Коррозия металла в воде

Обновлено: 05.07.2024

Материалы из металлов под химическим или электрохимическим воздействием окружающей среды подвергаются разрушению, которое называется коррозией.

Коррозия металлов вызывается окислительно-восстановительными реакциями, в результате которых металлы переходят в окисленную форму и теряют свои свойства, что приводит в негодность металлические материалы.

Можно выделить 3 признака, характеризующих коррозию:

  • Коррозия – это с химической точки зрения процесс окислительно-восстановительный.
  • Коррозия – это самопроизвольный процесс, возникающий по причине неустойчивости термодинамической системы металл – компоненты окружающей среды.
  • Коррозия – это процесс, который развивается в основном на поверхности металла. Однако, не исключено, что коррозия может проникнуть и вглубь металла.

Виды коррозии металлов

Наиболее часто встречаются следующие виды коррозии металлов:

  1. Равномерная – охватывает всю поверхность равномерно
  2. Неравномерная
  3. Избирательная
  4. Местная пятнами – корродируют отдельные участки поверхности
  5. Язвенная (или питтинг)
  6. Точечная
  7. Межкристаллитная – распространяется вдоль границ кристалла металла
  8. Растрескивающая
  9. Подповерхностная

виды коррозии металлов

Основные виды коррозии металлов

С точки зрения механизма коррозионного процесса можно выделить два основных типа коррозии: химическую и электрохимическую.

Химическая коррозия металлов

Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют химическую связь.

Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.

Виды химической коррозии

Химическая коррозия металлов бывает газовой и жидкостной.

Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).

Жидкостная коррозия металлов– может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.

При химической коррозии скорость разрушения металла пропорциональна скорости химической реакции и той скорости с которой окислитель проникает сквозь пленку оксида металла, покрывающую его поверхность. Оксидные пленки металлов могут проявлять или не проявлять защитные свойства, что определяется сплошностью.

Фактор Пиллинга-Бэдворса

Сплошность такой пленки оценивают величине фактора Пиллинга—Бэдвордса: (α = Vок/VМе) по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла

где Vок — объем образовавшегося оксида

VМе — объем металла, израсходованный на образование оксида

Мок – молярная масса образовавшегося оксида

ρМе – плотность металла

n – число атомов металла

AMe — атомная масса металла

ρок — плотность образовавшегося оксида

Оксидные пленки, у которых α < 1, не являются сплошными и сквозь них кислород легко проникает к поверхности металла. Такие пленки не защищают металл от коррозии. Они образуются при окислении кислородом щелочных и щелочно-земельных металлов (исключая бериллий).

Оксидные пленки, у которых 1 < α < 2,5 являются сплошными и способны защитить металл от коррозии.

При значениях α > 2,5 условие сплошности уже не соблюдается, вследствие чего такие пленки не защищают металл от разрушения.

Ниже представлены значения сплошности α для некоторых оксидов металлов

МеталлОксидαМеталлОксидα
KK2O0,45ZnZnO1,55
NaNa2O0,55AgAg2O1,58
LiLi2O0,59ZrZrO21.60
CaCaO0,63NiNiO1,65
SrSrO0,66BeBeO1,67
BaBaO0,73CuCu2O1,67
MgMgO0,79CuCuO1,74
PbPbO1,15TiTi2O31,76
CdCdO1,21CrCr2O32,07
AlAl2­O21,28FeFe2O32,14
SnSnO21,33WWO33,35
NiNiO1,52

Электрохимическая коррозия металлов

Электрохимическая коррозия металлов – это процесс разрушения металлов в среде различных электролитов, который сопровождается возникновением внутри системы электрического тока.

При таком типе коррозии атом удаляется из кристаллической решетки результате двух сопряженных процессов:

  • Анодного – металл в виде ионов переходит в раствор.
  • Катодного – образовавшиеся при анодном процессе электроны, связываются деполяризатором (вещество — окислитель).

Сам процесс отвода электронов с катодных участков называется деполяризацией, а вещества способствующие отводу – деполяризаторами.

Наибольшее распространение имеет коррозия металлов с водородной и кислородной деполяризацией.

Водородная деполяризация

Водородная деполяризация осуществляется на катоде при электрохимической коррозии в кислой среде:

2H + +2e — = H2 разряд водородных ионов

Кислородная деполяризация

Кислородная деполяризация осуществляется на катоде при электрохимической коррозии в нейтральной среде:

O2 + 4H + +4e — = H2O восстановление растворенного кислорода

Все металлы, по их отношению к электрохимической коррозии, можно разбить на 4 группы, которые определяются величинами их стандартных электродных потенциалов:

  1. Активные металлы (высокая термодинамическая нестабильность) – это все металлы, находящиеся в интервале щелочные металлы — кадмий (Е 0 = -0,4 В). Их коррозия возможна даже в нейтральных водных средах, в которых отсутствуют кислород или другие окислители.
  2. Металлы средней активности (термодинамическая нестабильность) – располагаются между кадмием и водородом (Е 0 = 0,0 В). В нейтральных средах, в отсутствии кислорода, не корродируют, но подвергаются коррозии в кислых средах.
  3. Малоактивные металлы (промежуточная термодинамическая стабильность) – находятся между водородом и родием (Е 0 = +0,8 В). Они устойчивы к коррозии в нейтральных и кислых средах, в которых отсутствует кислород или другие окислители.
  4. Благородные металлы (высокая термодинамическая стабильность) – золото, платина, иридий, палладий. Могут подвергаться коррозии лишь в кислых средах при наличии в них сильных окислителей.

Виды электрохимической коррозии

Электрохимическая коррозия может протекать в различных средах. В зависимости от характера среды выделяют следующие виды электрохимической коррозии:

  • Коррозия в растворах электролитов — в растворах кислот, оснований, солей, в природной воде.
  • Атмосферная коррозия – в атмосферных условиях и в среде любого влажного газа. Это самый распространенный вид коррозии.

Например, при взаимодействии железа с компонентами окружающей среды, некоторые его участки служат анодом, где происходит окисление железа, а другие – катодом, где происходит восстановление кислорода:

А: Fe – 2e — = Fe 2+

K: O2 + 4H + + 4e — = 2H2O

Катодом является та поверхность, где больше приток кислорода.

  • Почвенная коррозия – в зависимости от состава почв, а также ее аэрации, коррозия может протекать более или менее интенсивно. Кислые почвы наиболее агрессивны, а песчаные – наименее.
  • Аэрационная коррозия — возникает при неравномерном доступе воздуха к различным частям материала.
  • Морская коррозия – протекает в морской воде, в связи с наличием в ней растворенных солей, газов и органических веществ.
  • Биокоррозия – возникает в результате жизнедеятельности бактерий и других организмов, вырабатывающих такие газы как CO2, H2S и др., способствующие коррозии металла.
  • Электрокоррозия – происходит под действием блуждающих токов на подземных сооружениях, в результате работ электрических железных дорог, трамвайных линий и других агрегатов.

Методы защиты от коррозии металла

Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.

Металлические покрытия

Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием. Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием.

Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным.

Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.

Неметаллические покрытия

Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).

Химические покрытия

В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:

оксидирование – получение устойчивых оксидных пленок (Al2O3, ZnO и др.);

азотирование – поверхность металла (стали) насыщают азотом;

воронение стали – поверхность металла взаимодействует с органическими веществами;

цементация – получение на поверхности металла его соединения с углеродом.

Изменение состава технического металла и коррозионной среды

Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.

Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.

Электрохимическая защита

Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.

Протекторная защита – один из видов электрохимической защиты – заключается в следующем.

К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором. Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.

Примеры задач с решениями на определение защитных свойств оксидных пленок, определение коррозионной стойкости металлов, а также уравнения реакций, протекающих при электрохимической коррозии металлов приведены в разделе Задачи к разделу Коррозия металлов

Морская коррозия

Одним из наиболее опасных для металла явлений считается морская коррозия. Это электрохимический процесс, который запускается и протекает из-за особенностей состава жидкости.

В этом материале мы подробнее разберем особенности явления, его протекание и методы защиты.

Почему морская вода так опасна для металла

По статистике, металлические изделия в море портятся намного быстрее, чем в стандартных условиях на открытом воздухе.

Катализатором становится 3 особенности жидкости:

  • Большое количество кислорода. Как известно, именно он запускает окисление, которое и понимается под коррозией. Уровень содержания кислорода – до 8 мг на один литр.
  • Электропроводность. Морская вода выступает как хороший электролит. В некоторых морях ее электропроводность составляет 3х10-2 Ом-1 см-1.
  • Особый состав. Химики давно установили, что в жидкости присутствует весь набор веществ, делающих ее опасной для металла – от сульфатов натрия и солей кальция до хлоридов.

Коррозия в морской воде протекает быстрее, потому что у нее есть выраженное депассивирующее действие. Если на поверхности начинает формироваться защитная пассивная пленка, вода быстро разрушает ее.

Все что попадает в море начинает разрушаться. Убедитесь в этом, если посмотрите на состояния днищ кораблей, погруженных металлоконструкций, трубопроводов, проложенных по дну.

То же относится и к металлическим изделиям, которые периодически соприкасаются с агрессивной средой, к примеру, при охлаждении.

Особенности протекания процесса

Морская коррозия металлов протекает под воздействием множества внешних агрессивных факторов. Как мы уже отмечали, этот процесс относится к электромеханическим разновидностям процессов.

Его протекание напрямую связано с кислородной деполяризацией и дифузионно-кинетическим катодным контролем.

Проблем добавляет то, что сама вода постоянно двигается. Это связано не только с давлением, но и с тем, что суда постоянно находятся в движении с собственной скоростью.

В зависимости от условий, в которых находится металлоконструкция, меняется тип контроля:

  • При сильной аэрации и в местах с сильным течением, частым волнением, кинетический контроль выходит на первый план.
  • На участках где морская вода находится в неподвижном состоянии, преобладающим оказывается катодный контроль.

Если рассматривать процесс как катодно-анодную реакцию, мы увидим, что в качестве анода выступает металл, в то время как катодом становится оксидная пленка на его поверхности.

Протекание морской коррозии

Морская коррозия становится заметной быстро. Она вызывает масштабное разрушение материала, на нем появляются язвы большой глубины, структура металла разрушается и становится хрупкой. Материал уже переносит прежнего нагрузок.

Также не стоит сбрасывать со счетов атмосферную коррозию в морских районах. Она связана с особым составом воздуха, воздействием других особых условий среды.

Что усиливает морскую коррозию

На разных морях ржавение металла протекает с разной скоростью. На скорость и особенности явления влияет 6 факторов среды:

  • Степень солености воды. Чем больше твердых веществ растворено в жидкости, тем больше будет степень солености. Этот фактор не сильно влияет на скорость или характер процесса, но чем больше содержание, тем выше будет опасность на контрасте с другими факторами.
  • Состав воды. Состав жидкости формирует благоприятную среду, в которой коррозия могла бы развиваться намного быстрее. Состав отличается в зависимости от географического расположения места. Одними из самых опасных веществ становятся хлориды и сероводород. Если их много, катодный и анодный процесс становятся более интенсивными. Также такой состав приводит к появления сульфидов, которые будет сложно растворить. Еще один фактор риска – большое количество ионов брома. Интересная особенность заключается и в том, что в ряде случае состав выступает и в качестве защитного фактора – он помогает сформировать специальную пленку, отталкивающую внешние угрозы.
  • Скорость течения. Чем быстрее течение, тем лучше будет диффузия кислорода. Потому, когда судно движется с большой скоростью, риск морской коррозии становится все более и более ощутимым. Но опасность представляет и неподвижная вода. Даже когда на море штиль, есть риск что ржавение начнет протекать с диффузионным контролем.
  • Место расположения ватерлинии. Место, с которым соприкасается морская вода, намного больше других поражено коррозионными процессами. Причина в том, что на этом участке кислород наиболее сильно влияет на металл. Также сказывается и температура. Вода, которая омывает ватерлинию более теплая из-за контакта с солнечными лучами.
  • Наличие прокатной окалины на поверхности металла. Опасность ее присутствия заключается в том, что в этом случае сильно упрощается формирование гальванопары. Это опасно, потому что возникает анодное растворение металла.
  • Биологический состав морской воды. Как и в почве, в морской воде много микроорганизмов, флоры и фауны, которые стимулируют разложение металла. К ним относятся различные виды бактерий, а также кораллы и моллюски. При их большом скоплении увеличивается риск образования коррозийных поражений. Исключение составляют только некоторые виды морских существ, которые не позволяют кислороду контактировать с металлическими частями. Скорость протекания коррозийного поражения также зависит от сплава, который был использован при изготовлении той или иной конструкции. Так опасность для биокоррозии представляют сплавы, в которых есть много свинца, никеля, олова и алюминия. Наиболее защищенными оказываются магниевые сплавы и медь.

Виды морской коррозии

В морской воде протекает 2 вида коррозии.

Наиболее распространенными среди них считаются следующие:

  • Контактная. Проявляется из-за контакта жидкости и металла. Причиной становится хорошая электропроводность. Если рядом в воде находится несколько металлических изделий, металл становится по отношению к стали катодом.
  • Электрокоррозия. Появляется, потому что в воде находятся блуждающие токи. Иногда проблемы оказываются связанными и с самими морскими судами, состоянием проложенной на них электросети.

Коррозия металла в морской воде способна за короткое время вывести из строя даже крупную металлоконструкцию. Как результат – она теряет прочность и обрушиться.

Это всегда риск появления человеческих жертв и больших убытков.

К 2020 году разработано множество средств, позволяющих или обеспечить защиту от агрессивной среды или замедлить протекание процесса. Их качество доказано на практике – удается получить заметный результат.

Рассмотрим вопросы защиты от морской коррозии более подробно.

Как защитить металл от повреждения

В работе используется несколько видов защитных средств, к которым относятся такие, как:

Использование специальных лакокрасочных покрытий

Как и в случае с борьбой с ржавением под открытым воздухом, очень важно не допустить контакта агрессивной среды с металлом. ЛКМ в таком случае подходят отлично.

ЛКМ от коррозии металла

Есть несколько типов материалов, которые можно свободно использовать в окрашивании.

К ним относятся такие, как:

  • Краски на основе битумов.
  • Составы с фенолформальдегидной основой.
  • Этинолевые лакокрасочные материалы.

Хорошо показывают себя вещества с эпоксидной, каменноугольной основой. Главное требование, чтобы в них было как можно меньше растворителей.

Главное преимущество использования такого средства заключается в простоте нанесения.

Краска наносится на поверхность, защищенные места сразу становятся хорошо видимыми.

Для дополнительного усиления, ограждающего от агрессивной среды эффекта, можно также применять разные окиси, в том числе, ртути и меди. В таком случае конструкция не будет обрастать морскими обитателями.

Чтобы нанесение ЛКМ дало лучшие результаты, поверхность металлоконструкции нужно будет фосфатировать. Только после этого допускается проведение окрашивания.

Стоит также учитывать, что оно должно быть как можно более толстым, чтобы удержаться дольше и сохранить заметный эффект.

Применение металлических защитных покрытий

В этом направлении работает наша компания. Среди самых распространенных видов составов можно назвать цинк.

Он наносится на металл слоем толщиной до 200 мкм. При этом создается хорошая защита от контакта со средой.

Еще одно преимущество – такой материал можно окрашивать.

Оцинковывают самые разные изделия, в том числе, днища морских судов.

Зачистка поверхности

Процесс очень важен, потому что позволяет снять окалину. Как мы уже говорили выше, ее присутствие способно в несколько раз ускорить негативный процесс.

Для удаления окалины могут применяться высокие температуры, химическое травление и очистка пескоструйным методом.

Низкое легирование

Изменение самого характера стали – один из действенных методов для борьбы с коррозией. По данным исследований, стали с большим содержанием никеля портятся особенно быстро, в то время как добавление меди помогает сделать конструкцию намного более стойкой.

Создание дополнительной электрохимической защиты

Она может быть двух типов – от внешнего источника тока или от протектора. При этом удается остановить формирование пор и протекание электрохимического процесса, представляющего большую опасность для материалов.

Все перечисленные методы используются и в месте. В таком случае, вероятность повреждения металла станет намного ниже. Вопрос о подборе материалов, правильном конструировании также стоит очень остро.

Защита методом горячего цинкования

Наша компания предлагает горячую оцинковку различных видов конструкций, в том числе тех, которые постоянно находятся в контакте с морской водой.

Работаем с 2007 года и готовы быстро выполнить даже наиболее сложный и крупный заказ.

4 причины обратиться к нам:

  • Действуют три цеха горячего цинкования. Наши производственные мощности – 120 тысяч тонн в год.
  • Работаем с большинством видов деталей и конструкций. На предприятии установлена одна из самых крупных ванн в ЦФО. Ее глубина составляет 3,43 метра.
  • Гарантируем качество. Горячее цинкование проводится строго по ГОСТ 9.307-89.
  • Используем передовое оборудование. Установлена европейская техника от KVK KOERNER и EKOMOR.

Готовы ответить на все интересующие заказчика вопросы и быстро приступить к работе. Звоните или оставляйте заявку на сайте.

Электрохимическая коррозия

Электрохимическая коррозия относится к наиболее часто встречающимся процессам постепенного разрушения металла.

Как мы знаем, наше окружение наполнено электричеством.

В зависимости от среды, меняются показатели проводимости. Не отличается то, что при контакте с такой средой сталь начинает постепенно портиться.

У процесса есть несколько важных отличий.

В первую очередь – неодновременное протекание восстановления окислительного процесса и ионизации атомов металла.

На интенсивность распространения при этом влияет такой параметр, как электродный потенциал металла.

Главная причина электрохимической коррозии в том, что большинство металлов проявляют термодинамическую неустойчивость.

Примеры распространения коррозии такого типа встречаются в воде, почве, на открытом воздухе.

Она часто становится причиной потери прочности и постепенного разрушения металла на днище судов, трубопроводов, опор ЛЭП и других объектов.

Если говорить о типах электрохимической коррозии, то называют 3 разновидности:

  • щелевые поражения;
  • питтинги;
  • межкристаллическое повреждение.

Повреждаться могут разные типы металлов в зависимости от их расположения. Ржавчина появляется при контакте со стоячей и текущей водой, в местах соединения разных металлов, а также на сварных швах.

Какие механизмы отвечают за протекание электрохимической коррозии

Такое повреждение металла проводится двумя механизмами – гомогенным и гетерогенным. Рассмотрим каждый из них подробно.

  • Гомогенный. Первоначально затрагивается поверхностный слой металлического изделия. Постепенно металл начинает растворяться под действием актов – катодного или анодного. На протяжении определенного времени происходит миграция катода и анода. Со временем процесс ускоряется. Особенность гомогенного механизма в том, что затрагивает как твердые, так и жидкие металлы. Меняется только скорость течения.
  • Гетерогенный. У большинства твердых металлов не наблюдается гомогенной поверхности. Это связано с тем, что в самом материале состав кристаллической решетки может отличаться. Также как и в описанном выше случае, формируется анодный и катодный процессы, металл начинает постепенно разрушаться.

У такого вида процесса есть несколько особенностей.

В первую очередь – четкое деление на катодный и анодный процесс. Один из основных факторов, влияющих на их скорость протекания относительно друг друга – это время.

Схема электрохимической коррозии

Схема электрохимической коррозии

В зависимости от типа металла, коррозия может быть локализована на отдельных участках. Также наблюдается растворение поверхностного слоя на анодах, что позволяет поражению затронуть обширные площади.

Здесь появляется еще одна особенность протекания процесса – формирование гальванических элементов. Это происходит из-за специфики структуры поверхности, на которой присутствуют микроэлектроды.

Из-за чего начинает развиваться коррозия

После того, как мы рассмотрели суть электрохимической коррозии, пришло время обратить внимание на причины распространения коррозии.

Среди них три распространенные:

  • Сплав имеет неоднородную структуру. В большинстве сплавов поверхность негомогенная, потому что в кристаллической решетке присутствуют посторонние включения. Ухудшает ситуацию и присутствие пор макро и микротипа. Это приводит к тому, что продукты коррозии также начинают образовываться неравномерно.
  • Неоднородная среда, в которой находится металл. Чтобы коррозия протекла быстрее, важен фактор доступа окислителя. Электрохимическая реакция может быть ускорена.
  • Отличие физических условий. Коррозия усиливается в том случае, если происходит облучение, в среде присутствуют блуждающие тока. Негативно влияет и температура, особенно при перепадах. В таком случае разница между холодными и теплыми местами становится причиной появления анода.

Именно по причине различия в критических факторах, скорость электрохимической коррозии может сильно меняться.

Главные внутренние факторы протекания электрохимической коррозии

На интенсивность распространения коррозийного поражения влияют две группы факторов – внешние и внутренние.

Текущее состояние поверхности металла

Когда поверхность металла неровная, коррозийный процесс протекает намного интенсивнее. Если на поверхности присутствуют небольшие выступы, они начинают накапливать воду.

Это может негативно повлиять на интенсивность распространения.

Чтобы не допустить такого фактора, важно использовать отшлифованный или отполированный металл.

Когда сталь гладкая, вода не так сильно повреждает ее, потому что постепенно происходит формирование равномерной пленки по всей поверхности.

Также хорошим средством для уменьшения поражения становится применение пассивирования, а также ряд других способов.

Степень термодинамической стойкости металла

Разные виды материалов отличаются разными показателями термодинамической устойчивости.

Наиболее стойкие разновидности материала не разрушаются при помещении в агрессивную среду.

Чтобы понять, есть ли у металла склонность к коррозии под действием термодинамических факторов, измеряют потенциал анодного и катодного процесса, а также изобарно-изотермического.

Именно такой фактор оказывает большое влияние на потенциальное воздействие среды на постепенное развитие коррозии.

К сожалению, у большинства представленных в продаже марок металлов стойкость невысокая. Есть и неустойчивые разновидности, у которых этот риск нивелируется благодаря склонности к образованию пассивных пленок на поверхности.

Кристаллографическая структура

Оказывает прямое воздействие на металл.

Как известно, атомы в кристаллической решетке располагаются по-разному. Лучше защищены те разновидности, у которых атомы упакованы неплотно.

Особенности решетки также учитывают при планировании защиты материала методом создания на нем специальных пленок. И пленка и сам основной материал должны четко соответствовать по составу друг другу или быть максимально приближенными.

В этом случае исключается появление напряжения, которое негативно отражается на текущем состоянии заготовки. Если контакт с агрессивной средой все-таки происходит, материал начинает разрушаться слой за слоем.

Гетерогенность

Этот фактор рассматривается в непосредственной связи с величиной зерна металла.

Если в сплаве есть выраженные анодные включения, они сильно влияют на ускорение протекания коррозии.

Катодные включения не столь опасны, потому что на интенсивности процесса не отражаются. Величина зерна как фактор риска рассматривается не так часто и этим показателем можно пренебречь.

Не стоит сбрасывать со счетов и механические факторы

Важно понимать, что многие конструкции из металла используются под постоянным напряжением.

К этой категории относится повышенное внутреннее напряжение, когда сильно увеличивается риск деформации.

Негативно влияют на качество металла также воздействие истирания, периодические контакты с другими металлическими изделиями.

Такой фактор оказывает значительное влияние на интенсивность распространения повреждения.

Даже если само сырье первоначально обладало стойкостью к потенциальным повреждениям, в таком случае она уменьшится – формируемые пленки просто не будут закрепляться на поверхности.

Потому лучше сразу исключить это условие электрохимической коррозии – постараться не использовать металлоконструкции под пиковыми сильными нагрузками, не допускать возникновения трения и соприкосновения между собой стальных деталей.

Основные внешние факторы электрохимической коррозии

Кроме внутренних, на металл также влияют и внешние факторы.

Они могут не только ускорять, но и замедлять процесс, а также влиять на характер его протекания.

К ним относятся следующие:

  • Температура. Температура сильно влияет на то, как себя ведет металл в разных условиях. От нее сильно зависит то, насколько быстро будут растворяться вторичные продукты коррозии. Среди других особенностей – запуск и стимуляция диффузионных процессов в металле, создание перенапряжения на электродах и другие проявления. Когда металлическое изделие помещается в растворы с кислородной деполяризацией, по мере прогрева электролита диффузия окислителя ускоряется. На фоне этого наблюдается сильное снижение перенапряжения ионизации кислорода.

Если деталь помещается в растворы неокисляющихся кислот, наблюдается коррозия с водородной деполяризацией.

Повышение температуры уменьшает скорость распространения повреждений, потому что сильно снижается перенапряжение водорода.

Отдельно стоит отметить ситуацию, когда металл уже покрывается специальной защитной пленкой. В этом случае сам тип пленки будет влиять на то, как именно она поведет себя при контакте с разными видами внешних угроз, в том числе, с повышением температуры.

Нагрев и охлаждение могут отразиться на состоянии катодов и анодов через их внутренние процессы.

В некоторых случаях полярность электродов значительно меняется.

Как мы уже отмечали выше, проблемы могу возникать из-за того, что разные участки детали нагреты до отличающихся друг от друга температур.

В этом случае стремительно увеличивается количество термогальванических пар, стимулирующих распространение коррозии на новые участки.

  • Уровень рН раствора, в который помещен металл. Такой показатель как рН указывает, насколько в растворе будут активными ионы водорода, и как быстро коррозия будет распространяться по материалу. Это опасно, потому что может непредсказуемо менять потенциал катодных процессов, формирование окисных пленок. Также создается значительное перенапряжение реакции на электродах. Рекомендуется не допускать контакта металла со средами, у которых показатель рН высокий.

Если по каким-то причинам металлическая заготовка оказалась помещена в раствор, большое значение будет иметь скорость, с которой он движется, а также само наличие внутренних колебаний.

Заранее определить точное воздействие будет сложно по той причине, что всегда непросто предсказать, как поведут себя нейтральные электролиты.

Cчитается, что при смешении электролита, меняются показатели диффузии кислорода, что значительно отражается на процессе протекания коррозии.

Можно уделять меньше внимания скорости движения электролита в том случае, если вы имеете дело со средами повышенной кислотности.

На них подобное поражение оказывает минимум влияния.

Чем отличаются анодный и катодный процессы

Если вы внимательно проследите за тем, как работает гальванический элемент, то увидите, что в нем протекают сразу два связанных друг с другом процесса – анодный и катодный.

Рассмотрим их более подробно.

Анодный процесс

В химии показывается формулой Fe → Fe2+ + 2e. Она показывает, что постепенно запускается окисление, ионы металла начинают переход в раствор.

Катодный процесс

Может протекать по-разному.

В частности, переизбыток электронов решается ассимиляцией атомами электролита и его молекул. На фоне этого происходит восстановительная реакция непосредственно на самом катоде.

Формула будет зависеть от того, в каких условиях протекает реакция.

Так при наличии водородной деполяризации можно записать процесс как 2 H+ + 2e → H2.

Важно понимать, что оба процесса сильно связаны друг с другом под влиянием кинетического фактора.

С течением времени может происходить взаимное замедление или ускорение анодного или катодного процесса. При этом сам анод всегда будет оставаться тем местом, на котором формируется коррозия металла.

Во время анализа протекания процесса коррозии часто обращают внимание на электропроводящие фазы и момент после их соприкосновения.

Обычно одна фаза имеет положительный заряд, в то время как другая – отрицательный. Это приводит к появлению разности потенциалов.

Таким образом возникает ДЭС или как его часто называют ученые – двойной электрический слой с ассиметричным расположением частиц в местах, где фазы разделяются.

Анодный и катодный процесс

Опасным для металла становится скачок потенциалов. Он может стимулироваться двумя центральными причинами:

  • Большая накопленная энергия гидратации. В таком случае наблюдается отрыв ионов металла и постепенное перетекание их в раствор. На поверхности в результате остается аналогичное число электронов, заряд становится отрицательным. Далее, в соответствии с законами физики, наблюдается перетекание катионов из раствора, формируется ДЭС на границе, как мы уже описывали выше.
  • Разряжение катионов электролита. В результате металл начинает стремительно принимать положительный заряд. ДЭС появляется из-за активности анионов раствора в контакте с катионами электролита.

Что происходит в том случае, если поверхностный слой металла совсем не имеет определенного заряда?

В таком случае ДЭС наблюдаться не будет, возникнет явление нулевого заряда.

Его потенциал будет отличаться в зависимости от того, с каким металлом вам приходится работать.

Описанный процесс значительно отражается на том, как протекает коррозия и как быстро она захватывает все новые и новые участки металла.

В современной науке нет средств, которые могли бы точно измерить величину скачка потенциала, значит и процесс формирования электродвижущей силы оказывается на таким интенсивным.

Если рассматривать вопросы, связанные с процессом поляризации, можно написать отдельную статью на эту тему.

Потому далее мы рассмотрим другой важный показатель – поляризацию.

Поляризация и ее влияние на скорость протекания коррозии

Процесс поляризации связан с интенсивностью распространения электрохимической коррозии.

Этот показатель отражает, насколько сильное перенапряжение наблюдается на определенном участке.

Принято выделять три вида поляризации:

  • Электрохимическая. Чаще всего наблюдается в ситуации, когда катодный и анодный процессы начинают замедляться.
  • Фазовая. Возникает в том случае, если на поверхности материала формируется новая фаза.
  • Концентрационная. Этот процесс появляется в том случае, если есть очень малые показатели скорости отвода продуктов коррозии, а также подхода деполяризатора.

Особенности поляризации также стоит учитывать в том случае, если вы заинтересованы в дополнительной защите металлов от постепенного разрушения.

Обеспечиваем эффективную защиту от коррозии

Наша компания предлагает заказчикам защиту металлоконструкций разных типов от коррозии.

В пользу работы с нами говорит сразу несколько факторов:

  • Опыт работы с 2007 года, есть постоянные заказчики.
  • Большие производственные площади. Три цеха для горячего цинкования, мощность 120 тысяч тонн в год.
  • Универсальность. Работаем со множеством видов изделий благодаря установленной на предприятии самой глубокой ванны в ЦФО – 3,43 метра.

Мы используем в процессе проверенное европейское оборудование. Даем гарантию соответствия качества товаров требованиям ГОСТ 9.307-89.

Чтобы получить дополнительные консультации и ответы на интересующие вас вопросы, звоните нам или оставляйте заявку на сайте.

Коррозия в системах отопления

Коррозия в системах отопления – это достаточно часто встречающееся явление. В ходе такого процесса материал начинает постепенно окисляться и портиться. Могут появиться сильные истончения, прорывы под действием сильного давления и разгерметизация.

Еще одна распространенная проблема – постепенное нарастание продуктов коррозии изнутри и уменьшение проводимости.

В трубопроводах существует два основных варианта коррозии:

  • Сухая. Проявляется с наружной стороны. Обычно стимулируется контактом с воздушной средой и другими внешними факторами.
  • Влажная. В большинстве случаев наблюдается изнутри, потому что металл контактирует с водой. Но также может возникнуть и снаружи трубы при наличии протечек или высокой влажности в помещении.

По статистике, наибольший вред отопительным системам приносит именно влажная коррозия.

В этом материале мы рассмотрим, какие факторы могут повлиять на интенсивность распространения ржавения и отметим, какие из них наиболее опасны. Представление о механизмах и катализаторах даст четкое понимание того, какими методами стоит бороться с коррозией.

Коррозия из-за появления потенциала

В этом случае происходит химическая реакция, вызванная помещением металла в электролит. При этом внутри системы будут присутствовать ионы, несущие положительный заряд. Сам раствор будет выступать в качестве анода.

Из-за перемещения электронов туда, где накапливается высокий потенциал, возникает катодно-анодная связь. Анод разрушается, и коррозия начинает стремительно распространяться по материалу.

Воздействие повышенных температур

Так как отопительные системы работают в постоянном контакте с сильно прогретой водой, воздействие температуры стимулирует стремительное развитие коррозийного процесса.

Ученые отмечают, что также есть случаи, когда зависимость ржавения от температуры сильно связано с газами, растворенными в теплоносителях. Исследования показывают, что самый большой риск протекания появляется, когда устанавливается температурный диапазон 75–85°С. Есть доказательства того, что скорость протекания процесса в таком случае увеличивается в четыре-пять раз.

Температура также может и положительно влиять на интенсивность протекания коррозийных процессов. Так у цинка сильный нагрев приводит к тому, что на нем появляется плотный слой, не допускающий контакта различных катализаторов с материалом.

Опасность может представлять ситуация, в которой продукты коррозии становятся очень пористыми и рыхлыми. В таком случае защитный слой так и не сможет организоваться, а все продукты будут постепенно смываться под действием сильного потока воды.

Степень насыщенности потока воздухом

Аэрация выступает как один из факторов коррозии. Если кислорода в воде недостаточно или он распределен неравномерно, есть большой риск того что появится анодный процесс. В результате вероятность развития ржавчины станет намного выше.

Наличие растворенных в воде солей

Состав передаваемого в отопительной системе теплоносителя может быть разным. Опасность представляет соль. Если она представлена в большой концентрации, есть вероятность того, что коррозия начнет протекать быстрее.

Риски растворения солей заключаются еще и в том, что такой теплоноситель может интенсивно разрушать накопленные защитные пленки. Таким образом, уровень защиты от коррозии становится намного меньше.

Отдельно стоит отметить опасность ионов сульфата. Их наличие часто становится причиной развития биологической коррозии, которая вызывается наличием активности анаэробных бактерий.

Есть вероятность того, что карбонатные отложения также смогут подавить коррозию. В результате, жесткая вода чаще всего показывает минимальный уровень агрессивности к металлам и сплавам с разной рецептурой.

Действие поверхностных эффектов

Исследования показывают, что определенные типы внешнего покрытия становятся катодными по отношению к стали. Основная причина возникновения проблем в таком случае – повышенная влажность в помещении, где установлен трубопровод. В большинстве ситуаций наблюдается избирательное кородирование.

Уровень концентрации ионов

Большое значение в работе имеет потенциал растворения. При большой концентрации ионов в электролите, такой потенциал становится все более и более крупным.

Когда наблюдается контакт между электролитом и металлом самой трубы, при этом присутствует неравномерность, начинается постепенное разрушение поверхности.

Уровень рН

Показатель рН напрямую влияет на то, как именно будет растворяться металл, каким окажется состав передаваемой рабочей среды. Когда уровень рН низок, есть больший риск растворения металлов. При этом прямой связи с тем, как быстро протекает коррозия, здесь зачастую нет.

Основной риск представляет растворение защитных пленок, которые ранее были нанесены на материал. Оно быстрее происходит в кислой воде.

Наличие растворенных газов

Большую опасность представляет растворение в воде диоксида углерода, а также кислорода. Из этих двух газов кислород представляет самую большую опасность. При его высокой концентрации из-за повышения температуры коррозия труб отопления будет развиваться все более и более интенсивно.

Иногда в составе воды также наблюдается наличие примесей диоксида углерода. Это значительно уменьшает уровень рН.

Как результат – защитные пленки и отложения начинают намного стремительнее растворяться, возникает вероятность контакта с катализаторами окисления.

Контакт между разными типами материалов

Одна из наиболее обширных сфер для обсуждения – появление электрохимической коррозии, наблюдаемой при погружении металлов в электролит. В таком случае возникает электрический потенциал.

Когда рядом находятся два металла, разных по своему составу, наблюдается электрический контакт. При этом ученые говорят о трех факторах, значительно влияющих на вероятность возникновения коррозии и саму скорость ее протекания. К ним относятся:

  • Соотношение между поверхностями металлов, которые будут соприкасаться друг с другом. Так один металл выступает как катод и его по площади больше, чем анод, процесс ржавения будет развиваться намного более интенсивно.
  • Степень проводимости электролита. Когда проводимость низкая, в таком случае коррозия возникнет только в области наиболее плотного контакта. Более обширные участки станут затрагиваться в том случае, если проводится высокая.
  • Тип материалов, которые вступают в электрический контакт друг с другом. Здесь многое зависит от того, какой именно сплав использовался при изготовлении. Так некоторые типы материалов могут создавать плотные защитные оксидные пленки, которые не допускают контактов с катализаторами окислительного процесса.

Одним из методов защиты отопления от коррозии является устранение потенциального электрического процесса в том случае, если есть риск близкого контакта двух металлов.

Ударное воздействие

Внутри трубопровода отопление вода постоянно движется. Есть множество показателей работы системы – напор, внутреннее давление. Когда вода движется с большой скоростью, происходит появление и постоянное вымывание продуктов коррозии.

Также наблюдается и процесс кавитации. Обычно наиболее активно начинает проступать ржавчина в местах, на которые оказывается наиболее сильное давление жидкости.

Блуждающие токи

Еще один фактор, который нужно упомянуть – наличие в системе блуждающих земных токов. Наибольшую опасность представляет ситуация, в которой ток становится постоянным. Самое интенсивное протекание разрушения наблюдается в том случае, если трубопровод находится в земле и при этом происходит проникновение токов в почву.

Наличие органических веществ

Не стоит также забывать об опасности, которую несут в себе растворенные в воде органические вещества. Они могут проникать из разных источников, не только природных, но и техногенных.

Есть два центральных фактора опасности именно органических веществ:

  • Изменение уровня рН. Пагубное воздействие таких колебаний уже было описано выше.
  • Жизнедеятельность бактерий. Коррозия системы отопления может быть и биологической. Бактерии попадают в систему именно через органические вещества.

Выводы

Методы защиты поверхности металла от коррозии могут быть разными. Но одним из самых эффективных становится именно применение оцинковки.

Наша компания занимается цинкованием металла с 2007 года. Мы используем качественное оборудование и строго контролируем соответствие качества требованиям ГОСТ.

Гарантируем быструю работу даже с крупными объемами, помогаем заказчикам значительно экономить. Чтобы рассчитать стоимость выполнения работ и получить ответы на другие интересующие вопросы, звоните или пишите нам.

Морская коррозия – один из видов электрохимической коррозии. Морская вода – отличный электролит. Морская вода хорошо аэрирована (около 8 мг/л кислорода), имеет достаточно высокую электропроводность (может достигать 3•10 -2 Ом -1 см -1 ), которая исключает появление омического торможения. Среда – нейтральная (рН = 7,2 – 8,6). В морской воде присутствуют соли кальция, калия, магния, сульфаты натрия, хлориды.

Морская коррозия в доках

Именно из-за наличия в морской воде растворенных хлоридов (ионов-активаторов Cl - ) она обладает депассивирующим действием, по отношении к металлической поверхности (разрушает и предотвращает появление пассивных пленок на поверхности металла).

Морской коррозии подвергаются: металлическая обивка днищ судов, подводные трубопроводы, морская авиация, различные металлоконструкции, находящиеся в воде, металлические конструкции в портах, прокатные валки на блюминге, которые охлаждаются морской водой и т.п.

Морская коррозия судна

Наиболее часто выбирают для эксплуатации в условиях морской коррозии сталь. Для быстроходных морских судов и морской авиации используют более легкие сплавы.

Особенности процесса морской коррозии:

- высокая агрессивность среды (как самой воды, так и окружающей атмосферы);

- большое влияние контактной коррозии металлов;

- дополнительное влияние механического фактора (эрозия, кавитация);

- протекание биологической коррозии и большое влияние биологического фактора (обрастание днища морского суда микроорганизмами).

Морская коррозия протекает с кислородной деполяризацией и является электрохимическим процессом. Процесс проходит по смешанному дифузионно-кинетическому катодному контролю. При интенсивной аэрации, быстром движении морского суда или самой воды (течение) может преобладать кинетический контроль. В условиях неподвижной морской воды или при наличии на металлической поверхности толстого шара вторичных продуктов коррозии преобладает диффузионный катодный контроль.

В условиях морской коррозии защитная пленка (оксидная или шар продуктов коррозии) являются катодом, а металл в порах, трещинах и других дефектах – анодом.

При протекании морской коррозии кроме равномерного разрушения дополнительно образуются глубокие язвы.

Морская атмосфера менее агрессивна, чем промышленная.

При протекании морской атмосферной коррозии разрушения носят более равномерный характер, чем коррозия в морской воде.

Факторы морской коррозии металлов

Соленость воды

Соленость воды – влияет на скорость протекания морской коррозии незначительно. Соленость воды колеблется от 10‰ (Азовское море) до 35,6‰ (Тихий океан). Величина солености воды показывает количество твердых веществ в граммах, растворенных в 1000 г морской воды.

Состав морской воды

Состав морской воды иногда может играть достаточно большую роль. Например, присутствие в воде сероводорода облегчает протекание как катодного, так и анодного процессов коррозии. На поверхности металла образуются труднорастворимые сульфиды, кроме того идет подкисление среды. Ионы брома, йода даже при очень малом их содержании ускоряют процесс морской коррозии металлов. Некоторые соединения могут оказывать благоприятное действие (углекислый кальций, кремнекислые соединения). Они образуют на поверхности металла или сплава оксидную пленку, обладающую защитным эффектом.

Движение водных масс

Движение водных масс влияет на скорость диффузии кислорода. При интенсивном перемешивании воды (быстрое движение морского суда) процесс проходит преимущественно с кинетическим контролем, а при неподвижной воде – диффузионным.

Ватерлиния

Ватерлиния – зона периодического смачивания водой. Морская коррозия вблизи ватерлинии всегда носит усиленный характер. Это связано с облегченным доступом кислорода к поверхности (усиленной аэрацией поверхности металла); агрессивным влиянием брызг (на месте высохших брызг остаются кристаллики соли, которые препятствуют образованию защитных пленок); поверхностный слой морской воды более прогретый солнечными лучами и в условиях усиленной аэрации идет усиление коррозии металла.

Зазоры и щели

Наличие зазоров и щелей в металлоконструкции очень негативно влияет на морскую коррозию металла. Металл в щели плохо аэрирован и играет роль анода, проходит его усиленное растворение.

Прокатная окалина на поверхности металла

Наличие на поверхности металлоконструкции участков, неочищенных от прокатной окалины в десятки раз может ускорить протекание морской коррозии. На поверхности металла возникает гальванопара. В этом случае окалина является катодом, а чистый металл – анодом. Проходит анодное растворение металла. Такой же эффект наблюдается при наличии окрашенных участков (по отношению к неокрашенным) или при нарушении сплошности лакокрасочного покрытия.

Биологическая морская коррозия

Присутствие в морской воде различных микроорганизмов (бактерии, моллюски, кораллы и т.д.) обуславливает прохождение биокоррозии металла. Из-за их наростания и скопления на обивке днищ судов и других его частях, к поверхности плохо подходит кислород, возникают различные неровности, происходит разрушение поверхности, усиленное коррозионное разрушение в щелях и зазорах.

Иногда обрастание металлоконструкции микроорганизмами имеет и положительный характер. Образовавшийся слой может тормозить коррозионный процесс. Вот, например, обрастание поверхности стали мидиями значительно тормозит коррозию сплава. Это явление объясняется значительным потреблением мидиями кислорода.

Кроме значительного влияния микроорганизмов на коррозионный процесс, их значительное скопление на днище морского суда может несколько тормозить его ход, при этом необходимо увеличивать мощность двигателей.

Морской биокоррозии наиболее часто подвергаются стали, сплавы на никелевой, алюминиевой основе, свинец, олово сплавы на их основе.

Магний и цинк морской биокоррозии могут не подвергаться.

Наилучшим материалом для применения в условиях биокоррозии можно считать медь. Ее ионы токсичны и поверхность не обрастает.

Контактная коррозия

Очень часто в условиях морской атмосферы наблюдается контактная коррозия металлов. Отчасти это обусловлено хорошей электропроводностью морской воды.

Очень многие металлы, находясь в морской воде становятся катодами по отношению к стали.

Электрокоррозия

Электрокоррозия возникает в морской среде по двум причинам: во-первых, под действием блуждающих токов (особенно в районе порта и т.п.); во-вторых – в результате неправильных схем питания на судне или других объектах.

Механический фактор

В результате воздействия механического фактора возможна коррозионная усталость, коррозионная эрозия и кавитация.

Защита от морской коррозии

Наиболее распространенный метод защиты металлических изделий от морской коррозии – нанесение лакокрасочных материалов (ЛКМ).

В этих целях используются лакокрасочные материалы на основе битумов, фенолформальдегидной (краски АИШ), винилов (этинолевые лакокрасочные материалы), эпоксидной, каменноугольной основе. Содержание растворителей должно сводится к минимуму либо к нулю.

Лакокрасочные материалы хороши тем, что их достаточно просто наносить и при введении в их состав некоторых добавок можно добиться дополнительных защитных эффектов. Введение в краску окиси меди, окиси ртути или оловоорганических соединений делает краску необрастающей. Окись меди при вымывании с покрытия образует труднорастворимый комплекс. Эти вещества токсичны для микроорганизмов. Необрастающую краску наносят только на часть металлоконструкции, находящуюся в непосредственном контакте с водой.

При защите металла от морской коррозии поверхность сначала подвергают холодному фосфатированию, а только потом наносят толстослойное защитное лакокрасочное покрытие.

Лакокрасочные материалы на виниловой основе сами по себе обладают необрастающим эффектом.

Сплавы на основе алюминия защищают от морской коррозии при помощи оксидирования.

Для защиты от морской коррозии очень часто используют металлические защитные покрытия. Самое распространенное – цинковое. Толщина цинкового покрытия должна составлять около 150 – 200 мкм. Его можно использовать как самостоятельное защитное покрытие, так и в качестве основы под покраску.

Для обивки днища морского суда может использоваться легированный лантаном или цинком алюминий. Алюминиевое покрытие обладает высокой устойчивостью к коррозии, его можно применять в комплексе с лакокрасочным покрытием. Кроме того алюминиевые покрытия имеют повышенную стойкость к эрозии.

Для защиты стали от морской коррозии первым делом ее поверхность тщательно очищают от прокатной окалины. Для этого используют пескоструйную очистку, либо пламя, или же химическое травление. На обработанную и заранее подготовленную поверхность далее наносят лакокрасочное или металлическое покрытие.

Низкое легирование стали незначительно увеличивают ее стойкость в морской воде.

Высоколегированные хромоникелевые и хромистые стали в морской воде подвергаются местной язвенной и щелевой коррозии.

Высокой стойкостью к морской коррозии отличается медь и ее сплавы, особенно монель-металл, состоящий с 25 – 30% меди, а остальное – никель.

Широкое применение в практике защиты от морской коррозии нашла электрохимическая защита (протекторная или от внешнего источника тока).

Такая защита от морской коррозии может применятся самостоятельно или в комплексе с защитными покрытиями.

Особое место при защите конструкции от морской коррозии занимает рациональное конструирование. Правильный подбор материалов (во избежание контактной коррозии), защитных покрытий, равномерное распределение по всей конструкции напряжений и т.п. могут значительно продлить срок службы металлоконструкции.

Электрокоррозию можно предупредить, использую дренирование или же применяя специальные электросхемы.

Для защиты металлоконструкций от морской биологической коррозии применяют лакокрасочные материалы с биоцидными добавками. Также есть данные об использовании метода ультразвуковой защиты. Недостатком метода является большое потребление энергии и постепенное разрушение защищаемого материала. Суть метода состоит в воздействии на защищаемую поверхность ультразвуковых колебаний, имеющих частоту 23 – 27 кГц.

Для комплексной защиты стали от морской коррозии можно применять ультразвуковую и катодную защиту одновременно.

Читайте также: