Лазерные диоды для резки металла

Обновлено: 19.05.2024

Лазерная резка является наиболее прогрессивной, но и дорогой по стоимости технологией. Зато с ее помощью можно достичь таких результатов, которые не под силу другим способам обработки металла. Способности лазерных лучей придавать любому материалу нужную форму поистине безграничны.

Уникальные возможности лазера основываются на характеристиках:

  • Четкая направленность – за счет идеальной направленности лазерного луча энергия фокусируется в точке воздействия с минимумом потерь,
  • Монохроматичность – у лазерного луча длина волн фиксирована, а частот — постоянна. Это позволяет сфокусировать его обычными линзами,
  • Когерентность – у лазерных лучей высокий уровень когерентности, поэтому их резонансные колебания усиливают энергию на несколько порядков,
  • Мощность – вышеперечисленные свойства лазерных лучей обеспечивают фокусировку энергии высочайшей плотности на минимальной площади материала. Это позволяет разрушать или прожигать любой материал на микроскопически малом участке.

Устройство и принципы работы

Любое лазерное устройство состоит из следующих узлов:

  • источника энергии;
  • рабочего органа, продуцирующего энергию;
  • оптоусилителя, оптоволоконного лазера, системы зеркал, усиливающих излучение рабочего органа.

Устройство лазера

Лазерным лучом точечно создается нагрев и плавление материала, а после продолжительного воздействия — его испарение. В результате шов выходит с неровным краем, испаряющийся материал осаждается на оптике, что сокращается срок ее эксплуатации.

Для получения ровных тонких швов и удаления паров используют технику выдувания инертными газами или сжатым воздухом продуктов расплава из зоны воздействия лазера.

Заводские модели лазеров, оборудованные высококлассными материалами, могут обеспечить хороший показатель углублений. Но для бытового использования у них слишком высокая цена.

Модели, изготовленные в домашних условиях, способны врезаться в металл на глубину 1-3 см. Этого хватит, чтобы изготовить, например, детали для декорирования ворот или заборов.

Лазерная резка металла

В зависимости от используемой технологии резаки бывают 3-х видов:

  • Твердотельные. Компактны и удобны в использовании. Активный элемент – кристалл полупроводника. У моделей с малой мощностью вполне доступная цена.
  • Волоконные. В качестве элемента излучения и накачки используется стекловолокно. Достоинствами волоконных лазерных резаков являются высокий КПД (до 40%), длительный срок эксплуатации и компактность. Так как при работе выделяется мало тепла, нет нужды в установке системы охлаждения. Можно изготавливать модульные конструкции, позволяющие объединять мощности нескольких головок. Излучение транслируется по гибкому оптоволокну. Производительность таких моделей выше твердотельных, но их стоимость дороже. . Это недорогие, но мощные излучатели, основанные на использовании химических свойств газа (азота, углекислого газа, гелия). С их помощью можно варить и резать стекло, резину, полимеры и металлы с очень высоким уровнем теплопроводности.

Газовые лазеры

Самодельный бытовой лазер

Для выполнения ремонтных работ и изготовления металлических изделий в быту часто требуется лазерная резка металла своими руками. Поэтому домашние умельцы освоили изготовление и успешно пользуются ручными лазерными устройствами.

По стоимости изготовления для бытовых нужд больше подходит твердотельный лазер.

Мощность самодельного прибора, конечно же, нельзя даже сравнивать с производственными аппаратами, но для использования в бытовых целях он вполне подойдет.

Как собрать лазер, используя недорогие запчасти и ненужные предметы.

Для изготовления простейшего прибора понадобятся:

  • лазерная указка;
  • фонарик на аккумуляторных батареях;
  • пишущий CD/DVD-RW (подойдет старый и неисправный);
  • паяльник, отвертки.

Процесс изготовления лазерного резака

  1. Из компьютерного дисковода нужно извлечь красный диод, который прожигает диск при записи. Обратите внимание, что дисковод должен быть именно пишущим.

После демонтажа верхних крепежей, извлекают каретку с лазером. Для этого аккуратно снимают разъемы и шурупы.

Для извлечения диода необходимо распаять крепления диода и извлечь его. Делать это нужно предельно аккуратно. Диод очень чувствительный и его легко повредить, уронив или резко встряхнув.

  1. Из лазерной указки извлекают содержащийся в ней диод, и вместо него вставляют красный диод из дисковода. Корпус указки разбирают на две половинки. Старый диод вытряхивают, подковырнув острием ножа. Вместо него помещают красный диод и закрепляют клеем.
  2. В качестве корпуса лазерного резака проще и удобнее использовать фонарик. В него вставляется верхний фрагмент указки с новым диодом. Стекло фонарика, являющееся для направленного лазерного луча преградой, и части указки надо удалить.

Лазерная указка

На этапе подключения диода к питанию от аккумуляторных батарей важно четко соблюсти полярность.

  1. На последнем этапе проверяют, насколько надежно зафиксированы все элементы лазера, правильно подключены провода, соблюдена полярность и ровно установлен лазер.

Лазерный резак готов. Из-за малой мощности использовать в работе с металлом его нельзя. Но если необходим прибор, режущий бумагу, пластик, полиэтилен и другие подобные материалы, то этот резак вполне подойдет.

Как усилить мощность лазера для резки металла

Изготовить более мощный лазер для резки металла своими руками можно, оснастив его драйвером, собранным из нескольких деталей. Посредством платы резаку обеспечивается нужная мощность.

Понадобятся следующие детали и приборы:

  1. пишущий CD/DVD-RW (подойдет старый или неисправный), со скоростью записи больше 16х;
  2. аккумуляторы по 3,6 вольт – 3 шт.;
  3. конденсаторы на 100 пФ и на 100 мФ;
  4. сопротивление 2-5 Ом;
  5. коллиматор (вместо лазерной указки);
  6. стальной светодиодный фонарь;
  7. паяльник и провода.

К диоду нельзя подключать источник тока напрямую, иначе он сгорит. Диод берет подпитку от тока, а не от напряжения.

Фокусировка лучей в тонкий луч производится при помощи коллиматора. Он используется вместо лазерной указки.

Продается в магазине электротоваров. В этой детали есть гнездо, куда монтируется лазерный диод.

Сборка лазерного резака такая же, как у описанной выше модели.

Чтобы снять статичность с диода, вокруг него наматывают алюминиевую проволоку. С этой же целью можно использовать антистатические браслеты.

Советы по сборке

Для проверки работы драйвера измеряют мультиметром силу тока, подаваемого на диод. Для этого к прибору подсоединяют нерабочий (или же второй) диод. Для работы большинства самодельных устройств достаточна сила тока 300-350 мА.

Если нужен более мощный лазер, показатель можно увеличить, но не более 500 мА.

В качестве корпуса для самоделки лучше использовать светодиодный фонарик. Он компактный и его удобно использовать. Чтобы не испачкались линзы, устройство хранят в специальном чехле.

Важно! Лазерный резак является своего рода оружием, поэтому нельзя направлять его на людей, животных и давать в руки детям. Носить его в кармане не рекомендуется.

Следует заметить, что лазерная резка своими руками толстых заготовок невозможна, но с бытовыми задачами он вполне справится.

Лазерные модули 5, 10 и 15 ватт для резки и гравировки на ЧПУ


Помнится лет 10 тому назад, среди начинающих радиолюбителей было популярно делать лазеры из прожигающего диски диода DVD привода. При всей примитивности конструкции, с синим лазерным диодом удавалось получить мощность до 0,6 ватт, питая это дело от батареек. Но китайская промышленность не стоит на месте и теперь уже не фольгу на CD-диске, а дерево и даже металл стало возможным резать с помощью мощных современных лазерных модулей на 1-15 ватт. Все они предназначены для использования на ЧПУ станках (читайте подробнее тут) и питаются от 12 вольт. Естественно они могут работать и без сетевого питания – на 3-х литиевых аккумуляторах, что позволяет эти лазерные модули использовать… скажем так – не только в станках))

Лазерные модули 5, 10 и 15 ватт для резки и гравировки на ЧПУ

Но перейдём к обзору. В нём примут участие модули на 1, 5, 10 и 15 ватт. Начнём с самого младшего, который устанавливается в мини станочки лазерной гравировки.

1 Вт лазерная головка

  • Длина волны 410 нм
  • Выходная мощность 1 Вт
  • Напряжение питания 12 В
  • Рабочий ток 400 мА
  • Способ охлаждения: принудительное воздушное охлаждение
  • Материал корпуса – алюминий
  • Оптические линзы в лазере
  • Рабочая температура 40-75С
  • Срок службы до 10000 часов
  • Размер 33 х 55 мм
  • Цена около 50 долларов

5 Вт лазерная головка

  • Размеры внешние: Длина 53 мм х ширина 33 мм х высота 33 мм
  • Длина волны: 450 нм
  • Выходная мощность: 5.5 Вт
  • Охлаждение: алюминиевый радиатор
  • Частота модуляции: максимум 25 кГц
  • Цвет отделки: Черный
  • Материал корпуса: Алюминий
  • Рабочее напряжение: DC = 12 В
  • Рабочий ток: I < 3 A
  • Время разогрева: Нет
  • Рабочая температура: -10 ~ + 40 градусов
  • Цена около 120 долларов

10 Вт лазерная головка

  • Внешние размеры: длина 50 мм х ширина 50 мм х высота 100 мм (в том числе вентилятор)
  • Длина волны: 445-450 (Blu-Ray)
  • Предельная мощность: 10 Вт в импульсном режиме
  • Средняя мощность 6 Вт
  • Частота модуляции: ttl можно модулировать
  • Частота шим < 9 кГц
  • Рабочее напряжение: DC = 12 В
  • Рабочий ток: < 3 A
  • Фокусное расстояние: 18 мм
  • Рабочая температура: 15 ~ 45C
  • Диаметр пятна: 0,1 – 10 мм
  • Режим работы: импульсный лазер 100 нс 50%, с TTL модуляцией
  • Материал корпуса: твердый алюминий + латунь
  • Отделка: черный анодированный Al + пескоструйная обработка
  • Теплоотвод: радиатор и вентилятор
  • Блок питания: 12 В 4 А
  • Цена около 240 долларов

15 Вт лазерная головка

  • Модель лазера: 570073
  • Размер: длина 50 мм х ширина 50 мм х высота 100 мм
  • Длина волны: 445 ~ 450 нм
  • Выходная мощность: импульсная 15 Вт, средняя 8 Вт
  • Частота модуляции: TTL модулированный, 0В-off 5В-on
  • Частота ШИМ
  • Рабочее напряжение: 12 В
  • Рабочий ток: I
  • Рабочая температура: 15-45С
  • Фокусное расстояние: 18 мм
  • Питание БП: 12 В 4 A
  • Цена около 320 долларов

Лазерные модули 5, 10 и 15 ватт для резки и гравировки на ЧПУ

По внешнему виду и конструкции модели на 5-15 ватт очень похожи, поэтому без маркировки или тестов трудно сразу определить мощность.

Схема подключения лазера


Подключаются модули к источнику постоянного напряжения 12 В, различаясь только током потребления. На станке для подачи питания служит специальный разъём на плате CNC, а при необходимости можно задействовать обычный импульсный блок питания, воткнув штекер в стандартное гнездо через такой переходник (идёт в комплекте).

Лазерные модули 5, 10 и 15 ватт для резки и гравировки на ЧПУ

TTL управление осуществляется через специальный блок, с помощью ШИМ импульсов. Схемы нет, но вот фото этой платы с деталями в хорошем качестве.

Лазерные модули 5, 10 и 15 ватт для резки и гравировки на ЧПУ

Какую выбрать мощность лазера

С самой мощной из доступных, 15-ваттной головкой, удаётся легко выполнять гравировку не только на дереве, но и почти на любом типе металла (одни поддаются выжиганию лучше – другие хуже). С лазером до 5 ватт получится гравировать и резать дерево, картон, пластик, кожу. Ну а модель на 1 ватт особым результатом не удивит – только картон и фанера.

Лазерные модули 5, 10 и 15 ватт для резки и гравировки на ЧПУ

Примечание:

Головка будет выдавать 100% от интенсивности лазерного излучения, когда вы непосредственно подключите её к источнику питания 12 В. Не использовать более 10 минут в таком режиме, иначе лазер сгорит. Желательно чуть снизить питающее напряжение, хотя бы на 1 вольт – это существенно увеличит ресурс диода без заметного снижения мощности луча.

Отзывы покупателей о лазерных головках

Машинка упакована отлично +, Собрал действительно за 5 минут, даже не смотря в инструкцию +. Программное обеспечение на флешке, устанавливается элементарно, но нет на русском языке, пришлось посмотреть видео инструкцию +/ -. сам процесс гравировки как на видео, единственное на что нужно обратить внимание: простенький рисунок из папки тест на вложенном шаблоне, гравируется 10 минут (не быстро), а если что-то существенней – фото и размер со спичечный коробок более часа. Долго -. Качество гравировки, ну тут есть недочеты (пытался награвировать на ноже, ну скажем не очень получилось. И металл другой и не учел того что нож не ровный и фокусное расстояние из-за этого ушло), хотя можно их списать на мою неопытность. В целом неплохо. Поставил заслуженную 5.

Лазер каждый день работал хуже и хуже, в итоге не гравирует на металле, продавец не отвечает, узнала у других людей что эти лазеры теряют мощность через месяц, то есть это не первый случай, никому не советую покупать эту китайщину, деньги на ветер.

В описании рабочая зона не соответствует действительности, меньше где-то сантиметра на 2, когда режет картон то весь дым идет наружу, дышать не возможно. Подставка или сама конструкция немного не ровная, из-за чего фокусное расстояние везде получается разное. С резкой картона 1.5 мм справляется не плохо.

Купил 8w мощности и импульсно до 15w, фанеру 2 мм простреливает быстро, доставка около 20 дней и очень долго отправляется, возможно нет в наличии но всё качественно.

Товар соответствует требованиям по качеству. Если приспособиться, но можно качественно гравировать. Совет: 1. Даже в очках не смотреть на работающий лазер, 2. Устанавливать только на ровную поверхность, так как от толчков моторов происходит сдвиг. Жгёт не на всём, что и понятно: всего 15 ватт, фанеру 4 мм прожигает за 3-4 прохода.

Упакован отлично. Работает хорошо, гравирует, режет. Металл пробовал гравировать на присланном образце, получилось! Сам корпус сбитый, ровный. Программное обеспечение достаточно простое, есть подробная инструкция.

Видео использования лазера в станке ЧПУ

Выбор мощность лазера для резки металла в зависимости от материала

Оборудование с углекислым газом

Резка

Это одна из самых современных технологий, используемых не только на производстве, но и в небольших мастерских. Данный способ при правильном подборе вида оборудования подходит практически для всех металлов, позволяет делать обычную и художественную (фигурную) резку. Чтобы добиться хороших результатов, необходимо ориентироваться в технологиях и принципах работы этого оборудования.

Резка металла лазером

Мощность лазера для раскроя металлических заготовок различной толщины

Резка лучом лазера термическая, дает возможность добиться точности, почти полностью исключающей необходимость в дальнейшей обработке. Чтобы повысить эффективность, применяются различные газы: кислород, углекислый газ, азот, водород, гелий, аргон. Выбор зависит от вида материала, толщины заготовки, планов по поводу последующей обработки. Если для раскроя требуется очень высокая температура, используется кислород. Для работы с цирконием или титаном подходит только аргон.

Любой лазерное оборудование состоит из:

  • механизма (системы), обеспечивающего подачу энергии;
  • тела, генерирующего луч (твердого, волоконного, в виде смеси газов);
  • зеркал (резонатора).

В твердотельное лазерное оборудование размещается диод и стерженек, изготовленный из рубина, неодима или граната. В волоконных лазерах элементом, генерирующим луч, (иногда и резонатором) служит оптическое волокно. В газовом оборудовании используются газы или их смеси. Мощность и сфера применения полностью зависят от вида оборудования:

  • твердотелые (для латуни, меди, алюминия и сплавов из него) – 1-6 кВт;

Устройство твердотелого лазера

Устройство лазера с газом

  • СО2-лазеры (для любых тонких металлических заготовок) – 600-8000 кВт;
  • газодимамические – от 150 кВт.

Для резки металла мощность лазера 450-500 Вт (кроме цветных металлов, для которых требуется от 1 кВт). Наиболее эффективен этот способ при толщине заготовок, толщина которых не превышает 6 мм. При 20-40 мм лазерное оборудование применяется редко. Для металла большой толщины лазерная резка (от 40 мм) почти не встречается.

Зависимость мощности от толщины заготовки

Толщина заготовки (мм)

Сталь (легированная, углеродистая)

Для обработки легированной и углеродистой стали в качестве вспомогательного элемента используется кислород, для нержавеющей стали – азот с давлением до 20 атмосфер. Цветные металлы и алюминий отличаются высокой теплопроводностью и низким уровнем поглощения лазерного луча. Для раскроя этих материалов используется твердотелый лазер, работающий в режиме импульсов.

Важно! Для резки металла толщиной 1мм выбор мощности лазера зависит от вида материала. Для стали достаточно 100 Вт, для титана необходимо 600 Вт.

Лазерный диод для резки металла

Лазерный диод для резки металла – полупроводниковый лазер, сконструированный по принципу p-n гомоструктурного диода. Полупроводником служит пластина, верхний слой которой создает n-области (отрицательную), нижний — p-область (положительную). Переход p-n сравнительно большой и плоский. Торцы по бокам служат резонаторами. Фотон, который движется перпендикулярно, отражается от торцов несколько раз, только потом сможет выйти.

В процессе прохода вдоль торцов создаются новые фотоны, излучение усиливается, начинается генерация луча. В момент выхода он сильно расходится, поэтому собирается линзами. Лазерные диоды для резки металла с большой мощностью (10 микрометров) дополнительно излучают углекислый газ (CO2).

Важно! Оборудование этого типа отличается повышенной производительностью, сравнительно низкой стоимостью

СО2 лазер (углекислый) для раскроя металла

СО2 лазер

Углекислые лазеры обладают характеристиками, делающими их идеальными для раскроя в промышленности. Первое — длинные инфракрасные волны, идеальные для нагрева. Второе — высокая эффективность (от 30%). Использование углекислого газа делает срез более гладким (если сравнивать с оборудованием со стекловолокном). Расширяется сфера применения, инвестиции быстро окупаются.

Недостаток СО2 лазер для резки металла – необходимость в оптических зеркалах, оснащенных сапфировыми элементами и золотом. Кроме того, этот вид оборудования требует высокого электрического разряда на этапе формирования луча. Для резки металла (нержавеющей стали, алюминия) толщиной 2 мм достаточно мощности 160 Вт, если применяется лазер этого типа. При повышении мощности до 200 Вт можно резать листы толщиной 3 мм.

Активная среда состоит из смеси углекислого газа, гелия, неона. В зависимости от того, какая для резки металла нужна мощность лазера, может добавляться ксенон или водород. Пропорции тоже меняются, исходя из требований к свойствам луча, но объем СО2 не превышает 20%. На рынке доступно оборудование этого вида с мощностью 1 кВт, 3-5 кВт и 10 кВт.

Длина волны лазера для резки металла

На поглощение материалом лазерного луча существенно влияют качества волны: длина и спектр. Длина волны лазера для резки металла полностью зависит от вида материала. Если рассматривать волоконный лазер, то один его узел создает луч с волной 1 мкм (миллимикрон). Если требуется более длинный луч, используется сумматор, объединяющий лучи нескольких модулей. Показатели твердотелых моделей отличаются мало – длина волны так же 1 мкм. Эти виды лазеров являются идеальным вариантом для резки практически всех видов металлов (даже благородных). Для резки металла (нержавейки) 20 мм мощность волоконного лазера – от 2 кВт.

Лазер волоконный

В углекислых лазерах длина волны достигает 10,6 мкм, что создает более высокую плотность на обрабатываемой поверхности. Этот вид оборудования применяется для раскроя стекла, древесины, стеклопластика, демонстрируя высокое качество резки даже при большой толщине.

При выборе оборудования мало изучить технические характеристики: тип излучателя, мощность, длину волны, точность и качество реза. Важно точно определить требования конкретного производства. Мощность лазера для резки металла (например, нержавейки) толщиной 3 мм не может быть ниже 500 Вт. В противном случае снизится производительность, материал будет перегреваться. На первый взгляд может подойти СО2-лазер требуемой мощности. Но в данном случае необходимо учесть длину волны, которая не совсем подходит для металлических заготовок.

Совет! Чтобы не ошибиться, перед покупкой необходимо все точно рассчитать или посоветоваться с квалифицированным специалистом.

Оптоволоконный лазер

Оптоволоконный лазер

Сегодня оптоволоконный лазер считается одним из наиболее перспективных направлений развития технологии лазерной обработки. Благодаря превосходным рабочим параметрам он идеально подходит для резки, гравировки металла, соответственно, сферы его применения: автомобильная промышленность, гравировка, военно-промышленный комплекс, тонкая работа с ювелирными изделиями.

Конечно, у данной технологии есть и недостатки. Например, в отличие от CO2-лазера, он плохо подходит для работы с неметаллическими изделиями. О том, что собой представляет оптоволоконный лазер, где применяется, каковы его принципы работы, вы узнаете из нашего материала.

Устройство оптоволоконного лазера

Оптоволоконные лазеры считаются подвидом твердотельных и отличаются тем, что в них сложная система зеркала заменена тончайшим волокном. Последнее активировано специальными добавками, поэтому способно передавать излучение на любые расстояния при минимальных потерях мощности.

В результате образуется луч с малым углом расхождения, причем его мощность, когерентность, монохроматичность находятся на высоком уровне.

Волоконный лазер представляет собой лазер с полностью либо частично оптоволоконной реализацией. Оптическое волокно здесь является материалом усиливающей среды и иногда резонатора. Лазеры могут быть разных типов: принято выделять цельноволоконные устройства, где из оптоволокна состоит активная среда и резонатор, и волоконно-дискретные – здесь волоконным является резонатор или иные составляющие.

Оптоволоконные лазеры подходят для работы в непрерывной, нано- и фемтосекундной импульсной пульсации.

Подобное оборудование имеет разную конструкцию, которая подбирается под специфику его использования. Так, резонатор выполняется в виде системы Фабри-Перо либо может быть кольцевым.

Чаще всего роль активной среды играет оптоволокно, допированное ионами редкоземельных элементов, таких как тулий, эрбий, неодим, иттербий, празеодим. Лазер накачивают, используя от одного до нескольких лазерных диодов, в сердцевину волокна или во внутреннюю оболочку, если речь идет о мощной системе.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Сегодня волоконные системы активно используются, так как обеспечивают большой выбор параметров, возможность настройки импульса в широком диапазоне длительности, а также частот и мощностей.

Такие устройства имеют мощность в пределах от 1 Вт до 30 кВт, а длина их оптического волокна доходит до 20 м.

Сферы применения оптоволоконного лазера

Оптоволоконный лазер является универсальным инструментом и применяется на самых разных производствах. Специалисты ценят его за то, что он легко вырезает даже острые углы, может использоваться для обработки поверхностей в тех случаях, когда необходима максимальная точность.

Однако основной областью применения волоконного лазера является обработка металлов разной толщины и плотности.

Оптоволоконный лазер

Оптоволоконный лазер используется в следующих сферах:

  • изготовление автомобилей, судов, воздушного транспорта, ракет;
  • производство железнодорожных вагонов, морских контейнеров для грузоперевозок;
  • создание ювелирных изделий, нанесение гравировки, что становится возможным благодаря высокой точности луча;
  • производство металлических конструкций, применяемых для строительства зданий любого назначения, возведения рекламных объектов;
  • военно-промышленный комплекс.

Немаловажно, что оптоволоконный лазер подходит для резки как металла, так и искусственного и натурального камня, стекла, ряда разновидностей пластика.

Основные компоненты оптоволоконных лазеров

Главными элементами лазера являются модуль накачки, световод и резонатор.

Модуль накачки включает в себя широкополосные светодиоды, лазерные либо полупроводниковые диоды. Последние применяются в оптоволоконных лазерах повышенной мощности.

Также важно, что диоды такого типа не предполагают сложного обслуживания и использования дополнительных расходников.

Оптоволоконный лазер

В системе нет крупногабаритных резонаторов, устанавливаемых в оптических газовых лазерах, поэтому все оборудование отличается небольшими размерами.

Здесь резонатор реализован в самом волокне и предполагает выполнение двух правил:

  • на торцах оптоволокна монтируются диэлектрические зеркала;
  • используются волоконные брэгговские решетки, то есть при помощи нанесения насечек, перпендикулярных оси волновода, формируется структура с модулированным показателем преломления.

В таких устройствах применяется эрбиевое и иттербиевое волокно. Иттербиевый оптоволоконный лазер имеет меньший диапазон рабочих волн, при этом отличается повышенной мощностью.

Важным достоинством данной техники является тот факт, что на ее запуск и подготовку уходит немного времени. Вслед за включением диодов происходит накачка волокна, и можно приступать к работе. Лазерный луч выходит из кабеля и попадает на фокусирующую линзу лазерной головки, направленную на обрабатываемый материал.

Обычно подобным оборудованием комплектуются автоматизированные обрабатывающие станки, а система управления лазером синхронизируется с механической частью основного устройства.

Принцип работы оптоволоконного лазера

Используемый в таких системах принцип преобразования светового излучения в лазерное сегодня считается одним из наиболее совершенных. Дело в том, что здесь эффективность получения полезной энергии достигает 80-90%, а при работе с лазерным лучом удается почти полностью избежать искажения волнового фронта и потери мощности на всем оптическом маршруте.

Оптоволоконный лазер

Говоря о том, как работает оптоволоконный лазер, нужно понимать, что его система образования луча включает в себя две основные части: лампы накачки или полупроводниковые диоды и оптический кабель.

Внутри последнего находится светопроводящее волокно с сердцевиной из прозрачного кварца, который легируется ионами редкоземельных элементов – обычно используется иттербий.

На концах центрального стержня делают брэгговскую или дифракционную решетку, которая выглядит как штрихи, нанесенные определенным способом. Участки с насечками отличаются измененной отражательной способностью, поэтому играют роль резонаторов, отражают свет, распространяющийся вдоль волокна, и поддерживают нужную длину волны.

В результате луч остается монохромным и сохраняет ряд важных свойств.

Вместе с запуском станка включаются диодные лампы и начинают подпитывать световод энергией. Параллельно накачивается волокно на всей его протяженности, а сердцевина переходит в рабочее состояние.

Таким образом активируется иттербиевое покрытие, которое генерирует ионы. А брэгговская решетка, заменяющая отражающие зеркала, обеспечивает эффект, при котором часть потока света постоянно находится внутри волокна, вызывая образование новых атомов. Другая часть световой энергии выходит наружу в виде стабильного мощного луча лазера.

Сторона оптического кабеля, из которого выходит лазерный поток, соединяется с подвижной режущей головкой. Последняя должна быть расположена над поверхностью материала.

Фокусирующая линза в головке оптоволоконного лазера для резки автоматически либо по сигналу программы сводит луч в световое пятно необходимого диаметра, после чего направляет его в зону обработки.

Отличия оптоволоконного лазера от CO2

Главным элементом оптоволоконного лазера является оптически активное волокно, тогда как для CO2-лазера аналогичную роль играет смесь газов, где основным считается углекислый.

Указанное оборудование использует разную длину волны: для газового необходима длина 10,6 кмк, а длина волны оптоволоконного лазера составляет 1,06 кмк. Столь малый показатель во втором случае обеспечивает высокую точность при обработке, позволяя не повредить и не нагреть материал, прилежащий к зоне раскроя.

Оптоволоконный лазер

Помимо этого, уменьшенная длина волны способствует увеличенной скорости работы с металлами и камнем, обеспечивая идеально гладкую поверхность.

Однако у оптоволоконных лазеров есть и минусы. Основной их недостаток состоит в сложной работе с неметаллами – в этом случае гораздо проще использовать CO2-лазер.

Ключевая разница между волоконным и газовым лазером кроется в следующих особенностях:

  • Оптоволоконные лазеры справляются с работой по металлам, таким как серебро, медь, латунь, тогда как газовое оборудование здесь бесполезно. И наоборот, лазер CO2 более удобен для резки бумаги, стекла, фанеры, синтетических, натуральных тканей, дерева.
  • Волоконный лазер проще в использовании, не требует больших временных затрат на подготовку к раскрою. Это объясняется понятным принципом действия, не предполагающим использования системы зеркал. Отсутствие сложной оптики позволяет уменьшить размеры устройства, поэтому оно может быть установлено в станке с небольшим корпусом, в сварочном аппарате.
  • У оптоволоконного лазера КПД находится на уровне 70 %, что почти вдвое больше, чем у газового.

Волоконный лазер представляет собой оборудование нового поколения, которое используется в большинстве сфер, сопряженных с комплексной обработкой металлов, камня, стекла, а иногда даже пластика.

Благодаря простой установке, малому весу конструкции оптоволоконный лазер может применяться даже в небольших промышленных центрах, ювелирных мастерских. Во втором случае он незаменим для изготовления украшений, нанесения гравировок.

Главные преимущества оптоволоконного лазера

Благодаря технологии производства, свойствам материалов и компонентов лазера оптоволоконные системы выделяются на фоне аналогов немалым количеством таких преимуществ, как:

  • точность размещения луча на обрабатываемой поверхности;
  • высокая мощность, единственным ограничением для которой является число диодов накачки – оно может увеличиваться под требования конкретного производства;
  • минимальный диаметр луча, осуществляющего резку;
  • концентрированное излучение с минимальной долей угловых расхождений;
  • значительная длина, гибкость кабеля, благодаря чему при необходимости лазер устанавливается на любое производственное оборудование;
  • КПД до 30 % при показателе в 5 % у газовых аналогов;
  • значительный ресурс работы излучателя, отсутствие сложного технического обслуживания;
  • простая настройка оптоволоконного лазера и дальнейшая работа – им можно пользоваться даже без специального образования и дополнительного обучения;
  • малые габариты, масса, что обеспечивает простую и дешевую перевозку;
  • отсутствие шума и минимальное количество производственных отходов.

Оптоволоконный лазер

Все названные достоинства приводят к тому, что многие производители оборудования, комплектуя свою технику, отдают предпочтение оптоволоконным лазерам, ведь газовые уступают им по экономическим, качественным и технологическим характеристикам.

Волоконные системы имеют максимальную мощность и скорость работы. А при помощи высокого КПД удается снизить расход электроэнергии в шесть раз в сравнении с газовыми лазерами той же мощности.

Перспективы развития технологии оптоволоконного лазера

Продажи оптоволоконных лазеров неукоснительно растут, что наиболее ярко прослеживается в автомобильной промышленности. Изготовители автомобилей по достоинству оценили это оборудование и используют его для сварки дизельных форсунок, маркировки колес, металлических элементов.

Также лазеры активно применяют для маркировки, гравировки, резки металлов и пластмасс. Многие производства стараются заменять старые диодные лазеры на современные волоконные.

Рекомендуем статьи

Однако снижение цены и рост производительности – это еще не все плюсы подобного оборудования. В будущем источники оптоволоконных лазеров станут более универсальными благодаря меньшей длительности импульсов, исчисляемой в фемтосекундах.

Поскольку современные производства работают с более твердыми, устойчивыми марками сталей, им необходимы способы обработки таких материалов. И в этой сфере оптоволоконный лазер успел показать себя как стабильный и надежный инструмент, обеспечивающий высокое качество и точность работы.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Лазер для резки металла

Лазер для резки металла

Как известно, лазер для резки металла применяется так же часто, как и механические методы, но при этом он обеспечивает лучшее качество и точность реза, что и определяет популярность этого способа раскроя. Часто можно услышать, что данная технология уже вытеснила остальные и не имеет недостатков, но это не так.

Использование лазера хоть и востребовано, но имеет определенные ограничения. В нашей статье мы расскажем, какой используется лазер для раскроя металла, разберемся в плюсах и минусах данного метода и приведем требования к нему.

Суть лазерной резки металла

В процессе лазерной резки используется луч, генерируемый специальной установкой. Он характеризуется особыми свойствами, а именно: способностью фокусироваться на малой площади и обеспечивать энергию высокой плотности. Благодаря этому лазер вызывает активное разрушение любого материала плавлением, горением или испарением.

Если говорить точнее, то лазер для резки металла способен концентрировать на заготовке энергию плотностью в 108 Ватт на 1 см2. Подобный эффект обеспечивают следующие свойства луча:

  • Монохроматичность, то есть постоянная длина и частота волны, что несвойственно, например, световым волнам. Поэтому лазерным лучом без труда можно управлять обычными оптическими линзами.
  • Высокая направленность и малый угол расходимости, что требуется для высокой фокусировки.
  • Когерентность, то есть полная согласованность большого количества волновых процессов, протекающих в луче. Кроме того, они вступают в резонанс между собой, из-за чего достигается многократное повышение общей мощности излучения.

Под действием луча лазера для резки обрабатываемая область металла быстро нагревается и плавится. Зона плавления быстро распространяется вглубь материала, что объясняется сразу рядом факторов, например, теплопроводностью металла. Далее материал в месте контакта нагревается до температуры кипения, начинается его испарение.

Виды лазера для резки металла

Станок для резки металла лазером включает в себя такие основные части:

  • рабочую среду, которая обеспечивает необходимое излучение;
  • источник энергии или систему накачки, создающую условия для появления электромагнитного излучения;
  • оптический резонатор, то есть систему зеркал, призванных усилить излучение.

С точки зрения рабочей среды выделяют:

Твердотельные лазеры

Главным узлом устройства является осветительная камера, в которой расположен источник энергии и твердое рабочее тело. В роли первого выступает мощная газоразрядная лампа-вспышка, а рабочее тело представляет собой стержень из неодимового стекла. Или в качестве материала стержня может применяться рубин, алюмо-иттриевый гранат, который был предварительно легирован неодимом, иттербием.

Лазер для резки металла

С торцов стержня находится пара зеркал, одно из которых является отражающим, а второе – полупрозрачным. Рабочее тело испускает луч, он многократно отражается внутри него, усиливаясь, и выходит сквозь полупрозрачное зеркало.

Также к твердотельным относятся волоконные лазеры для резки металла и прочих материалов. Их отличие от первого типа состоит в том, что они усиливают излучение при помощи стекловолокна, а за поступление энергии отвечает полупроводниковый лазер.

Проще всего понять, как работают подобные системы, на примере установки с гранатовым стержнем, в который в качестве легирующего компонента добавлен неодим. Ионы последнего выполняют функцию активных центров, поглощающих излучение газоразрядной лампы.

Они возбуждаются, то есть получают избыточную энергию, но потом приходят в исходное состояние, отдавая энергию как фотон или электромагнитное излучение, свет. Фотон оказывает влияние на другие возбужденные ионы, заставляя их также вернуться в первичное состояние, а реакция постепенно усиливается.

Под действием зеркал луч движется в определенном направлении. Фотоны вынуждены постоянно возвращаться в рабочее тело, что вызывает появление новых фотонов и увеличение излучения. В итоге достигается малая расходимость луча в сочетании с высокой концентрацией энергии.

Газовые лазеры

Здесь в качестве рабочего тела выступает углекислый газ в чистом виде либо в сочетании с азотом и гелием. Насос прокачивает газ через газоразрядную трубку, где тот возбуждается электрическими разрядами. Усилить излучение позволяют отражающее и полупрозрачное зеркала.

Лазер для резки металла

Есть разные конструкции газовых лазеров для резки металла: с продольной и поперечной прокачкой и щелевые.

Газодинамические лазеры

Газ со скоростью, превосходящей звуковую, проходит по суженному посередине каналу – его принято называть соплом Лаваля. Так газ резко расширяется и охлаждается, а его атомы приходят в обычное состояние, что сопровождается появлением излучения.

Преимущества и недостатки лазерной резки металла

Резка листового металла и иных материалов лазером позволяет:

  • Раскраивать металлы различной толщины. Для меди этот показатель составляет 0,2–15 мм, для алюминия – 0,2–20 мм, для сталей – 0,2–20 мм, а для нержавеющей стали находится в пределах 50 мм.
  • Обрабатывать хрупкие и легко поддающиеся деформации детали, что объясняется отсутствием контакта между инструментом и заготовкой.
  • Производить изделия любой конфигурации, особенно с использованием ЧПУ для резки металла лазером. В этом случае мастеру нужно только загрузить в программу чертеж, после чего оборудование выполнит работу достаточно точно и без посторонней помощи.
  • Проводить раскрой с высокой скоростью – если нужно изготовить небольшую партию, данный подход дает возможность отказаться от штамповки, литья.
  • Снизить себестоимость готовых деталей, что позитивно отражается на конечной цене изделий. Эта особенность связана с минимальным количеством отходов и возможностью отказаться от дополнительной обработки кромок за счет получение аккуратного реза.
  • Справляться со сложными задачами, так как резка лазером считается практически универсальной операцией.

Однако не стоит забывать о минусах данного метода. Одним из его основных недостатков являются значительные энергозатраты, из-за которых данный способ обработки является наиболее дорогостоящим.

Тем не менее, сопоставление лазерной резки и штамповки показывает, что первый подход является более экономичным, так как для второго нужно дополнительно изготовить оснастку.

Еще один недостаток использования лазера для резки металла кроется в небольшой толщине заготовок, которые могут обрабатываться этим методом – предельный показатель составляет 20 мм.

Нюансы резки лазером различных металлов

Как уже говорилось выше, лазерная резка имеет ограничения по толщине реза. И чем больше толщина листа, тем большие временные затраты требуются на его обработку. При этом ухудшается качество, ровность раскроя.

Лазер для резки металла

Применение лазера для резки предполагает такие особенности для разных металлов:

    • Сталь 3 не деформируется, даже когда речь идет о тонких листах, ведь в процессе обработки отсутствует контакт с режущим инструментом, используется сфокусированный луч.
    • Нержавеющая сталь является очень твердым металлом, поэтому посредством лазера удается значительно сократить временные затраты на раскрой в сравнении с механическим способом.
    • Алюминий относится к достаточно мягким металлам, однако при его механической обработке невозможно обеспечить острую кромку – проблема решается при помощи лазерного метода.
    • Медь входит в число дорогих материалов, поэтому основным преимуществом использования лазера является возможность сократить ее расход. Данный металл имеет сильные светоотражающие свойства, из-за чего приходится ограничивать толщину листа. В противном случае может быть испорчена режущая головка и есть риск проявления конусности. Специалисты рекомендуют раскраивать медные листы толщиной от 3 мм при помощи плазменной резки, ведь так обеспечивается оптимальная эффективность и качество.
    • Латунь имеет свойства, практически полностью совпадающие с характеристиками меди, поэтому может обрабатываться лазером для резки металла при толщине листа до 3 мм. Луч быстро и без искажений раскраивает тонкие листы латуни, заготовки не деформируются, рез не имеет конусности, окалин.
    • Черная/оцинкованная сталь разрезается лазером, если имеет толщину в пределах 20 мм. При превышении данного показателя значительно снижается энергоэффективность и качество работы.
    • Нержавейка достаточно твердая, поэтому лазер выбирают для раскроя листов толщиной до 10 мм. Большая толщина негативно отражается на качестве края деталей.
    • Алюминий режут лазером при толщине до 8 мм. Здесь также происходит снижение энергоэффективности при превышении указанной цифры, поскольку речь идет о тугоплавком металле.
    • Медь и латунь обрабатывают этим методом, если толщина листа составляет до 3 мм. На скорости и качестве обработки отрицательно сказываются высокие светоотражающие свойства данных материалов.

    Обычно лазер используют для резки листов металла небольшой толщины, а также в случаях, когда необходимо сформировать геометрически правильные отверстия для точных соединений.

    С обработкой листов толщиной свыше 3 мм отлично справляется плазменный станок, не теряя при этом скорости работы. По качеству реза он лишь немного уступает лазеру, но заготовки требуют дополнительной обработки. Под последней понимают, например, удаление окалины с кромки.

    Современные станки для лазерной резки

    Сегодня на рынке представлен большой выбор техники, осуществляющей раскрой лазером. Многокоординатное оборудование вытесняет шумные механические резаки с низким уровнем производительности.

    Лазер для резки металла

    Мощность конкретного лазера для резки металлов подбирается в соответствии с особенностями производства и экономическими требованиями.

    Современные прецизионные станки с ЧПУ обладают точностью раскроя различных материалов до 0,005 мм и могут обрабатывать площадь до нескольких квадратных метров. Также подобное оборудование предполагает высокую автоматизацию производства, а значит, минимальное участие человека во всех процессах.

    Для этого в программе задают необходимую геометрию детали. Далее системы настройки фокуса сами устанавливают расстояние, способное обеспечить самый эффективный раскрой.

    Теплообменники отвечают за регулировку температуры лазерной установки, а оператор получает только контрольные данные по актуальному состоянию всего устройства.

    Лазерный станок имеет клапаны, при помощи которых подсоединяется газобаллонное оборудование для подачи вспомогательных газов к месту раскроя. Предусмотренная система дымоулавливания включает вытяжную вентиляцию лишь на время резки, сокращая таким образом затраты на работу этого компонента системы.

    Зона раскроя защищена кожухом, что обеспечивает необходимый уровень безопасности персонала.

    Вся работа мастера с лазером для резки металла состоит во введении необходимых характеристик, после чего ему остается только забрать готовое изделие. Производительность оборудования определяется параметрами станка, уровнем подготовки оператора, отвечающего за программный код.

    Методика лазерной резки металлов может применяться на полностью роботизированных производствах, где персоналу не требуется заниматься тяжелым трудом.

    Сегодня существуют как универсальные, так и специализированные лазерные станки. Первые имеют значительно более высокую цену, зато с их помощью удается проводить целый ряд операций, создавать детали сложной формы. Потребитель сам может выбирать модель, исходя из своих потребностей, ведь на рынке представлен богатый выбор предложений.

    Подготовка макета для лазерной резки

    Производство деталей с помощью лазера для резки металла предполагает выполнение таких этапов:

    1. Оформление идеи.
    2. Подготовка художественного эскиза.
    3. Формирование технического макета модели.
    4. Изготовление тестовой детали.
    5. Проверка параметров, доработка, если она требуется.
    6. Запуск производства.

    Создание технического макета требует особого внимания, поскольку точность выполнения работы на данном этапе определяет качество итогового изделия. Любые чертежи для дальнейших операций с применением лазера выполняются в «AutoCAD» или «CorelDraw», поскольку станки работают с форматами именно этих программ.

    К макетам предъявляются такие требования:

    • масштаб чертежа 1:1;
    • замкнутые контуры, будь то внешние или внутренние;
    • CIRCLE, LINE, ARC используются в качестве команд для создания контуров;
    • команды ELLIPSE, SPLINE не учитываются;
    • наложение линий приводит к тому, что луч повторно проходит по одной траектории;
    • в чертеже обязательно фиксируется число деталей и используемый материал;
    • вся информация о чертеже содержится в одном файле.

    Лазерная резка стали и цветных металлов сегодня очень популярна. Заказчики небольших партий изделий обращаются в профильные предприятия, ценя их способность быстро выдавать чистовые детали нестандартной формы.

    Лазерные технологии нашли применение в декоративном творчестве, применяются для создания дизайнерских украшений, сувениров.

    При выборе лазера в качестве инструмента для резки металла важно учитывать окупаемость оборудования, затраты на эксплуатацию. На данный момент подобные системы доступны преимущественно крупным предприятиям, имеющим большой производственный цикл.

    Однако развитие технологий неизбежно приведет к снижению цены на станки и сокращению расхода электроэнергии. А значит, в будущем лазеры займут место прочих инструментов для раскроя разнообразных материалов.

    Читайте также: