Легкоплавкие металлы и сплавы

Обновлено: 05.10.2024

ЛЕГКОПЛА́ВКИЕ МЕТА́ЛЛЫ, металлы (см. МЕТАЛЛЫ) , имеющие температуру плавления Тпл ниже 500°С. Наиболее широкое применение среди легкоплавких металлов получили цинк (см. ЦИНК (химический элемент)) Zn (Тпл 419 о С), свинец (см. СВИНЕЦ) Pb (Тпл 327 о С), кадмий (см. КАДМИЙ) Cd (Тпл 321 о С), таллий (см. ТАЛЛИЙ) Tl (Тпл 303 о С), висмут (см. ВИСМУТ) Bi (Тпл 271 о С), олово (см. ОЛОВО) Sn (Тпл 232 о С), индий (см. ИНДИЙ) In (Тпл 157 о С), галлий (см. ГАЛЛИЙ) Ga (Тпл 30 о С), ртуть (см. РТУТЬ) Hg (Тпл — 39 о С) и другие.
Эти металлы широко применяются в элекро- и радиотехнике. Их используют в качестве антикоррозионных покрытий, в составе антифрикционных сплавов, в качестве проводниковых материалов.
Свинец применяют для изготовления подшипниковых сплавов, в плавких предохранителях, мягких припоях, свинцовых аккумуляторах и в кабельных оболочках. Так как свинец хорошо поглощает g-лучи, его используют для защиты от радиоактивного излучения.
Олово применяют в качестве защитного покрытия стали (лужение), оно входит в состав мягких припоев.
Цинк применяют в качестве антикоррозионного покрытия стальных изделий, входит в состав латуней (см. ЛАТУНЬ) . На поверхности стального изделия цинк является эффективным анодным покрытием, так как обладает значительным отрицательным электродным потенциалом.
Галлий и легкоплавкие сплавы на его основе хорошо смачивают твердые материалы, поэтому их применяют вместо ртути для создания жидких затворов в вакуумной аппаратуре. Галлиевые затворы надежнее сохраняют вакуум, чем ртутные.
Кадмий используется в производстве фотоэлементов, щелочных аккумуляторов, в качестве защитного антикоррозионного электролитического покрытия. Ртуть применяется в газоразрядных лампах, для ртутных контактов в реле, в качестве жидкого катода в ртутных выпрямителях.

Энциклопедический словарь . 2009 .

Полезное

Смотреть что такое "ЛЕГКОПЛАВКИЕ МЕТАЛЛЫ" в других словарях:

легкоплавкие металлы — [low melting metals группа цветных металлов с низкой tпл, включа ющая Zn, Cd, Hg, Sn, Pb, Bi, TI, Sb и элементы с ослабленными металлическими свойствами: Ga, Ge; Смотри также: Металлы щелочные металлы … Энциклопедический словарь по металлургии

легкоплавкие сплавы — [low melting alloys] сплавы с низкой tпл, основные компоненты которых легкоплавкие металлы: Hg (tпл = 39 °С), Ga (30 °С), In (156 °С), Sn (232 °С), Bi (271 *С), Pb (327 °С), Cd (321 °С) и Zn (419 °С) … Энциклопедический словарь по металлургии

Металлы — [metals] простые вещества, обладающие в обычных условиях характерными свойствами: высокой электро и теплопроводностью, отрицательным температурным коэффициентом электропроводности, способностью хорошо отражать электромагнитные волны,… … Энциклопедический словарь по металлургии

ультрачистые металлы — [ultra pure metals] высокочистые, особочистые металлы, в которых массовая доля примесей не превышает 1 • 10 3%. Основные стадии технологии производства ультрачистых металлы: получение чистых химических соединений, восстановление их до… … Энциклопедический словарь по металлургии

тугоплавкие металлы — [refractory metals] металлы, у которых tпл > fFe = 1539 °С (например, Cr, V, W, Mo, Nb и др.); применяют как легирующие добавки в стали, а также в качестве основы соответствующих специальных сплавов; Смотри также: Металлы щелочные металлы … Энциклопедический словарь по металлургии

радиоактивные металлы — [radioactive metals] металлы, занимающие места в Периодической системе элементов с атомный номер больше 83 (Bi), испускающие радиоактивные частицы: нейтроны, протоны, альфа , бетачастицы или гамма кванты. В природе обнаружены: At, Ac, Np, Pa, Ро … Энциклопедический словарь по металлургии

переходные металлы — [transition metals] элементы Iб и VIIIб подгруппы Периодической системы. У атомов переходных металлов внутренние оболочки заполнены только частично. Различают d металлы, у которых происходит постепенное заполнение 3d (от Se до Ni), 4d (от Y до… … Энциклопедический словарь по металлургии

первичные металлы — [primary metals] металлы, полученные из руды или рудных материалов, в отличие от вторичных металлов, полученных из отходов и лома (например, первичный и вторичный Al); Смотри также: Металлы щелочные металлы чистые металлы … Энциклопедический словарь по металлургии

Легкоплавкие сплавы


Легкоплавкие сплавы — это, как правило, эвтектические металлические сплавы, имеющие низкую температуру плавления, не превышающую температуру плавления олова. Для получения легкоплавких сплавов используются свинец, висмут, олово, кадмий, таллий, ртуть, индий, галлий и иногда цинк. За нижний предел температуры плавления всех известных легкоплавких сплавов принимается температура плавления амальгамы таллия (−61 °C), за верхний предел взята температура плавления чистого олова.

Сплавы щелочных металлов также способны к образованию легкоплавких эвтектик и могут быть отнесены к группе легкоплавких сплавов. Так сплавы системы натрий-калий-цезий имеют рекордно низкую температуру плавления: Советский сплав плавится при −78 °C. Однако, применение этих сплавов затруднено из-за их высокой химической активности.

Содержание

Виды и составы легкоплавких сплавов

Состав
сплава
Tпл,
°C
Плот-
ность
г/см³
Область
приме-
нения
Примечание Другие
сведения
висмут 76,5 %, таллий 23,5 % 198 Т, П Кислотоупорен Эвтектический сплав
олово 89 %, цинк 11 % 198 Т, П
висмут 47,5 %, таллий 52,5 % 188 Т Эвтектический сплав
висмут 44,2 %, свинец 9,8 %, таллий 48 % 186 Т ∑? Эвтектический сплав
олово 62 %, свинец 38 % 183 8,5 Т, П Эвтектический сплав, ~ПОС 61
олово 64 %, свинец 36 % 181 Т, П
натрий 70 %, ртуть 30 % 181 Т Хим.акт, Токсичен.
кадмий 32 %, олово 68 % 177 (178) Т, П Токсичен. Эвтектический сплав
свинец 32 %, олово 68 % 177 Т, П
висмут 12,8 %, свинец 49 %, олово 38,2 % 172 Т, П
калий 80 %, таллий 20 % 165 Т Хим.акт
висмут 13,3 %, свинец 46 %, олово 40,1 % 165 Т, П ∑?
висмут 10,5 %, свинец 42 %, олово 47,5 % 160 Т, П
висмут 13,7 %, свинец 44,8 %, олово 41,5 % 160 Т, П Эвтектический сплав
висмут 16 %, свинец 36 %, олово 48 % 155 Т, П
висмут 18,1 %, свинец 36,2 %, олово 45,7 % 151 Т, П
висмут 25 %, свинец 50 %, олово 25 % 149 Т, П
висмут 62,5 %, кадмий 37,5 % 149 Т, П Токсичен.
висмут 19 %, свинец 38 %, олово 43 % 148 Т, П
висмут 50 %, свинец 50 % 145 Т, П
свинец 32 %, олово 50 %, кадмий 18 % 145 Т, П Токсичен.
висмут 60 %, кадмий 40 % 144 Т, П Токсичен. Эвтектический сплав
свинец 42 %, олово 37 % 143 Т, П ∑?
кадмий 18,2 %, свинец 30,6 %, олово 51,2 % 142 8,8 Т, П Токсичен. ~ПОСК 50-18
висмут 57 %, таллий 43 % 139 Т Эвтектический сплав
висмут 57 %, олово 43 % 138 Т, П Эвтектический сплав
висмут 58 %, олово 42 % 136,5 Т, П
ртуть 70 %, калий 30 % 135 Т Хим.акт, Токсичен.
калий 90 %, таллий 10 % 133 Т Хим.акт
висмут 28,5 %, свинец 43 %, олово 28,5 % 132 Т, П
висмут 56 %, олово 40 %, цинк 4 % 130 Т, П Эвтектический сплав
висмут 43 %, свинец 43 %, олово 13 % 128 Т, П ∑?
висмут 27,2 %, свинец 44,5 %, олово 33,3 % 127 Т, П ∑?
висмут 56,5 %, олово 43,5 % 125 Т, П Эвтектический сплав
висмут 56 %, свинец 44 % 125 Т, П
олово 52 %, индий 48 % 125 П ~ПОИн 52
висмут 55,5 %, свинец 44,5 % 124 Т, П Эвтектический сплав
висмут 33,4 %, свинец 33,3 %, олово 33,3 % 123 Т, П ~ПОСВ 33
висмут 36,5 %, свинец 36,5 %, олово 27 % 117 Т, П
висмут 40 %, свинец 40 %, олово 20 % 113 Т, П Висмутовый Сплав
висмут 42,1 %, свинец 42,1 %, олово 15,8 % 108 Т, П
висмут 48 %, свинец 28,5 %, олово 14,5 %, ртуть 9 % 105 Т
висмут 53 %, олово 26 %, кадмий 21 % 103 Т, П Токсичен.
висмут 54,4 %, свинец 25,8 %, олово 19,8 % 101 Т, П
висмут 50 %, свинец 28 %, олово 22 % 100 Т, П Сплав Роуза (Розе)
висмут 50 %, свинец 40 %, олово 10 % 100 Т, П
висмут 40 %, свинец 20 %, олово 40 % 100 Т, П, М
висмут 47 %, свинец 35,3 %, олово 17,7 % 98 Т, П, М
висмут 52,5 %, свинец 32 %, олово 12,5 % 96 Т, П, М ∑?
висмут 52 %, свинец 32 %, олово 16 % 96 Т, П, М
висмут 50 %, олово 25 %, кадмий 25 % 95 Т, П, М Токсичен.
висмут 49,9 %, свинец 43,4 %, кадмий 6,7 % 95 Т, П, М Токсичен.
висмут 50 %, свинец 31 %, олово 19 % 94,5 Т, П, М
висмут 50 %, свинец 31,2 %, олово 18,8 % 94 Т, П, М Сплав Ньютона
висмут 50 %, свинец 25 %, олово 25 % 93 (93,75) Т, П, М Сплав Розе
висмут 50 %, свинец 30 %, олово 20 % 92 (91,6) Т, П, М Сплав Лихтенберга
висмут 52 %, кадмий 8 %, свинец 40 % 91,5 Т, П, М Токсичен.
висмут 51,6 %, кадмий 8,1 %, свинец 40,3 % 91 Т, П, М Токсичен.
висмут 55,2 %, свинец 33,3 %, таллий 11,5 % 91 Т Эвтектический сплав
натрий 50 %, ртуть 50 % 90 Т Хим.акт, Токсичен.
натрий 90 %, ртуть 10 % 90 Т Хим.акт, Токсичен.
висмут 50 %, олово 25 %, свинец 25 % 90 Т, П, М ~ПОСВ 50, сплав Розе
висмут 53,2 %, кадмий 7,1 %, свинец 39,7 % 89,5 Т, П, М Токсичен.
натрий 96,7 %, золото 3,3 % 80 Т Хим.акт. Эвтектический сплав
натрий 80 %, ртуть 20 % 80 Т Хим.акт, Токсичен.
висмут 35,3 %, кадмий 9,5 %, свинец 35,1 %, олово 20,1 % 80 Т, П, М Токсичен.
висмут 58 %, индий 17 %, олово 25 % 79 Т, П, М Эвтектический сплав. Сплав Филдса (англ.) русск. .
натрий 90 %, калий 10 % 77 Т Хим.акт
висмут 50 %, свинец 34,5 %, олово 9,3 %, кадмий 6,2 % 77 Т, П, М Токсичен.
висмут 50 %, свинец 34,4 %, олово 9,4 %, кадмий 6,2 % 76,5 Т, П, М Токсичен.
висмут 27,5 %, кадмий 34,5 %, свинец 27,5 %, олово 10,5 % 75 Т, П, М Токсичен.
висмут 33,7 %, индий 65,3 % 72 Т, П, М ∑? Эвтектический сплав
висмут 38,4 %, свинец 30,8 %, олово 15,4 %, кадмий 15,4 % 71 Т, П, М Токсичен.
висмут 49,5 %, свинец 27,27 %, олово 13,13 %, кадмий 10,1 % 70 Т, П, М Токсичен. Эвтектический сплав
висмут 50 %, свинец 26,3 %, олово 13,3 %, кадмий 10 % 70 Т, П, М Токсичен.
натрий 70 %, ртуть 30 % 70 Т Хим.акт, Токсичен.
висмут 48,8 %, свинец 24,3 %, олово 13,8 %, кадмий 13,1 % 68,5 Т, П, М Токсичен.
висмут 52,2 %, свинец 26 %, олово 14,8 %, кадмий 7 % 68,5 Т, П, М Токсичен.
висмут 50,1 %, свинец 22,6 %, олово 13,3 %, кадмий 10 % 68 Т, П, М Токсичен. Сплав Липовица
висмут 50 %, свинец 25 %, олово 12,5 %, кадмий 12,5 % 68 Т, П, М Токсичен. Сплав Вуда
висмут 50,4 %, свинец 25,1 %, олово 14,3 %, кадмий 10,2 % 67,5 Т, П, М Токсичен. Сплав Вуда
висмут 50,1 %, свинец 24,9 %, олово 14,2 %, кадмий 10,8 % 65,5 Т, П, М Токсичен. Сплав Вуда
натрий 99 %, таллий 1 % 64 Т Хим.акт Эвтектический сплав
висмут 50,0 %, олово 12,5 %, свинец 25 %, кадмий 12,5 % 60,5 Т, П, М, Ж Токсичен.
висмут 53,5 %, олово 19 %, свинец 17 %, ртуть 10,5 % 60 Т токсичен
натрий 60 %, ртуть 40 % 60 Т Хим.акт. Токсичен.
натрий 80 %, калий 20 % 58 Т Хим.акт.
висмут 49,4 %, индий 21 %, свинец 18 %, олово 11,6 % 57 Т, П, М, Ж Эвтектический сплав
ртуть 70 %, натрий 30 % 55 Т токсичен, реаг.с водой.
висмут 42 %, свинец 32 %, ртуть 20 %, кадмий 6 % 50 Т токсичен
висмут 36 %, ртуть 30 %, свинец 28 %, кадмий 6 % 48 Т токсичен
висмут 47,7 %, индий 19,1 %, олово 8,3 %,
кадмий 5,3 %, свинец 22,6 %
47 Т, П, М, Ж Токсичен. Эвтектический сплав
натрий 50 %, ртуть 50 % 45 Т Хим.акт.
висмут 40,2 %, кадмий 8,1 %, индий 17,8 %,
свинец 22,2 %, олово 10,7 %, таллий 1 %
41,5 Т, П, М, Ж Токсичен.
натрий 70 %, калий 30 % 41 Т ∑?Хим.акт.
натрий 60 %, калий 40 % 26 Т Хим.акт.
галлий 95 %, цинк 5 % 25 5,95 Т
натрий 85,2 %, ртуть 14,8 % 21,4 Т Хим.акт.
галлий 92 %, олово 8 % 20 Т
натрий 56 %, калий 44 % 19 Т Хим.акт.
калий 90 %, натрий 10 % 17,5 Т Хим.акт.
галлий 82 %, олово 12 %, цинк 6 % 17 6,13 Т
галлий 76 %, индий 24 % 16 6,235 Т
галлий 67 %, индий 29 %, цинк 4 % 13 6,355 Т
калий 50 %, натрий 50 % 11 Т Хим.акт.
Галлий 67 %, индий 20,5 %, олово 12,5 % 10,6 Т
калий 60 %, натрий 40 % 5 Т Хим.акт.
галлий 62 %, индий 25 %, олово 13 % 4,85 6,44 Т
галлий 61 %, индий 25 %, олово 13 %, цинк 1 % 3 6,4 Т Русский сплав
калий 70 %, натрий 30 % −3,5 Т, Л Хим.акт.
рубидий 91,8 %, натрий 8,2 % −4,5 1,485 Т Хим.акт.
калий 80 %, натрий 20 % −10 0,878 Т, Л Хим.акт.
калий 78 %, натрий 22 % −11,4 Т, Л Хим.акт.
калий 77,3 %, натрий 22,7 % −12,5 0,882 Т, Л, И Хим.акт.
цезий 93 %, натрий 7 % −28 1,765 Т, И Хим.акт.
цезий 94,5 %, натрий 5,5 % −30 1,778 Т, И Хим.акт.
ртуть 97,2 %, натрий 2,8 % −48,2 13,16 Т Реаг.с водой.
ртуть 91,44 %, таллий 8,56 % −61 13,45 Т Наиболее легкоплавкая амальгама
натрий 12 %, калий 47 %, цезий 41 % −78 1,28 Т, И Реаг. с водой. Советский сплав

Примечание: Несколько различных Tпл для одного и того же сплава — результат разночтений источников данных

  • Т — теплоноситель
  • П — припой
  • М — модельный литейный сплав
  • Ж — для датчиков пожарной сигнализации
  • Л — лабораторный для абсолютирования растворителей
  • И — рабочее тело ионных ракетных двигателей

Области применения легкоплавких сплавов

Во всех областях применения легкоплавких сплавов главным востребованным свойством является заданная низкая температура плавления. Это свойство, в частности, используется для пайки микросхем, которые могут выйти из строя из-за перегрева при пайке обычными припоями. Кроме того, эти сплавы должны иметь определённую плотность, прочность на разрыв, химическая инертность, вакуумоплотность, теплопроводность. В настоящий момент основными областями применения легкоплавких сплавов являются:

Легкоплавкие металлы и сплавы на их основе

Сравнительная характеристика физических свойств ряда легкоплавких металлов приведена в таблице 7.1. Наиболее широкое применение в качестве машиностроительных материалов нашли цинк, свинец, олово и сплавы на их основе. Кроме этих элементов, компонентами сплавов на основе легкоплавких металлов являются также такие металлы с низкой температурой плавления, как сурьма, висмут, индий и другие.

Таблица 7.1 - Сравнительная характеристика легкоплавких металлов

Температура плавления, °С

Температура кипения или сублимации,°С

Рекомендуемые материалы

Удельное электросопротивление, мкОм*см (20 °С)

Цинк сравнительно недефицитный металл, поскольку его содержание в земной коре составляет 0,02%. Имеет гексагональную решетку. Он пластичен в нагретом состоянии, особенно при 100-150°С, однако, его пластичность в холодном состоянии невелика. При холодной деформации одновременно с прочностью увеличивается и пластичность цинка. Аллотропических превращений не испытывает. Чистый цинк характеризуется следующими свойствами: sB =150 Н/мм 2 , d =20 %, y =70 %. Очень чистый цинк хорошо сопротивляется коррозии в атмосферных условиях и в морской воде. Однако, уже незначительное количество примесей, в частности, свинца, заметно снижает его устойчивость против коррозии.

Содержание в цинке и его сплавах таких примесей, как олово и свинец, ограничивается тысячными или сотыми долями процента. Это обусловлено тем, что как олово, так и свинец практически не растворяются в твердом цинке, образуют легкоплавкие эвтектики по границам зерен (двойную - 91% Sn + 9% Zn, Тпл = 198°С в присутствии Sn и тройную при одновременном присутствии как Sn, так и Pb с Тпл=150 °С), что охрупчивает цинк и его сплавы при повышенных температурах, приводя к образованию “горячих” трещин при обработке давлением и охлаждении затвердевших отливок. Содержание железа также должно быть незначительным (менее 0,1%), поскольку соединение цинка с железом ( d -фаза) значительно охрупчивает сплавы цинка.

Цинк как конструкционный материал практически не используется. Основные области использования цинка: цинкование стали для защиты от коррозии, получение цинковых сплавов, литье под давлением, изготовление полуфабрикатов, получение сплавов других металлов (например, латуней), легирование сплавов, получение цинковых соединений. Рафинированный цинк (с содержанием Zn не менее 98,7%, полученный путем дистилляции или электролиза первичного цинка) применяется для изготовления изделий методом холодного выдавливания, обработки давлением, вытяжки и чеканки. Черновой цинк (с содержанием цинка не менее 97,5%) используется для жестяных работ, подвергается обработке давлением и простой вытяжке.

Основные области применения свинца:

- изготовление свинцовых оболочек подземных кабелей для их защиты от почвенной коррозии, которая усиливается под воздействием блуждающих токов;

- изготовление элементов защиты от рентгеновского и других видов ионизирующего излучения; изготовление отдельных элементов и защитных оболочек для химических аппаратов;

- получение конструкционных сплавов на основе свинца;

- как легирующий элемент в сплавах цветных металлов;

- изготовление элементов аккумуляторов, хотя чаще для этих целей используются сплавы свинца;

- для получения некоторых видов химических соединений свинца для изготовления антидетонаторных средств, красок.

Олово. В сравнении с Zn, Pb, Sb, Bi олово имеет более низкую температуру плавления (см. табл. 7.1), значительно легче свинца. но несколько тяжелее цинка. Является дорогим металлом: его стоимость примерно в 25 раз больше, чем цинка и в 15-20 раз больше, чем свинца. Как и в случае свинца, деформация олова при комнатной температуре может рассматриваться как горячая, поскольку температура рекристаллизации олова находится ниже комнатной. Олово имеет высокую пластичность и повышенную стойкость против коррозии в атмосферных условиях и некоторых растворах кислот. Олово обладает полиморфизмом: высокотемпературная модификация - b -Sn (белое олово) имеет тетрагональную решетку и обладает металлическими свойствами и плотностью 7,29 г/см 3 . Низкотемпературная модификация - a -Sn (серое олово) имеет кристаллическую решетку типа алмаза и является полупроводником с явно выраженной ковалентной связью, имеет плотность 5,81 г/см 3 . Температура равновесия То=13,2 °С, однако, в реальных условиях полиморфное превращение становится заметным при температуре ниже 0 °С. Аллотропическое превращение белого олова в серое характеризуется изменением не только пространственной решетки, но и типа связи; при этом олово рассыпается в порошок (явление называется “оловянной чумой”). При обратном превращении серого олова в белое повышение давления ускоряет его, причем, чем выше температура и скорость нагрева, тем при меньшем давлении наступает быстрое полиморфное превращение. Олово обладает низкой прочностью (sB около 15 Н/мм 2 ), хотя и весьма высокой пластичностью (d около 60%) и коррозионной стойкостью. Как конструкционный материал практически не применяется.

Основными областями применения олова являются: покрытие стали для повышения коррозионной стойкости - лужение жести (белая жесть для изготовления консервных банок), поскольку олово не токсично; производство сплавов на основе олова - баббитов, припоев; легирование сплавов цветных металлов (например, бронз, латуней).

7.2. Подшипниковые сплавы (антифрикционные материалы)

с мягкой матрицей

7.2.1. Общая характеристика подшипниковых материалов

Антифрикционные материалы предназначены для изготовления подшипников (опор) скольжения и вкладышей узлов трения.

Подшипниковые сплавы должны удовлетворять следующим требованиям:

- обеспечивать низкий коэффициент трения с контактной поверхностью изделия;

- обеспечивать малый износ обеих трущихся поверхностей;

- материал должен выдерживать достаточные удельные давления.

Эти требования будут удовлетворены, если подшипниковый сплав будет обладать следующими свойствами: высокой теплопроводностью; хорошей смачиваемостью поверхности смазочным материалом; способностью образовывать на поверхности защитные пленки мягкого металла; хорошей прирабатываемостью, основанной на способности материала при трении легко пластически деформироваться и увеличивать площадь фактического контакта, что приводит к снижению местного давления и температуры на поверхности подшипника.

Для подшипников скольжения используют:

а) металлические материалы;

б) неметаллические материалы - пластмассы, как термореактивные (текстолит), так и термопластические (такие полимеры, как полиамиды ПС 10, анид, капрон, фторопласт);

в) комбинированные материалы - самосмазывающиеся подшипники из порошковых материалов (железо - графит, железо - медь - графит, бронза - графит при содержании графита в пределах 1-4%), металлофторопластовые подшипники из 4-слойной металлофторопластовой ленты;

г) минералы - полудрагоценные и драгоценные камни - естественные (агат) и искусственные (рубин, корунд), или их заменители - ситаллы (стеклокристаллические материалы); такие опоры и подшипники используются в прецизионных приборах.

Металлические материалы по своей структуре подразделяются на два типа:

1) сплавы с мягкой матрицей и твердыми включениями, к которым и относятся сплавы на основе легкоплавких металлов (баббиты и цинковые антифрикционные материалы), а также сплавы на основе меди (бронзы и латуни);

2) сплавы с твердой матрицей и мягкими включениями, к которым относятся свинцовистая бронза БрС30, алюминиевые сплавы с оловом ( например, сплав АО 9-2, содержащий 9% олова и 2% меди), а также серые чугуны.

Сравнительная характеристика ряда антифрикционных материалов приведена в таблице 7.2.

7.2.2. Легкоплавкие подшипниковые сплавы с мягкой

При применении мягких легкоплавких подшипниковых сплавов обеспечивается меньший износ шейки вала. Они имеют и минимальный коэффициент трения со сталью (см. табл. 7.1) и хорошо удерживают смазку.

В качестве таких материалов используют: а) сплавы системы Sn - Sb (+ Cu) - оловянные баббиты; б) сплавы системы Pb - Sn - Sb (+ Cu и другие элементы) - свинцово-оловянные баббиты; в) сплавы системы Pb - Sb (+ Cu) - свинцовые баббиты и системы Pb - Ca - свинцово-кальциевые баббиты; г) сплавы системы Zn - Cu - Al - цинковые антифрикционные материалы (иногда называемые цинковыми баббитами); д) сплавы системы Al - Sn (+ Cu) - алюминиевые подшипниковые сплавы(иногда называемые алюминиевыми баббитами).

На рисунке 7.1 представлены диаграммы состояния сплавов ряда систем.

В оловянных баббитах (Б 88, Б 83), состав и свойства которых приведены в табл. 7.3, мягкой основой является a -твердый раствор на основе олова, а твердыми частицами - b‘-фаза - твердый раствор на базе интерметаллидного соединения SnSb , а вследствие ввода 2,5-6,5% Cu для предотвращения сильной ликвации - и частицы Cu3Sn, образующие “каркас” еще до начала кристаллизации других фаз. Оловянные (или, как их часто называют, оловянносурьмяномедные) баббиты обладают наилучшими свойствами и имеют максимальные значения рабочих параметров, определяющих допустимый режим работы.

Легкоплавкие металлы – список, особенности и значение для человека

Однозначности в классификации этой группы металлов у специалистов нет. Их главное свойство содержится в названии – легкоплавкие металлы.

Легкоплавкие металлы

Что представляет собой

Как понятно из названия, легкоплавким считается металл с малой температурой плавления.

В номенклатуре, принятой Международным союзом теоретической и прикладной химии (ИЮПАК), термин «легкоплавкие металлы» отсутствует.

У специалистов единства тоже нет. Одни выставляют «порог плавления» в 500°С. Для других легкоплавким металлом является металл, расплавляющийся при менее 600°С.

Перечень

В соответствии с основной классификацией (температура плавления не более 500°С), к списку легкоплавов причислены следующие элементы:

Название Температура плавления (°С)
Цинк 419
Палладий 327
Свинец 327
Кадмий 321
Таллий 303
Висмут 271
Полоний 254
Олово 232
Индий 157
Натрий 98
Калий 63
Рубидий 39
Галлий 30
Цезий 28
Ртуть – 39

Ртуть – самый легкоплавкий металл. Она единственная из группы плавится на морозе.

Галлий называют металлом, тающим в руках (нормальная температура тела человека выше точки плавления вещества почти на семь градусов).

Классификация

Легкоплавы подразделяются на две группы:

  1. Тяжелые легкоплавкие металлы – кадмий, кобальт, свинец, ртуть. легкоплавкие металлы – кадмий, олово, галлий, индий, таллий, полоний, висмут.

К драгоценным элементам причислен палладий.

палладий металл

Палладий

Легкие элементы полоний и висмут радиоактивны .

Висмут

Висмут

Олово, таллий, свинец, цезий – мягкие легкоплавы.

свинец

Свинец

Самый мягкий легкоплавкий металл – цезий (0,2 по шкале твердости Мооса).

Где и как применяются

Для всех сфер применения решающее преимущество данной группы – низкая температура плавления.

Особенности использования

На основании этого свойства легкоплавких металлов определены способы использования:

  • Мягкие легкоплавы – материал пайки микросхем. Пайка обычным припоем исключена, поскольку создает перегрев, который их расплавит.
  • Гораздо чаще используются сплавы. Они легкоплавки, но плотные, прочные на разрыв, химически инертны.
  • Самые востребованные соединения: свинцовые, оловянные, кадмиевые, цинковые, ртутные. А также с висмутом, таллием, индием, галлием как базисным компонентом.

Легкоплавкие сплавы – это конгломерат металлов с температурой плавления не выше «оловянной» (232°С). Нижний предел – минус 61°C. На таком холоде плавится амальгама таллия.

Области применения

Сферы применения материала: энергетика, машиностроение, электро-, радиотехника, химпром:

  • Основа жидких теплоносителей, смазка.
  • Выплавка моделей сложной конфигурации.
  • Пожарный сегмент: термодатчики, клапаны тушения огня, другая аппаратура раннего оповещения о возгораниях.
  • Основа термометров разных видов и предназначения.
  • Верхний слой, предохранители, термодатчики микроэлектроники.
  • Медицина. Материал протезов, фиксатор при переломах.

Это также проводники, антикоррозионные покрытия, компонент антифрикционных сплавов.

Используются уникальные свойства отдельных позиций из списка легкоплавов:

  • Свинец – материал подшипников, предохранителей, аккумуляторов, оболочка кабеля. Это щит от радиоактивного излучения.
  • Олово – защитный слой стали.
  • Цинк – компонент латуней, анодное покрытие стальных изделий с высоким КПД.
  • Галлий – заменитель ртути, сохраняющий вакуум в аппаратуре.

Легко плавящиеся сплавы образуют также щелочные металлы. На практике такие материалы используются мало из-за чрезмерной химической активности.

Биологическое воздействие

Влияние легкоплавов на организм человека различно:

  • Без калия как удобрения растения чахнут, плохо плодоносят. В организме человека работает в дуэте с натрием. Под его контролем жизненно важные процессы.
  • Микродозы кадмия содействуют метаболизму. Однако вещество, его растворимые соединения токсичны.
  • Висмут токсичен, но безопасен для биологических организмов. Это радиоактивное вещество, поэтому аптечные препараты с ним нужно применять строго по инструкции.
  • О токсичности галлия точки зрения противоположны – от малой до высокой степени. Но интоксикация веществом реальна.
  • Бесполезные для человека как биологического объекта свинец и ртуть токсичны. Особенно опасна ртуть из разбившегося домашнего градусника.

На особом счету таллий. Мягкое серебристое с сероватой голубизной вещество – сильнейший яд. Его «вывела в свет» как средство получения наследства, решения других проблем Агата Кристи. Описание яда, технологии его применения содержит десяток романов королевы английского детектива.

двойные или многокомпонентные металлические сплавы, температура плавления которых не превышает температуру плавления олова (около 232°С). В состав Л. с. входят в различных соотношениях Sn, Bi, In, Pb, Cd, Zn, Sb, Ga, Hg и др. элементы (см. табл.). Некоторые Л. с. плавятся не при постоянной температуре, а в интервале температур. Большинство Л. с. при затвердевании дают усадку; сплавы, содержащие более 55% Bi, при затвердевании расширяются. Л. с. применяются в качестве припоев, плавких предохранителей в электротехнической и тепловой аппаратуре, прессформ и моделей для изготовления отливок сложной формы из металлов и пластмасс, в качестве металлических замазок и материалов для уплотнений. См. также Вуда сплав.

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Смотреть что такое "Легкоплавкие сплавы" в других словарях:

ЛЕГКОПЛАВКИЕ СПЛАВЫ — сплавы, температура плавления которых ниже, чем у олова (ок. 232 .С). Содержат в различных сочетаниях и соотношениях Sn, Bi, In, Pb, Cd, Zn, Sb, Ga, Hg и др. элементы. Применяются в качестве припоев, плавких предохранителей, металлических замазок … Большой Энциклопедический словарь

Легкоплавкие сплавы — … Википедия

легкоплавкие сплавы — сплавы, температура плавления которых ниже, чем у олова (около 232°C). Содержат в различных сочетаниях и соотношениях Sn, Bi, In, Pb, Cd, Zn, Sb, Ga, Hg и другие элементы. Применяются в качестве припоев, плавких предохранителей, металлических… … Энциклопедический словарь

ЛЕГКОПЛАВКИЕ СПЛАВЫ — двойные или многокомпонентные сплавы, tпл которых не превышает tпл олова (232° С). В состав легкоплавких сплавов входят Sn, Bi, In, Pb, Cd, Zn, Sb, Ga, Hg (смотри Амальгама) … Металлургический словарь

ЛЕГКОПЛАВКИЕ СПЛАВЫ — двойные или многокомпонентные сплавы, темп pa плавления к рых не превышает темп ру плавления олова (232° С). В состав Л. с. входят в различных соотношениях олово, висмут, индий, свинец, кадмий, цинк, сурьма, галлий, ртуть (см. Амальгама) и др.… … Большой энциклопедический политехнический словарь

ЛЕГКОПЛАВКИЕ МЕТАЛЛЫ — ЛЕГКОПЛАВКИЕ МЕТАЛЛЫ, металлы (см. МЕТАЛЛЫ), имеющие температуру плавления Тпл ниже 500°С. Наиболее широкое применение среди легкоплавких металлов получили цинк (см. ЦИНК (химический элемент)) Zn (Тпл 419оС), свинец (см. СВИНЕЦ) Pb (Тпл 327оС),… … Энциклопедический словарь

сплавы щелочных металлов — [alkali metal alloys] сплавы на основе Na, К, Li, Cs или содержащие их в значительном количестве; применяются в современной технике как материалы с особыми химическими или физическими свойствами. Например, сплавы, содержащие Li, используют в… … Энциклопедический словарь по металлургии

сплавы щелочноземельных металлов — [alkali earth metal alloys] сплавы на основе Са, Sr, Ba или содержащие их в значительном количестве; применяются в основном как материалы с высокой химической активностью, например, сплавы АL с 50 60 % Ва используют в качестве геттеров в… … Энциклопедический словарь по металлургии

сплавы с заданными упругими свойствами — [alloys with preset elastic properties] сплавы, обладающие высоким сопротивлением малым пластическим деформациям и релаксационной стойкостью в условиях статического и циклического нагружения; применяются в качестве пружин и пружинных элементов,… … Энциклопедический словарь по металлургии

Читайте также: