь же пристальное внимание используемым пассивным компонентам, как и схемам, в которых они применяются, так что общественный фурор несколько стих.


В простейшем виде конденсатор состоит из двух металлических пластин, разделённых воздухом (или, ещё лучше, вакуумом) и схематично изображён на рис. 1. Поскольку между пластинами нет проводящего пути, конденсатор блокирует постоянный ток (например, от батареи). При этом конденсатор, напротив, пропускает сигналы переменного тока — как раз такие как звуковые волны.

Рис. 1. Компоненты, из которых состоит конденсатор — две проводящие пластины, разделённые слоем диэлектрика.

Рис. 1. Компоненты, из которых состоит конденсатор — две проводящие пластины, разделённые слоем диэлектрика.

Проверенное решение

Мы нечасто сталкиваемся с воздушными конденсаторами, но если вы заглядывали внутрь старого лампового радиоприемника и видели элемент, отвечающий за настройку, который состоит из чередующихся металлических пластин, это как раз воздушный конденсатор переменной ёмкости. В большинстве конденсаторов, с которыми мы сталкиваемся в аудиотехнике и прочей электронике, в качестве изолирующего материала (диэлектрика), разделяющего пластины, не используется воздух, поскольку он имеет низкую диэлектрическую постоянную (1,0), а это означает, что воздушные конденсаторы большой емкости слишком громоздкие, чтобы быть практичными. По этой причине используются, в основном, твёрдые диэлектрики, с более высокими диэлектрическими свойствами, в том числе из керамики и различных видов пластмасс (например, ПВХ с диэлектрической проницаемостью 4,0). Именно здесь история становится особенно интересной, поскольку для всех этих диэлектриков характерны те или иные компромиссы в плане влияния на звук, в то время как воздух практически идеален.

Простые фильтры

Для начала, узнаем побольше о том, как ведут себя конденсаторы и для чего они используются. Конденсаторы блокируют постоянный ток и пропускают переменный, однако они не пропускают переменный ток с разной частотой одинаково. Это объясняется тем, что конденсаторы обладают реактивным сопротивлением, которое снижается с увеличением частоты (к слову, катушки индуктивности тоже обладают реактивным сопротивлением, которое, наоборот, увеличивается с ростом частоты).


Таким образом, конденсаторы пропускают высокочастотные сигналы легче, чем низкочастотные, что делает их крайне полезными в частотно-селективных цепях (то есть, в фильтрах), а также для устранения нежелательных сигналов (например, гул или шум с шины питания постоянного напряжения).

Простые фильтры верхних и нижних частот показаны на рис.2. В фильтре верхних частот (рис. 2а) последовательно включенный конденсатор подключен к шунтирующему резистору. В фильтре нижних частот (рис. 2b) конденсатор и резистор меняются местами.

Рис. 2. RC-фильтр первого порядка верхних (2a) и нижних (2b) частот.

Рис. 2. RC-фильтр первого порядка верхних (2a) и нижних (2b) частот.

Итак, конденсаторы зачастую используются для объединения цепей, отделения нежелательного шума в цепях постоянного напряжения и в частотно-селективных цепях (фильтрах). Поскольку конденсаторы накапливают электрический заряд, большие из них также применяются в качестве резервуаров в источниках питания переменного и постоянного тока. На рис. 3 показан типовой источник питания, включающий в себя понижающий трансформатор (он понижает напряжение сети), мостовой выпрямитель (который преобразует переменный ток из трансформатора в импульсный постоянный ток) и пару конденсаторов-резервуаров (сглаживающих пульсации после выпрямления переменного тока).

Рис.3. Принципиальная схема двухполупериодного источника питания, состоящего из понижающего трансформатора, двухполупериодного мостового выпрямителя и двух резервуарных конденсаторов.

Рис.3. Принципиальная схема двухполупериодного источника питания, состоящего из понижающего трансформатора, двухполупериодного мостового выпрямителя и двух резервуарных конденсаторов.

Подобные схемы встречаются во многих твердотельных аудиокомпонентах. Аналогичные решения используются и в ламповом оборудовании, но из-за высоких напряжений, требуемых для работы ламп, трансформатор здесь обычно повышает напряжение сети.

Ёмкость резервуарных конденсаторов, используемых в транзисторных усилителях мощности, может достигать 50 000 мкФ и более, тогда как в других случаях в схеме могут использоваться конденсаторы емкостью 1 НФ (одна тысячная микрофарада) или даже меньше. Таким образом, очевидно, что некоторые типы конденсаторов лучше подходят под определённые задачи, чем другие.

Важное уточнение

Как правило, самые большие резервуарные конденсаторы являются электролитическими, ведь они обеспечивают высокую ёмкость в сравнительно небольшом объёме. Такие конденсаторы содержат электролит (жидкость или гель), который химически реагирует с металлической фольгой внутри банки, образуя слой диэлектрика. Подобные электролитические конденсаторы, а также некоторые другие — например, танталовые, называются полярными, а несоблюдение полярности подключения может привести к их выходу из строя.

Другая разновидность — неполярные конденсаторы, которые можно подключать без учёта полярности. Подобные электролиты иногда использовались в пассивных кроссоверах акустических систем, однако такая практика сегодня устарела, поскольку плёночные конденсаторы справляются с этой задачей лучше, хоть и занимают больше места.

Конденсаторы также могут иметь различное расположение выводов — аксиальное (осевое) или радиальное. Преимущество радиальных электролитов заключается в том, что они занимают меньше площади на плате, однако их минус — в том, что они увеличивают её высоту. В больших электролитических конденсаторах обычно отказываются от выводов под пайку — в пользу винтовых клемм.

Что скрывают конденсаторы

Настоящие конденсаторы, как и настоящие политики, ведут себя не идеально, и именно здесь кроется причина их влияния на качество звука. Во-первых, на практике ни один конденсатор не является только ёмкостью — он также имеет индуктивность и сопротивление. На принципиальной схеме конденсатор обычно обозначается одним из символов на рис. 4 (все они визуально отсылают к двум разделенным пластинам), однако в реальности он представляет собой что-то вроде схемы, представленной на рис. 5. Резистор обозначенный на рисунке как ESR (эквивалентное последовательное сопротивление) может быть не постоянным — сопротивление может зависеть от частоты. В случае с электролитическими конденсаторами, ESR обычно уменьшается с частотой.

Рис. 4. Варианты обозначения конденсаторов на схеме

Рис. 4. Варианты обозначения конденсаторов на схеме

Одним из последствий того, что у конденсаторов есть индуктивность (ESL или эквивалентная последовательная индуктивность на рис. 6), является то, что они, по сути, являются электрически резонансными. Если проанализировать импеданс конденсатора в зависимости от частоты, он не будет продолжать уменьшаться с ростом частоты. На рис. 6 показано, что импеданс достигает минимума (эквивалентного значению ESR) на резонансной частоте, а затем, по мере увеличения частоты, он снова начинает расти из-за ESL.

Рис. 5. Схематичный эквивалент реального конденсатора демонстрирует паразитное сопротивление (ESR) и индуктивность (ESL) Рис. 6. Паразитная индуктивность приводит к тому, что у конденсаторы имеют электрический резонанс, иногда — в пределах слышимого диапазона частот.

У больших электролитических конденсаторов частоты электрического резонанса обычно находятся в пределах звукового диапазона. У небольших конденсаторов частоты электрического резонанса могут превышать 1 МГц. Для увеличения частоты электрического резонанса для заданной емкости следует уменьшить ESL — последовательную индуктивность.

Для достижения этой цели, при разработке электролитических конденсаторов, где такая проблема стоит наиболее остро, применяются различные методы. Например, в конденсаторах DNM T-Network для снижения индуктивности используются специальные Т-образные соединения из фольги — таким образом, их резонансная частота более чем в два раза выше по сравнению со стандартной конструкцией (от 28 кГц до 75 кГц — в примере, который приводит компания DNM на своём веб-сайте).


ESR оказывает потенциально благотворное влияние на демпфирование электрического резонанса конденсатора, однако, в отличие от индуктивности или ёмкости, сопротивление генерирует тепло в то время, когда через конденсатор проходит ток. В больших ёмкостных конденсаторах, где проходящие через них токи велики, этот эффект внутреннего нагрева ограничивает безопасные условия эксплуатации. Тем не менее, электролитические конденсаторы лучше всего работают именно тёплыми.

Микрофонный эффект

Не секрет, что ламповое оборудование чувствительно к вибрации. Внутри вакуумированной стеклянной оболочки лампы находятся тонкие металлические электроды, расстояние между которыми влияет на работу лампы. Таким образом, если встряхнуть лампу достаточно сильно, это отразится на её электрической мощности — эффект, который называют «микрофонным», поскольку лампа в таком случае ведёт себя подобно микрофону.

Твердотельная электроника меньше подвержена этому эффекту, однако приведём в пример некий крайний случай: разработчики первых систем управления двигателем в гоночных автомобилях вскоре научились не прикреплять электронные блоки к двигателю, либо использовать хорошую изоляцию, иначе вибрации от двигателя могли нарушить её работу. Уровни вибрации, которые испытывает Hi-Fi оборудование при повседневном использовании, гораздо ниже, однако некоторые производители, среди которых, например, Naim Audio, по-прежнему прилагают большие усилия, чтобы свести к минимуму вероятное воздействие микрофонного эффекта.

Способность конденсатора накапливать заряд (его ёмкость) пропорциональна площади пластин и обратно пропорциональна расстоянию между ними, а «пластины» обычно представляют собой тонкую фольгу с тонкими слоями диэлектрика между ними. Это приводит к тому, что конденсаторы подвержены воздействию микрофонного эффекта, поскольку из-за вибрации расстояние между пластинами и, следовательно, значение ёмкости может меняться.

Таким образом, физические свойства материалов, из которых изготовлен конденсатор, могут быть столь же важны, как и электрические параметры. Но что ещё интереснее, вибрация извне не является необходимым условием для того, чтобы конденсаторы страдали от её воздействия, ведь силы, формируемые напряжениями и токами внутри самого конденсатора, также могут вызывать механические резонансы. Из-за этого эффекта можно даже услышать, как некоторые конденсаторы издают звук, когда через них проходит сигнал. В кроссовере акустической системы, где уровни вибраций, напряжения и токи высоки, присутствует «идеальный шторм» факторов, которые делают выбор подходящего конденсатора особенно важной задачей.


Ключевые слова

Проблема микрофонного эффекта и механических резонансов конденсаторов активно обсуждалась на протяжении многих лет, однако исследований по этому вопросу было достаточно мало. Во всяком случае, мало опубликованных исследований. Но те, что существуют, подтверждают мнение, что данный эффект может оказывать заметное влияние качества звучания.

К тому же, в некоторых случаях конденсаторы могут приводить к необычайно высоким уровням гармонических и интермодуляционных искажений. Понимание того, как и почему это происходит, позволяет разработчикам сосредоточить свои усилия на доработке электронной схемы и тщательном выборе электронных компонентов — таким образом, чтобы это принесло наибольшую пользу.

История конденсаторов часть 2: современная эра


Лейденские банки



Маркони с передающим аппаратом

Одним из примеров практического использования стали искровые трансмиттеры, появившиеся до 1900 года и существовавшие в первом и втором десятилетиях. Трансмиттеры набирали большое напряжение для разряда через зазор, и потому с этой целью использовались керамические конденсаторы, которые могли выдержать такое напряжение. Кроме того, для этого требовалась высокая частота. Это были, по сути, лейденские банки, и для получения нужной ёмкости им требовались большие размеры.

Слюда

В 1909 году Уильям Дубилье [William Dubilier] изобрёл слюдяные конденсаторы меньшего размера, которые использовались на принимающей стороне в резонансных контурах беспроводного оборудования.

Ранние слюдяные конденсаторы представляли собою слои слюды и медной фольги, сжатые вместе в «пакетные слюдяные конденсаторы». Они были ненадёжными, и из-за того, что между слоями слюды и фольги оставались воздушные зазоры, были подвержены коррозии и окислению, а расстояние между пластинами могло меняться, что приводило к изменениям ёмкости.

В 1920-х были разработаны слюдяные конденсаторы с применением серебра, в которых слюда была с обеих сторон заключена в металл, что устраняло воздушные зазоры. Благодаря тонкому металлическому покрытию их размер можно было уменьшить, и они были очень надёжными. Конечно, развитие не остановилось на этом. Давайте рассмотрим историю современных конденсаторов, отмеченную рядом прорывов, следовавших один за другим.



Многослойные керамические конденсаторы вокруг микропроцессора

В 1920-х слюды в Германии было мало, и там экспериментировали с новыми поколениями керамических конденсаторов. Было обнаружено, что у рутила (диоксида титана) ёмкость линейно зависит от температуры, и они могут заменить слюдяные конденсаторы. Их сначала производили в небольших количествах, а затем более крупными партиями в 1940-х. Они состояли из дисков, покрытых с двух сторон металлом.

Для увеличения ёмкости использовалась ещё одна разновидность керамики, титанат бария, и у неё диэлектрическая постоянная была в 10 раз выше, чем у слюды или диоксида титана. Но электрически параметры у неё были менее стабильными, и в результате её можно было использовать вместо слюды только там, где не требовалось надёжности. После Второй Мировой этот недостаток был исправлен.

Начавшая работу в 1961 году американская компания представила многослойный керамический конденсатор (multi-layer ceramic capacitor, MLCC), у которого размеры были меньше, а ёмкость – больше. К 2012 году ежегодное производство MLCC из титаната бария достигало уже 10 12 штук.



Электролитический конденсатор

В 1890-х Чарльз Поллак открыл, что слой оксида на алюминиевом аноде проявляет стабильность в нейтральной или щелочной среде, и получил в 1897 году патент на алюминиевый электролитический конденсатор с бурой. Первые «мокрые» электролитические конденсаторы" появились в радиоприёмниках в 1920-х, но их срок жизни был ограничен. «Мокрыми» их называли из-за содержания воды. Это была ёмкость с металлическим анодом, погружённым в раствор буры или другого электролита, растворённого в воде. Внешняя часть контейнера служила второй пластиной. Их использовали в телефонных АТС для уменьшения шума реле.

Патент на предка современного электролитического конденсатора был заявлен в 1925 году Сэмюэлем Рубеном. Он сделал бутерброд из гелеобразного электролита, расположенного между анодом, покрытым оксидом, и второй пластиной из металлической фольги, устранив необходимость в контейнере с водой. В результате получился «сухой» электролитический конденсатор. Всё это серьёзно уменьшило размер и стоимость конденсаторов.

В 1936-м компания Cornell-Dubilier представила свои алюминиевые электролитические конденсаторы, в которых были такие улучшения, как загрубление поверхности анода, помогавшее увеличить ёмкость. Компания Hydra-Werke, принадлежавшая AEG, примерно в то же время начала их массовое производство в Берлине.

После Второй Мировой быстрое развитие технологий радио и телевидения привело к увеличению производства конденсаторов и разнообразия их стилей и размеров. Среди улучшений были уменьшение утечек тока и эквивалентное последовательное сопротивление (ESR), увеличение температурных рамок и срока службы благодаря использованию новых органических электролитов. Дальнейшие разработки в 1970-1990-х годах продолжили эту тенденцию, уменьшая утечки, ESR и увеличивая рабочие температуры.

В начале 2000-х годов случилась т.н. "конденсаторная чума", из-за того, что производители использовали для изготовления конденсаторов украденный рецепт электролита, который оказался неполным. Отсутствие стабилизирующих компонентов приводило к раннему выходу конденсаторов из строя.


Танталовый конденсатор поверхностного размещения

Танталовые электролитические конденсаторы впервые начали изготавливать для военных нужд в 1930-х. Они использовали закрученную танталовую фольгу и жидкий электролит. В 1950-х в Bell Laboratories изготовили первый танталовый конденсатор с твёрдым электролитом. Они растирали тантал в порошок и спекали его в цилиндр. Сначала использовались жидкие электролиты, но потом было обнаружено, что диоксид марганца можно использовать в качестве твёрдого электролита.

И хотя основные изобретения были сделаны в Bell Labs, в 1954-м Sprague Electric Company улучшила процесс изготовления, и начала производить первые коммерчески доступные танталовые конденсаторы с твёрдым электролитом.

В 1975 появились полимерные танталовые электролитические конденсаторы с гораздо большей проводимостью. В них проводящие полимеры заменяли диоксид марганца, что приводило к уменьшению ESR. NEC выпустили полимерный танталовый конденсатор в 1995 году для поверхностного монтажа, а в 1997 за ними последовала и Sanyo.

Стоимость танталовой руды на рынке нестабильна, и пару раз скачки уже случались – в 1980 и в 2000/2001 годах. Последний скачок привёл к разработке ниобиевых электролитических конденсаторов с электролитом из диоксида марганца, свойства которых были примерно сравнимы с танталовыми.

Полимерная плёнка



Конденсаторы на полимёрной плёнке

Конденсаторы на металлизированной бумаге были запатентованы в 1900-м году Г.Ф. Мэнсбриджем [G.F. Mansbridge]. Металлизировали бумагу, покрывая её связующим веществом, содержавшим частички металла. В начале 1900-х их активно использовали как развязывающие конденсаторы в телефонии. Во время Второй мировой Bosch улучшила процесс и производила их, покрывая бумагу лаком, который затем покрывался металлом путём вакуумного напыления. В 1954-м Bell Labs изготовили металлизированную лаковую плёнку толщиной 2,5 мкм отдельно от бумаги, что позволило создавать конденсаторы ещё меньшего размера. Этот конденсатор можно считать первым полимерным.

Исследования пластика, проводимые специалистами по органической химии во время Второй мировой, привели к развитию этой темы. Одним из них в 1954 году стал первый майларовый конденсатор. Торговую марку «майлар» в 1952 году представила компания Dupont, и это был очень прочный полиэтилентерефталат (PET), плёнка на основе синтетического полиэфирного волокна. В 1954 был произведён конденсатор на майларовой плёнке толщиной 12 мкм. К 1959 году список включал конденсаторы, сделанные при помощи полиэтилена, полистирена, политетрафторэтилена (PTFE), PET и поликарбоната. К 1970-м в электронных устройствах использовались конденсаторы из плёнки и фольги без бумаги.

Двойные (суперконденсаторы)



Суперконденсаторы

И вот история приводит нас к последнему типу конденсаторов, и очень интересному, поскольку их ёмкость измеряется уже в тысячах фарад. В начале 1950-х исследователи в General Electric использовали свои наработки в области топливных ячеек и перезаряжаемых батарей для экспериментов с конденсаторами с пористыми электродами из углерода. Это привело к патенту Беккера на «Электролитический конденсатор низкого напряжения с пористыми углеродными электродами». GE не стала заниматься дальнейшими разработками, но заложенные в патент принципы привели к созданию конденсаторов очень высокой ёмкости.

Компания Standard Oil из Огайо разработала ещё одну их версию, и в итоге продала в 1970-х лицензию компании NEC, которая довела их до коммерческого варианта под торговой маркой «суперконденсатор». Они работали с напряжением в 5,5 В и имели ёмкости до 1 Ф. Они достигали объёма в 5 куб.см. и использовались в качестве резервного источника питания для компьютерной памяти.

Профессор Брайан Эванс Конвэй из Оттавского университета работал над электрохимическими конденсаторами из оксида рутения с 1975 по 1980 годы. В 1991 он описал разницу между суперконденсаторами и батареями в электрохимическом хранении заряда, а полностью описал различия в 1999 году, снова введя в оборот термин «суперконденсатор».

Продукты и рынки для суперконденсаторов постепенно появлялись. Известные торговые марки – это Goldcaps, Dynacap и PRI Ultracapacitor, последняя из которых связана с первыми суперконденсаторами, обладающими небольшим внутренним сопротивлением, разработанными в 1982 году компанией Pinnacle Research Institute (PRI) для нужд военных.

Относительно свежие разработки на рынке включают литий-ионные конденсаторы, в которых аноды из активированного угля покрываются ионами лития. Их ёмкость составляет тысячи фарад при напряжении в 2,7В.

Читайте также: