Металл для строительства самолета

Обновлено: 28.09.2024

В статье рассматриваются основные виды магниевых и титановых сплавов, используемые в аэрокосмическом комплексе. Анализируются их технические свойства, химический состав, конкретная область применения.

Основной конструкционный материал, используемый в аэрокосмическом комплексе – алюминий и его сплавы. Весьма успешно и длительно в авиации применяются такие алюминиевые сплавы как Д16, АК6, АМГ6, АЛ9, В95 и др. В настоящее время в научных лабораториях России постоянно проводится работа по созданию новых алюминиевых сплавов. Анализ современных деформируемых и литейных алюминиевых сплавов, рекомендованных ВИАМом для применения в конструкциях современных самолетов отечественного производства приводится в нашей работе [1].

Значительные успехи в последнее время, как отмечают авторы [2] достигнуты в направлениях улучшения свойств и других типов авиационных конструкционных материалов, а именно магниевых и титановых сплавов.

Деформируемые магниевые сплавы

Названные сплавы делятся на 3 основные группы. Кратко рассмотрим представителей каждой из них.

Сплавы средней прочности. Наиболее популярные сплавы данной группы – МА20 и МА20СП. Отличительная особенность указанных сплавов – повышенная пластичность и технологичность. Наряду с этим, сплавы хорошо свариваются аргонодуговой электрической сваркой и контактной электросваркой, не склонны к коррозионному растрескиванию, обладают удовлетворительной коррозионной стойкостью. Сплав МА20СП служит для получения деталей сложной конфигурации методом сверхпластичной деформации, к которым можно отнести детали приборных панелей, декоративные детали, спинки и подлокотники пассажирских кресел (рис.1).


Рис. 1. Спинки и подлокотники пассажирских кресел, изготовленные из сплава МА20СП

Высокопрочные сплавы - МА14, МА15, МА22. Сплав МА14 предназначен для изготовления деталей, длительно эксплуатирующихся при температуре до 125°С. Необходимо отметить, что сплав нашел широкое применение в конструкциях не только гражданских, но и военных самолетов, таких как Су-27, Су-30, МиГ-29 и др. Указанный сплав служит для изготовления различных деталей систем управления (качалки, кронштейны, рычаги и пр.), а также и деталей внутреннего набора из плит, профилей, штамповок и т.д.

Отличительная особенность сплава МА15 состоит в том, что все полуфабрикаты из него получают методом штамповки.

Детали, изготавливаемые из сплава МА22 могут длительно (до 100 часов) эксплуатироваться уже при температуре до 200°С.

Сплавы пониженной плотности. Типовые представители МА18, МА21. Известно, что плотность обычных магниевых сплавов составляет 1780-1820 кг/м3. Для снижения плотности эти сплавы наряду с другими легированными элементами содержат литий в количестве до 10,5 % (по массе), при этом плотность сплавов указанной группы понижается и составляет 1500–1600 кг/м3.

Сплав МА18 отличается высокой пластичностью как при комнатной, так и при криогенной температурах, повышенным модулем упругости и высокой удельной жесткостью. Из сплава изготавливают все виды полуфабрикатов, свариваемых аргонодуговой электрической сваркой. Для указанного сплава характерна удовлетворительная коррозионная стойкость.

Сплав МА21 предназначен для изготовления деталей, работающих в диапазоне температур ±60°С, когда требуется высокая жесткость и повышенная прочность при сжатии.

Литейные магниевые сплавы

Литейные магниевые сплавы используются для отливки различных изделий благодаря их жидкотекучести и повышенной пластичности. Их приготавливают в различных видах плавильных печей. Для предотвращения горения при плавке используются специальные флюсы и присадки. Отливки получаются путем литья в песчаные, гипсовые и оболочковые формы Указанные сплавы также подразделяются на 3 основные группы.

Высокопрочные сплавы. Типичные представители – сплавы ВМЛ20-Т6, ВМЛ24-Т6.

Так, сплав ВМ20-Т6 отличается повышенной коррозионной стойкостью, активно вытесняет традиционные литейные магниевые сплавы МЛ5, МЛ8, МЛ12, используемые для изготовления деталей узлов агрегатов самолетов и двигателей (корпуса насосов, картеры, редукторы, вентиляторы).

Сплав ВМЛ24-Т6 рекомендуется для изготовления литых нагруженных деталей самолетов, вертолетов, двигателей (например, авиационных колес (рис.2), кронштейнов, ферм, рам и др.).


Рис. 2 Авиационные колеса из магниевого сплава

Жаропрочные сплавы. Эту группу представляют МЛ9-Т6, МЛ10-Т6 и МЛ19-Т6. Указанные сплавы предназначены для изготовления деталей самолетов, вертолетов, двигателей, приборов, маслоагрегатов, редукторов и других агрегатов, работающих при повышенной температуре (до 300°С). Для всех сплавов характерны хорошие литейные свойства, которые позволяют изготавливать из них сложные крупногабаритные отливки, мало склонные к образованию микрорыхлот, имеющие повышенную герметичность, устойчивое постоянство размеров выплавляемых деталей. Жаропрочный сплав МЛ10, отличающийся повышенным уровнем механических свойств, находит наиболее широкое применение.

Титановые сплавы

Титановые сплавы обладают уникальными свойствами -высокой прочностью, хорошей пластичностью, небольшой плотностью, высокой удельной прочностью как при температуре 20–25°С, так и при криогенных температурах, хорошей коррозионной стойкостью, жаропрочностью- за счет чего они занимают оно из лидирующих позиций в авиастроении. Основное достоинство титановых сплавов по сравнению с алюминиевыми и магниевыми сплавами- более высокая прочность и жаропрочность при достаточно хорошей пластичности и более высокая коррозионная стойкость.

Деформируемые титановые сплавы

Названные сплавы делятся на 2 основные группы.

Конструкционные сплавы нормальной прочности. Представители - сплавы ВТ20, ВТ23, ВТ18ч, ВТ38, ВТ43.

Наиболее широко применяемый титановый сплав как в конструкции планера самолетов, так и для изготовления деталей газотурбинных двигателей – ВТ20. Например, в конструкции планера самолета Су-35 из этого сплава изготовлено значительное количество деталей и сварных узлов фюзеляжа, крыла и киля.

Сплав ВТ23 – сплав широкого применения, за счет хороших характеристик свариваемости используется в монолитных, сварных и паяных конструкциях самолетов, ракет и космических летательных аппаратов. Сплав ВТ23 используется в конструкциях самолетов Ан-158, Су-29, Су-31М.

Сплав ВТ18ч – листовой конструкционный сплав высокотемпературного применения. Предназначен для изготовления обшивок самолетов, ракет и в конструкциях двигателей, т.е. деталей, эксплуатирующихся при температуре до 600°С.

Сплав ВТ38 – новый жаропрочный, жаростойкий пониженной окисляемости. Применяется для изготовления обшивок самолетов, ракет и в конструкциях двигателей с рабочей температурой до 650°С.

Сплав ВТ43 – свариваемый сплав широкого применения. Используется в монолитных, сварных и паяных конструкциях самолетов и ракет.

Высокопрочные конструкционные сплавы. Типичные представители - титановые сплавы ВТ22, ВТ22М, ВТ22И применяются для изготовления деталей и узлов ответственного назначения: сварные конструкции, турбины, штампованные узлы, высоконагруженные детали и конструкции. Указанные сплавы длительно работают при температуре до 400°С и кратковременно до 750°С.

Сплав ВТ22 – свариваемый титановый сплав, для которого характерна высокая прокаливаемость. Указанный сплав широко применяется в отечественных самолетах Ил-76, Ил- 86, Ил- 96, Ан-72, Ан-124, Ан-224, Ан-148, Як-42, Бе-200, Ту-204, МиГ-29, Т-50 для изготовления крупногабаритных деталей внутреннего силового набора ( например, балок, лонжеронов, шпангоутов, нервюр, рельсов закрылков и предкрылков), а также для изготовления крупногабаритных силовых деталей и узлов шасси, в том числе сварных (траверс, балок основных шасси, тормозных рычагов).

ВТ22М наиболее усовершенствованный свариваемый сплав, перспективен для изготовления не только крупногабаритных деталей внутреннего силового набора, но и крупногабаритных силовых деталей и узлов шасси.

Сплав ВТ22И – высокотехнологичный сплав служит для получения точных штамповок методом изотермического деформирования в условиях сверхпластичности, обеспечивающей изготовление термостойких деталей сложной конфигурации (панелей, крышек люков, кронштейнов и др.). При этом сохраняется однородная мелкозернистая структура и высокий уровень механических свойств.

Литейные титановые сплавы. Представители этой группы – сплавы ВТ1Л, ВТ5Л, ВТ6Л, ВТ20Л, ВТ40 отличаются малой склонностью к образованию горячих трещин, линейной усадкой – 1 %, объемной усадкой – 3 %. Литейные сплавы обладают более низкими механическими свойствами, чем соответствующие деформируемые. Следует отметить, что как отмечают авторы [2] упрочняемая термообработка не применяется, так как резко снижает пластичность сплавов.

Сплавы ВТ1Л, ВТ5Л достаточно широко используются для изготовления высоконагруженных деталей ответственного назначения (литых корпусов, турбин, крыльчаток и т.д.).

Термоупрочняемый сплав ВТ6Л за счет закалки и последующего старения имеет высокие механические характеристики и рекомендуется для изготовления деталей, работающих до температуры 400°С.

Сплав ВТ20Л находит применение при производстве турбин, литых корпусов.

Сплав ВТ40Л отличается повышенной прочностью, а также высоким пределом выносливости. Используется в агрегатах планера самолетов и в двигателях для изготовления различных высокоресурных деталей и успешно вытесняет серийные сплавы более старого поколения ВТ6Л и ВТ20Л.

Таким образом, в работе дана краткая характеристика современных магниевых и титановых сплавов, наиболее широко применяемых в авиационной промышленности.

Работа выполняется в рамках биржевого проекта «Разработка технологии лазерной обработки для получения изделий с высокими механическими свойствами», реализуемого на базе кафедры «Металловедения, порошковой металлургии, наноматериалов» Самарского государственного технического университета.

Конструкции легких самолетов: дерево, алюминий, сталь, композиты и свойства каждого.

01.jpg

Однонаправленные материалы в основном состоят из тонких, относительно гибких, длинных волокон, которые очень прочны на растяжение (например: нить, веревка, многожильный стальной трос и т. д.)
Для конструкции самолета также характерна симметричность. Это означает, что нагрузки вверх и вниз почти равны друг другу (или, по крайней мере, соизмеримы). Нагрузка на хвостовое оперение может уменьшаться или увеличиваться в зависимости от того, поднимает ли пилот или опускает нос самолета, потянув или нажав ручку управления самолетом; руль направления может отклоняться вправо и влево (боковые нагрузки на фюзеляж). Порывы воздушного потока на крыло могут быть положительными или отрицательными, вызывая повышающие или понижающие нагрузки, которые испытывают пассажиры, когда их толкают в сиденье или они висят на ремнях.
Из-за этих факторов, разработчик должен использовать конструкционный материал, который может выдерживать как растяжение, так и сжатие. Однонаправленные волокна могут иметь превосходные параметры по растяжению, но из-за их малого поперечного сечения они имеют очень небольшую сопротивляемость сжатию. В качестве иллюстрации: вы не можете загрузить нить, веревку или цепь на сжатие.
Чтобы сделать тонкие волокна прочными на сжатие, их нужно «склеить» какой-то основой (матрицей). Таким образом, мы можем воспользоваться преимуществами их прочности на растяжение и избавляемся от их низкой прочности при сжатии, так как они становятся более устойчивыми к сжатию, помогая друг другу не сгибаться. Основа или матрица обычно представляет собой смолу, удерживающую волокна вместе и позволяющую им выдерживать требуемые нагрузки сжатия. Это очень хороший конструкционный материал.

Дерево
Исторически дерево использовалось в качестве первого однонаправленного конструкционного материала. Природа, в своей мудрости, дала прекрасный однонаправленный материал, заставляя определенные деревья расти в определенных условиях: они должны быть высокими и прямыми, а их древесина должна быть прочной и легкой. Поперечное сечение ствола дерева показывает годовые кольца, чтобы мы могли посчитать возраст дерева. Темные полосы (поздняя древесина) содержат много волокон, тогда как светлые полосы (ранняя древесина) содержат гораздо больше «смолы». Таким образом, чем шире темные полосы, тем сильнее и тяжелее древесина. Если темные полосы очень узкие, а светлые - довольно широкие, дерево светлое, но не очень прочное. Чтобы получить наиболее эффективное соотношение прочности и веса для дерева, нам нужно определенное количество полос на дюйм. Фактически, мы хотим получить хороший баланс «ранней» и «поздней» древесины, или, другими словами, очень особых условий выращивания, то есть географической высоты, где рост дерева зависит от широты и местных климатических условий. Хотя это очень интересная тема, мы не будем вдаваться в такие подробности, кроме как упомянуть, что именно природа снабжает нас очень эффективным материалом из своего растительного царства. Помните, что вопреки строго минеральному миру, безнадежно подверженному гравитации, растягивающей все вокруг, растение имеет в себе силу, которая заставляет его расти против силы тяжести вверх. Если бы мы могли использовать эти жизненные силы в наших машинах, мы могли бы подняться без помощи двигателя. Авиации еще многое предстоит открыть.

Еще одна тема, которую мы не будем касаться - это испытания древесины Есть несколько простых тестов (влажность, динамика, устойчивость), но кажется, что никто их больше не знает.

Некоторые из наших авиационных конструкций двумерные (длина и ширина большие по толщине). Для таких структур часто используется фанера. Несколько тонких листов шпона склеены между собой так, что волокна разных слоев пересекаются под разными углами: обычно под 90 градусов, также можно 30 и 45). Фанера весьма эффективно работает на сдвиг, если конструктор правильно ее использует.

Чтобы завершить эту дискуссию о древесине, давайте прямо заявим, что наша нынешняя цивилизация использует так много бумаги, что мы истощаем планету от деревьев, не пересаживая их правильно. Сегодня хорошую древесину для строительства самолетов очень трудно найти. Вместо того, чтобы использовать одну хорошую доску для лонжерона, мы должны использовать ламинирование, потому что большие куски дерева практически недоступны, и мы больше не можем доверять качеству древесины. Мы должны использовать много слоистых материалов, чтобы получить необходимую прочность без слишком большого перетяжеления. С точки зрения доступности нам просто нужна замена того, что природа снабжала нас до сих пор.

Алюминиевые сплавы
Итак, поскольку дерево может быть не таким доступным, как было раньше, мы смотрим на другой материал, который является прочным, легким и легко доступным по разумной цене: алюминиевые сплавы. Нет смысла обсуждать титан - он просто слишком дорогой. Мы обсудим свойства алюминиевых сплавов, которые используются в конструкции легких самолетов, более подробно позже. Пока мы будем рассматривать алюминий как конструкционный материал.
Экструдированные алюминиевые сплавы: благодаря процессу производства алюминия мы получаем однонаправленный материал, который в продольном направлении немного прочнее, чем в поперечном, при этом прочный и на сжатие. Если характеристики растяжения и сжатия практически одинаковы для алюминиевых сплавов, то дерево, с другой стороны, имеет предел прочности при растяжении, примерно вдвое превышающий его прочность на сжатие; соответственно, необходимо использовать специальные методы анализа напряжений, и для того, чтобы избежать концентрации напряжений, необходимо хорошее понимание работы древесины под нагрузкой!
Алюминиевые сплавы в тонких листах (0,016-0,125 дюйма или 0,4-3,1 мм) представляют собой превосходный двумерный материал, широко работающий на сдвиг, с подкрепляющими элементами и без, а также в качестве элементов растяжения-сжатия, когда они надлежащим образом согнуты.
Стоит помнить, что алюминий - это искусственный металл. Алюминий получают путем электролиза из боксита (оксид алюминия), который затем смешивают с различными добавками, повышающими прочность. В следующей статье мы увидим, какие добавки используются, и почему и как мы можем повысить прочность алюминия путем холодного упрочнения или закалки. Все обычно используемые алюминиевые сплавы, которые доступны на рынке. По запросу при покупке вы можете получить сертификат, который гарантирует химические и физические свойства в соответствии стандартами.
Как правило, алюминий в три раза тяжелее, но и в три раза прочнее дерева. Сталь снова в три раза тяжелее и прочнее алюминия.

Стали
Таким образом, следующим материалом для конструкции самолета будет сталь, которая имеет такую же удельную прочность, как дерево или алюминия.
Мы в основном используем хром-молибденовый сплав под названием 4130.
Распространенным полуфабрикатами являются трубы и листовой материал. Сталь из-за большого удельного веса не используется в качестве обшивки, так как алюминиевые листы или фанера. Если из прочностных соображений, там, где нам понадобится фанера толщиной 0,1 дюйма (2,5 мм), нам потребуется алюминиевый лист 0,032 дюйма (0,8 мм), стальной же лист в этой ситуации должен иметь толщину 0,01 дюйма (0,25 мм), который слишком тонок. Вот почему стальной фюзеляж использует трубы в качестве элементов ферменной конструкции для передачи сжатия или растяжения, и вся конструкция затем покрывается легкой тканью, чтобы придать ей необходимую аэродинамическую форму или желаемый вид. Следует отметить, что этот метод включает в себя два метода: обработка стали и покрытие ткани.
Преимущество стальной конструкции состоит в том, что ее можно легко сваривать. Это особенно относится к Северной Америке, где сварщик не должен быть аттестован, как некоторых других странах. Исторически эта разница в нормативных документах связана с «духом пионеров» и объясняет, почему сварные стальные фюзеляжи так распространены здесь и практически нигде больше.
Мы будем обсуждать трубы и сварные стальные конструкции более подробно позже, а теперь перейдем к «искусственной древесине» или композитным конструкциям.

Композиционные материалы
Разработчик композитного самолета просто использует волокна в нужном направлении именно там, где требуется. Волокна залиты смолой, чтобы удерживать их на месте и обеспечивать необходимую опору для предотвращения коробления. Вместо фанеры или листового металла, который допускает только одну кривизну, композитный конструктор использует ткань, где волокна уложены в двух направлениях, также встроенные в смолу. Это имеет преимущество свободы формы в двойной кривизне, как того требуют оптимальные аэродинамические формы и очень привлекательный внешний вид.
Современные волокна (стеклянные, нейлоновые, кевларовые, углеродные или монокристаллические волокна различного химического состава) очень прочные, поэтому конструкция становится очень легкой. Недостаток - очень маленькая жесткость низкая устойчивость. Конструкция нуждается в подкреплении, которое достигается либо обычными незаметными ребрами жесткости, либо более элегантно с многослойной структурой: два слоя тонких однонаправленных или двунаправленных волокон разделяются легким наполнителем (пенопластом или «сотами»). Это позволяет конструктору достичь необходимой жесткости.
С инженерной точки зрения этот метод очень привлекателен и поддерживается многими органами власти, поскольку он позволяет новые разработки, которые необходимы в случае войны. (США, не имеющие титана или хрома, нуждаются в разработке практических альтернатив.) Но этот метод также имеет свои недостатки для жилищного строительства: необходима форма, и необходим строгий контроль качества для правильного количества волокон и смолы и для хорошей адгезии. между обоими, чтобы предотвратить слишком «сухую» или «мокрую» структуру. Также отверждение смолы довольно чувствительно к температуре, влажности и давлению. Наконец, смолы являются активными химическими веществами, которые будут вызывать не только хорошо известные аллергии, но также химические вещества, которые воздействуют на наш организм (особенно глаза и легкие), и они обладают неблагоприятным свойством кумулятивного повреждения и в результате (в частности, ухудшения глаз) появляется только через несколько лет после первого контакта.
Другим недостатком смол является их ограниченный срок хранения, то есть, если смола не используется в течение указанного промежутка времени после изготовления, результаты могут быть неудовлетворительными и небезопасными.
Наконец, если формы не очень хорошо спроектированы, изготовлены и обслуживаются, внешняя часть конструкции нуждается в сложной и трудоемкой финальной отделке. Также следует проявлять большую осторожность, так как слишком много шлифования может привести к ослаблению силовой конструкции. Исторически сложилось, что композиты достигли своего пика несколько лет назад. Сегодня доказано, что только опытные специалисты могут создать надежную и совершенную конструкцию, при этом рисковать своим здоровьем.

Подведем итоги
• Природа предоставляет сырье, прекрасно подходящее для авиационных конструкций. К сожалению, мы эксплуатируем природу, и сегодня трудно найти запасы древесины и фанеры необходимых размеров и качества.
• Алюминиевые сплавы в экструдированной и ламинированной форме являются привлекательной альтернативой, особенно потому, что их легко поставлять с гарантированными свойствами.
• Стальные трубы по-прежнему очень популярны в Северной Америке, поскольку сварка, кажется, не создает никаких проблем, как это опасается в других частях мира. Трубчатая структура покрыта тканью.
• Композиты можно рассматривать как «искусственное дерево» со структурной точки зрения. Как и все искусственное, оно может быть лучше, чем натуральный продукт, но производитель должен учитывать в процессе производства мудрость, присущую природе, и / или качество, обеспечиваемое другими производителями сырья (алюминий, сталь). Это в дополнение к опасностям для нашего собственного здоровья (и здоровья нашей семьи при строительстве в гараже).

Оригинал статьи на английском языке.
Специальное спасибо переводчику Google, ведь с каждым днем он становится комфортым.

Ну и немного о себя
Так получилось, что период моего обучения на авиационного инженера пришелся на середину и конец восьмидесятых. Это было пиком развития отечественной авиационной промышленности. Дерево, великолепный конструкционный материал, особенно для легких самолетов, использовался исключительно при изготовлении макетов. Наиболее распространенными были алюминиевые сплавы: Д-16Т, В95, АК4-1 и тому подобные: легко обрабатываемые и со стабильными характеристиками. Сталь 30ХГСА применялась в высоконагруженных конструкциях и сварных узлах. Ее отличием и недостатком одновременно, по сравнению с хромолибденовой американской сталю, является обязательная необходимость термообработки (закалки или нормализации), а процесс этот не очень простой технологически. Крис Хайнц обходит стороной титан. У нас же денег никто тогда не считал, вот почему титановые рессоры на легких самолетах были нормой. О композитах хочу сказать отдельно. Тогда, в 80-х было четкое мнение, которое спустя сорок лет прочно сидит в сознании многих не только обывателей, но и инженеров: металлические конструкции (кроме титана и нержавеющей стали, естественно) – неэффективные и устаревшие, а вот композитные – уникальные, высокоэффективные, современные и, позволю себе сказать, модные. Такое мнение поддерживалось везде, на всех уровнях.
Пару лет назад, готовя публикацию о самолете Cessna 400, я обнаружил следующее. Прежде чем прекратить выпуск данной модели самолета в 2018 году из-за низких продаж, собирали его, как и положено в США, а вот производство композитных агрегатов было перенесено в Мексику из-за проблем с экологией и общей вредностью композитного производства.
Если посмотреть с точки зрения материалов на самолеты, которые выпускает компания Zenith Aircraft, то заметны следующие принципы. Основной конструкционный материал – алюминиевые сплавы, сталь в ферменных конструктивных элементах и сложных узлах. Композиты – в несиловых конструкциях сложной формы: капоты и обтекатели шасси. При чем такой здравомыслящий подход заметен в конструкциях многих современных легких самолетов: не это ли «инженерная мудрость»?

Металл для строительства самолета


Металлы на службе самого быстрого вида транспорта.

В предыдущих статьях шла речь об эффективности и выгоде от использования алюминия в производстве транспорта, в том числе и авиационного.
А что же другие металлы?

Магний. Он нашел свое место в производстве современного самолета. Колеса и вилки шасси, передние кромки крыльев, детали сидений, корпусы приборов, различные рычаги и кожухи, двери кабин и фонари – и это далеко не весь перечень применения сплавов магния. В наши дни активно стали использовать магний для изготовки литых крыльев, литых створок люков шасси, которые легче по весу примерно на 25 % и дешевле сборных конструкций из деформируемых сплавов. Например, планер одного из американских истребителей был почти полностью изготовлен из сплавов на основе магния.


Детали из магния


Данные литейные магниевые сплавы с редкоземельными присадками практически беспористы, и потому детали, выполненные из этих сплавов, мало подвержены растрескиванию.

Несмотря на то, что упругость магниевых сплавов меньше, чем упругость алюминиевых и железных сплавов, из-за малой плотности этот металл позволяет получать более жесткие и в то же время достаточно легкие конструкции.

В вертолетостроении магний используют для производства двигателей, в некоторых моделях доля магниевых деталей составляет по массе 23 %.

В ракетостроении наиболее популярны в применении сплавы с торием и цирконием. Они заслужили такую популярность благодаря повышенной прочности и жаропрочности. Присадка циркония позволяет улучшить пластичные свойства. В некоторых моделях такие сплавы составляли 25 % по массе.

Внедряют и специальные сплавы с цирконием, которые обладают важной способностью – гасить вибрации снарядов,

Если речь заходит о кратковременно работающих конструкциях, то и здесь при производстве вспоминают про магний, поскольку он благодаря своей высокой теплоемкости способен поглотить много тепла и не успеет перегреться за кратковременный полет.

Ракета “Фолкон” класса “воздух - воздух” на 90% состоит из магниевых сплавов (корпус и многие другие детали). Помимо обшивки корпуса без них не обходятся туннельные обтекатели, корпусы систем наведения, корпусы насосов, топливные и кислородные баки, баллоны пневмосистем, опорные узлы, стабилизаторы и др.


Магний в авиации


В спутникостроении изданных сплавов выполняют корпус спутника. Корпус изготовляется из двух сферических оболочек, отштампованных из листов сплава толщиной 0,76 мм, и вся эта конструкция подпирается изнутри каркасом из магниевых труб.

Из-за того, что магний заметно возгоняется в высоком вакууме при низкой температуре, корпус покрывается сложным покрытием, одним из предназначений которого является понижение испарения металла.

Титан. Это не только легкий и тугоплавкий метал, но и довольно-таки прочный и пластичный. Вес титана на две трети больше алюминия, прочность больше в 6 раз, а тугоплавкость титана больше чем у алюминия в два с лишним раза.

Он отличается хорошими показателями стойкости. Во влажном воздухе, в морской воде его коррозионная стойкость не хуже нержавеющей стали, а в соляной кислоте во много раз превосходит её. Он, как и нержавеющая сталь, поддается обработке резанием и давлением, а также свариванию и изготовке из него литых деталей.

Основные достоинства титана и его сплавов, такие как комбинация высокой удельной прочности и химической стойкости при нормальных и повышенных температурах (около 300-500º С) делают их незаменимыми в современном самолетостроении и производстве космических кораблей.


Титан в авиации


В 1956 г. английский летчик Петер Твисс на сверхзвуковом самолете из алюминиевых сплавов “Фейри Дельта-2” установил новый мировой рекорд по скорости полета, достигши на дистанции 15,5 км скорости 1822 км/ч.

Объем мощности двигателя самолета позволял ему развить ещё большую скорость, но пилот на это пойти не мог, так как при превышении рекордной скорости обшивка самолета из дуралюмина нагрелась бы больше чем до 100º С, и это негативно бы сказалось на прочности обшивки самолета. Поэтому, чтобы достигать таких огромных скоростей, обычную дуралюминовую обшивку меняют на титановую, так как использовать более тяжелую сталь при таких скоростях и нагревах не выгодно.

При замене алюминиевых сплавов или стали на титан в пассажирских самолетах, экономия массы деталей составляет примерно 15-40 %. Несмотря на более дорогую стоимость титана, по сравнению с вышеназванными металлами, все дополнительные затраты окупаются.

Пример пассажирских самолетов “Дуглас” показывает, что поначалу из титана изготовляли только некоторые элементы, такие как мотогондолы и противопожарные перегородки. В противопожарных перегородках использование титана эффективно, потому что электропроводность и теплопроводность этого металла в 5 раз меньше чем у стали, и в 15 раз меньше, чем у алюминия. А вот в новых моделях самолетов уже было более 1000 различных деталей из титана и его сплавов.

Использование титановых сплавов в производстве двигателей реактивных самолетов позволяет уменьшить массу на 100-150 кг. Планер тоже становится легче (на 300 и более кг).

В двигателях титан применяют для изготовления деталей воздухосборника, корпуса, лопаток и дисков компрессора, и т.д. Особенно выгодным стало применение титана в новых турбовентиляционных двигателях. В гражданской модели самолета детали из титана составляют 1/7 общей массы турбовентиляционного двигателя, в военной – 1/5 общей массы.

В ракетах из титановых сплавов изготавливают корпусы двигателей второй и третей ступеней, баллоны и шаробаллоны для сжатых и сжиженных газов, сопла и др. У космических капсул “Меркурий” и “Джемини” каркас, наружная и внутренняя обшивки сделаны из титановых сплавов.
Титан в виде литых деталей также активно применяется, так как позволяет сократить объем трудовой обработки резанием и уменьшает отходы дорогого металла.

Что же касается применения титана в авиационной электронике, то тут этот металл очень полезен благодаря своим газопоглощающим способностям. Он поглощает газы, оставшиеся после откачки прибора или попавшие в прибор во время эксплуатации. Титан, нанесенный на поверхность прибора, исполняет роль встроенного насоса, способного работать в течение всей жизни прибора. 500мг титана хватает, что поглощать большие объемы воздуха.

Бериллий. Для тонких профилей, где титан не подходит из-за маленькой удельной жесткости, а сплавы из стали и никеля очень тяжелы, промышленники обращаются к такому металлу, как бериллий.

Его хрупкость, токсичность металлической пыли и пыли из окислов, редкость и дороговизна – препятствия, которые откладывали применение бериллия в самолетостроении и ракетостроении.

Но после многочисленных исследований, открывших возможности улучшения необходимых свойств этого металла, бериллий все-таки взяли на вооружение производители. Сейчас из него изготовляют стержни, трубы и листы для ракетного, авиационного и атомного производства.

Корпуса жидкостнореактивных двигателей из бериллия не только в два раза легче, но и служат в 10 раз дольше ввиду высокой теплопроводности этого материала. Бериллий стал находкой для изготовителей колесных тормозов из-за своей легкости и высокой теплопроводности. Тормоза из бериллия дают экономию массы больше 30%, масса самолета снизилась более чем на 600 кг.


Детали из бериллия


То же самое и с крепежными деталями, меньший вес которых не мешает им переносить нагрузки такие же, как у крепежных деталей из стали. Меньшие центробежные напряжения дисков компрессоров по сравнению с дисками из других металлов – ещё одна заслуга бериллия. Тратится меньше энергии без изменения скорости вращения.

Для защиты сплавов из бериллия от коррозии внедряют методы анодирования. Это позволяет заметно повысить стойкость против окисления при повышенных температурах (жаростойкость).

Также нельзя не отметить, что бериллий благодаря своим свойствам хорошо поглощает тепло, и является гиперпроводником, хорошо проводя электрический ток при низких температурных условиях.

Александр Рыбаков
Источники использованные при написании статьи:

Из какого материала делают самолеты

Конструкционные материалы, из которых изготавливают самолеты, прошли стремительную эволюцию вместе с развитием самой авиации. От полотняных аэропланов в начале прошлого века до современных стальных птиц. За 100 лет существования авиации, материалы, из которых изготавливают авиалайнеры, существенно изменились.

Немного истории

Самые первые самолеты (братьев Райт, США – 1903 г.; «Вуазен», Франция – 1905г; «Блерио», Франция – 1906 г.; «Рой», Англия – 1908 г.) изготавливались из тонких стальных труб, обтянутых материей, или имели деревянную конструкцию и полотняную обшивку поверхностей. Следующим шагом совершенствования конструкций самолета следует считать замену тканей на обшивку фанерой. Для повышения прочности фанерных конструкций, их стали делать в несколько слоев, скрепленных клеем.

Из какого металла делают самолеты

Однако, деревянные конструкции были довольно неуклюжими, имели большое сопротивление во время полета. С увеличением скоростей самолетов, повышением нагрева конструкций и элементов двигателей, их использование стало небезопасным. Конструкторы стали постепенно заменять деревянные детали на металлические. Но полностью металлические самолеты появились не сразу.

Несовершенная технология производства металла на первых этапах его применения в авиации, делала конструкции из него, тяжелее деревянных, поэтому переход на металл происходил не быстро. Первые пробные аэропланы целиком из металла были изготовлены немцами в начале второго десятилетия прошлого века. По весу они превышали деревянные конструкции в несколько раз, и их летные данные оставляли желать лучшего.

Большинство аэропланов, использовавшихся в Первой мировой войне (1914—1918 гг.), были деревянными с тканевой обшивкой.

Из чего делают самолеты

После войны основной причиной развития металлических самолетов послужило появление пассажирской авиации, потребовавшей производства большого количества самолетов с длительными сроками эксплуатации. Деревянные конструкции набухали под действием неблагоприятных атмосферных явлений (влаги, температуры). При определенных условиях они начинали подгнивать. Все это приводило к их быстрому выходу из строя, и не удовлетворяло требованиям гражданской авиации.

Где в России делают самолеты

Ученые многих стран трудились над совершенствованием металлических материалов для авиастроения и технологии их изготовления. В СССР, одним из основоположников металлического самолетостроения стал знаменитый авиаконструктор Андрей Николаевич Туполев.

В 30-е годы прошлого столетия металл почти полностью вытеснил дерево в конструкции самолетов. Однако деревянные конструкции еще некоторое время применялись в отдельных случаях. В частности, в конструкциях советских истребителей Лагг-3, И-16, Як-1 и других, участвовавших в Великой Отечественной войне, использовались деревянные элементы. Это было сделано из соображений экономии, так как деревянные конструкции в изготовлении обходились дешевле металлических.

С появлением реактивной авиации в 50-х годах прошлого века, деревянные конструкции самолетов перестали использоваться.

Нагрузки, воздействующие на самолет

Чтобы понять, из чего делают самолеты, необходимо рассмотреть их отдельные конструктивные составляющие и выяснить, какие нагрузки приходятся на каждую из них. К основным частям конструкции самолета относятся:

  • фюзеляж;
  • крылья;
  • хвостовое оперение;
  • двигатель;
  • шасси.

Каждая из этих частей самолета имеет свое функциональное назначение. Фюзеляж самолета объединяет все элементы конструкции в единое целое. Крыло создает подъемную силу. Двигатели создают необходимую для полета тягу. Хвостовое оперение обеспечивает аэроплану горизонтальную и вертикальную управляемость. Шасси необходимы для совершения взлета и посадки.

В процессе полета и на земле все эти составные части самолета испытывают разнообразные, характерные только для них нагрузки.

Все нагрузки, которые приходится выдерживать самолету подразделяются :

  • нагрузки от воздействия набегающего потока воздуха при различных скоростях полета самолета и при его маневрах (подъемная сила и сила лобового сопротивления);
  • весовые нагрузки, за счет веса бортового оборудования, топлива, пассажиров, полезного груза, двигателей, шасси и др.;
  • инерционные нагрузки, связанные с инерцией, которую набирают элементы конструкции самолета и груз при изменении скоростей;
  • термические нагрузки, возникающие под воздействием скоростного напора воздуха, а также внутри работающего двигателя.

Для современных реактивных самолетов важна также и звуковая нагрузка, которая возникает при работе двигателя.

Потому как прилагаются эти нагрузки их можно подразделить на те, что влияют сразу на многие части самолета, и на те, что сосредоточены в определенном месте. Кроме того, есть нагрузки, которые действуют постоянно, с определенной динамикой или частотой.

Исходя из учета влияния указанных нагрузок на конкретные составные части самолета, выбираются материалы, из которых они изготавливаются. Однако, есть одно свойство, которое применимо ко всем без исключения материалам, это их максимально легкий вес при прочих равных достоинствах.

Из какого металла делают самолеты

Материалы, из которых делают самолет

К основным материалам, из которых делаются самолеты, относятся различные металлы, их сплавы и композиционные материалы. Рассмотрим подробнее принципы работы с этими материалами.

Алюминий

Большая часть конструкции самолета изготавливается из алюминия и его сплавов. Он идеально для этого подходит, прежде всего, из-за своего небольшого веса, а также из-за широких возможностей менять свои свойства в сочетании с различными добавками.

Так, для изготовления планеров, подвергающимся небольшим аэродинамическим нагревам, используется дуралюмин, представляющий собой высокопрочный алюминиевый сплав с примесью меди, марганца и магния. Для температурно нагружаемых оболочек планера и силовых элементов скелета самолета используются сплавы алюминия повышенной жаропрочности, с добавлением магния. Такие сплавы также используются для изготовления отдельных элементов конструкции двигателя, работающих в умеренном тепловом режиме (лопатки, крыльчатки, диски компрессора первого контура).

Из чего делают самолеты

Алюминиевые сплавы с добавлением кремния применяют для литья сложных по форме деталей, с небольшой нагруженностью. Эти сплавы обладают хорошей текучестью и заполняемостью в нагретом состоянии. Из них изготавливают: кронштейны, рычаги, фланцы. Их также используют для изготовления некоторых деталей двигателя: корпуса компрессоров, картеры, различные патрубки и др.

В общей сложности на алюминиевые конструкции самолета приходится до 80% от его общей массы.

Титан

Титан и титановые сплавы представляет особый интерес в авиастроении, в первую очередь, из-за своих возможностей выдерживать высокие температуры.

Из титана изготавливаются корпуса сверхзвуковых самолетов, передние края крыльев и стабилизаторов. Титановые сплавы широко применяются в конструкциях шасси, узлах крепления закрылков, в силовых элементах. В реактивных двигателях из титана изготавливаются детали, подвергающиеся высокотемпературным нагрузкам: лопатки компрессоров и диски компрессоров второго контура, кожухи камер сгорания, сопла реактивных двигателей.

Сталь

Сталь представляет собой сплав железа и углерода. Она довольно широко используется при изготовлении самолетов. В авиации в основном применяется конструкционная сталь с содержанием от 0,05 до 0,55% углерода. Из стали изготавливают отдельные элементы силового набора конструкции, детали шасси, болты, заклепки. Жаропрочная сталь идет на изготовление обшивок самолетов, развивающих большие скорости.

Композиционные материалы

Широкое применение при производстве самолетов нашли композиционные материалы (композиты), представляющие собой основу и распределенные в ней армирующие материалы. В качестве армирующих материалов используются органические волокна, а в качестве основы — различные металлические сплавы.

Детали, изготовленные из композитов, обладают небольшим весом, могут выдерживать высокие температуры. Их используют для изготовления обшивок крыла, оперения, створок шасси, радиопрозрачных обтекателей и др.

Где в России делают самолеты

При рассмотрении материалов, из которых делаются самолеты нельзя забывать и о таких важных материалах, как резина и пластмассы. Резина применяется при изготовлении колес шасси, трубопроводов, шлангов, прокладок, уплотнителей, амортизаторов. Различные по своим свойствам пластмассы применяются для изготовления силовых элементов конструкции самолета, остекления кабины пилота, декоративной отделки пассажирского салона, в качестве электро- и теплоизоляции. Химически стойкие пластмассы используются для изготовления топливных баков.

Пожалуй, мы рассмотрели все основные наиболее используемые для производства самолетов материалы. То, из какого металла делают самолеты, во многом отражается и на их летных возможностях. Так, легкие алюминиевые сплавы используются для производства планеров дозвуковых самолетов, титан и сталь – для достижения сверхзвуковых и гиперзвуковых скоростей.

Для всех авиационных материалов важной характеристикой является их технологичность, то есть способность их изготовления серийно, а не только в одном экземпляре. Самолеты производятся большими партиями, все их детали изготавливаются многократно. В ходе повторяющегося процесса изготовления они не должны терять своих основных свойств.

Для этого разрабатываются специальные технологические процессы, которые представляют собой последовательные изменения свойств материала на различных этапах его производства, вплоть до его получения с заданными свойствами. Все основные технологические процессы по изготовлению материалов для самолетов стандартизированы, что гарантирует их производство с одинаковыми свойствами. Изготовление авиационных материалов, основных конструктивных частей самолета и его окончательная сборка производятся на авиастроительных заводах.

Основные авиазаводы России

Чтобы увидеть, где в России делают самолеты, нужно открыть карту. География расположения авиазаводов на территории России представлена весьма разнообразно, от западных границ до Дальнего Востока.

Из какого металла делают самолеты

В Южном административном округе, в Ростове –на-Дону и в Таганроге производят вертолеты Ми-26, Ми-28, Ми-35, самолеты-амфибии Бе-200. В Московской области – МиГ-29, Ил-103. В Центральной части России, в Воронежской и Смоленской областях — Ил-96-300, Ан-148, Ил-96-400, Ил-112, Як-18Т, СМ-92Т. На Волге расположены заводы по производству Ан-140,Ту-204, Ил-76, Ан-140, МиГ-29, МиГ-31, МиГ-35. В Республике Татарстан делают Ту-214, Ансат, Ми-17, Ми-38. В Сибири — Су-34, Су-30, Як-130, МС-21, Як-152, Су-25УБ, Су-25УБМ , Ми-8АМТ, Ми-171, Ми-171А2, Ми-8АМТШ. В республике Башкортостан – Ка-226, Ка-27, Ка-31, Ка-32. На Дальнем Востоке расположено производство Сухой Суперджет-100, Су-27, Су-30, Су-33, Су-35, Т-50 (ПАК ФА) и вертолетов Ка-52, Ка-62.

Резюме

Широта представленных авиазаводов по территории России, а также номенклатура изготавливаемой техники, говорит о развитом авиастроительном производстве России. Основы его были заложены знаменитыми учеными, конструкторами и инженерами прошлого века. В наше время новое поколение разработчиков авиационной техники успешно продолжает начатое ими дело. Иллюстрацией этому служат новые российские разработки самолетов и вертолетов, признанные во всем мире.

Сталь для самолетов

Условия безопасной эксплуатации современных самолетов формируют строгие требования к материалам. Они должны быть легкими, прочными, обеспечивать оптимальные габариты и снижать расход топлива. Рассмотрим, какие преимущества в авиастроении имеет сталь по сравнению с другими металлами.

Крыло самолета в полете

Для разных летательных аппаратов выбирают определенные виды стали

Преимущества стали для строительства самолетов

Качество материала влияет на конкурентоспособность летательного аппарата, которую формируют показатели скорости, точности, расстояния, способности к маневрам, подъему грузов. Для гражданского судна необходимы надежность, комфорт, пожарная безопасность.

При строительстве любого самолета важно уменьшить расходы на разработку проекта, его освоение и последующую эксплуатацию. Поэтому материал должен быть легким, прочным, жестким, устойчивым к коррозии и трещинам. Один металл с такой задачей не справится, и для обеспечения всех потребностей в самолетостроении используют комбинацию нескольких металлов.

Из сплавов с включением алюминия делают фюзеляжные и крыловые поверхности. Из титановых – балки, элементы шасси. Панели крыла, силовых установок и створок люка шасси изготавливают из композитов полимерного типа.

Кажется, что среди таких конкурентов позиции стали незавидные. Но это не так. На долю этого металла приходится 10 % деталей в пассажирских самолетах и 30–50 % в военных.

Из стали делают детали, на которые приходится самая большая нагрузка:

  • Элементы шасси.
  • Крепежные болты для соединения фюзеляжа с крылом.
  • Гидроцилиндрический корпус.
  • Трубы гидросистемы с повышенным давлением и другие.

Выбор стали не случаен. Металл отличается высокой прочностью и жесткостью, что хорошо заметно в небольших элементах. Сталь сопротивляется циклической нагрузке, не поддается коррозии, имеет достаточную технологичность. Кроме того, из нее можно делать заготовки различными способами – пайкой, сваркой, механическими методами обработки, холодным деформированием. Еще один немаловажный плюс – относительно невысокая цена.

Новые виды стали для самолетостроения

В последние годы были разработаны новые мартенситностареющие стали с высокой прочностью до 3500 МПа. В них содержится мало азота и углерода, поэтому они пластичные, вязкие, сопротивляются повторной статической нагрузке, трещинам и ржавчине. Заготовки из такой стали можно обработать давлением, режущими инструментами, термическими способами – нагревом и охлаждением.

Наиболее полно достоинства мартенситностареющей стали проявляются, когда из нее изготавливают сложную деталь с малым прецизионным допуском и подвергают ее термической и химической обработке. Такая сталь нашла применение в истребителях серии «МиГ», использовалась при изготовлении шасси космического корабля «Буран».

Стойкая к коррозии ВНС-2 стала базовым материалом при создании цельносварного отсека в сверхзвуковом самолете МиГ. Она применяется в форме ленты и листа для изготовления силовых элементов, обшивки, деталей внутреннего набора.

Авиационный двигатель

Для каждой детали самолета рассчитывают оптимальные параметры стали

ВНС-5 наиболее широко распространена в авиации. Из нее делают детали для СУ и МиГов. Для гражданских самолетов из нее производят болты высокой нагрузки.

СН-2А зарекомендовал себя как надежный материал для крепежных и силовых элементов, баллонов для воздуха и кислорода, которые обязательно должны быть во всех летательных аппаратах. Баллоны из этой стали не взрываются при поражении пулями – это очень важное преимущество.

Для работы с новыми видами топлива, водородом и жидким кислородом разработаны специальные виды стали – ВНС-25, -49, -59. Из них производят жидкостно-ракетные двигатели, например PD-170 от «Энергомаша».

Стойкие к коррозии и среднелегированные стали получили широкое применение как материалы для конструкций и агрегатов, подвергающиеся обработке химико-термическими методами. Технология обеспечивает уникальное сочетание высокой твердости, сопротивления усталости и стойкости к износу с вязкостью, пластичностью и технологичностью.

Например, ВКС-7 разработана для шестерен редуктора крупномодульного типа с тяжелой нагрузкой. Карбонитридное упрочнение обеспечивает выносливость при контакте с температурой до 200–250 градусов.

Стоит отдельно сказать о вертолетах. ВКС-10 прочностью до 1300 МПа выдерживает температуру до 400 градусов. Сталь обеспечивает полноценную работу редуктора даже при отсутствии маслоподачи на протяжении двух часов.

Сталь сохраняет прочные позиции в авиастроительной отрасли. Новые виды этого металла отличаются высоким пределом выносливости, то есть максимальным напряжением, которое материал может выдержать. Поэтому он используется в создании летательных аппаратов наравне со сплавами алюминия и титана.

Читайте также: