Металл добавка к сталям

Обновлено: 08.05.2024

Характеристики углеродистых сталей далеко не всегда соответствуют требованиям, которые предъявляют к материалам различные отрасли промышленности. Чтобы откорректировать их свойства, используют легирование.

Чем отличаются легирующие элементы от примесей

В углеродистых сталях, помимо основных элементов – железа и углерода, есть и другие: марганец, сера, фосфор, кремний, водород и прочие. Их считают примесями и делят на несколько групп:

  • К постоянным относят серу, фосфор, марганец и кремний. Они всегда содержатся в стали в небольших количествах, попадая в нее из чугуна или используясь в качестве раскислителей.
  • К скрытым относят водород, кислород и азот. Они тоже присутствуют в любой стали, попадая в нее при выплавке.
  • К случайным относят медь, мышьяк, свинец, цинк, олово и прочие элементы. Они попадают в сталь из шихтовых материалов и считаются особенностью руды.

Для каждой из перечисленных примесей характерно определенное процентное содержание. Так, марганца в стали, как правило, не более 0,8 %, кремния – не более 0,4 %, фосфора – не более 0,025 %, серы – не более 0,05 %. Если обычного содержания некоторых элементов недостаточно, для получения сталей с нужными свойствами в них дополнительно вносят в определенных количествах специальные примеси, которые называют легирующими добавками.

Выплавка стали

Химический состав стали, формируемый в процессе выплавки, напрямую влияет на ее механические свойства

Как примеси влияют на свойства сталей

Примеси оказывают разное влияние на характеристики сталей:

  • Углерод (С) повышает твердость, прочность и упругость сталей, но снижает их пластичность.
  • Кремний (Si) при содержании в стали до 0,4 % и марганец при содержании до 0,8 % не оказывают заметного влияния на свойства.
  • Фосфор (P) увеличивает прочность и коррозионную стойкость сталей, но снижает их пластичность и вязкость.
  • Сера (S) повышает хрупкость сталей при высоких температурах, снижает их прочность, пластичность, свариваемость и коррозионную стойкость.
  • Азот (N2) и кислород (O2) уменьшают вязкость и пластичность сталей.
  • Водород (H2) повышает хрупкость сталей.

Как легирующие элементы влияют на свойства сталей

Легирующие добавки вводят в стали для изменения их характеристик:

  • Хром (Cr) повышает твердость, прочность, ударную вязкость, коррозионную стойкость, электросопротивление сталей, одновременно уменьшая их коэффициент линейного расширения и пластичность.
  • Никель (Ni) увеличивает пластичность, вязкость, коррозионную стойкость и ударную прочность сталей.
  • Вольфрам (W) повышает твердость и прокаливаемость сталей.
  • Молибден (Mo) увеличивает упругость, коррозионную стойкость, сопротивляемость сталей растягивающим нагрузкам и улучшает их прокаливаемость.
  • Ванадий (V) повышает прочность, твердость и плотность сталей.
  • Кремний (Si) увеличивает прочность, упругость, электросопротивление, жаростойкость и твердость сталей.
  • Марганец (Mn) повышает твердость, износоустойчивость, ударную прочность и прокаливаемость сталей.
  • Кобальт (Co) увеличивает ударную прочность, жаропрочность и улучшает магнитные свойства сталей.
  • Алюминий (Al) повышает жаростойкость и стойкость сталей к образованию окалины.
  • Титан (Ti) увеличивает прочность, коррозионную стойкость и улучшает обрабатываемость сталей.
  • Ниобий (Nb) повышает коррозионную стойкость и устойчивость сталей к воздействию кислот.
  • Медь (Cu) увеличивает коррозионную стойкость и пластичность сталей.
  • Церий (Ce) повышает пластичность и прочность сталей.
  • Неодим (Nd), цезий (Cs) и лантан (La) снижают пористость сталей и улучшают качество поверхности.

Виды легированных сталей

В зависимости от содержания легирующих элементов, стали делят на три вида:

  1. Если легирующих элементов менее 2,5 %, стали относят к низколегированным.
  2. При их содержании от 2,5 до 10 % стали считаются среднелегированными.
  3. Если легирующих элементов более 10 %, стали относят к высоколегированным.

Заключение

Примеси неизбежно присутствуют в сталях, но ряд из них являются вредными (к ним относятся скрытые примеси), поэтому их содержание стараются минимизировать. Легирующие элементы добавляют в стали целенаправленно для улучшения их свойств или получения специфических характеристик.

Влияние легирующих элементов на сталь – как делают идеальные сплавы?

Влияние легирующих элементов на свойства металлургических сплавов изучено по-настоящему хорошо. Благодаря этому введение в сталь различных добавок позволяет получать композиции с уникальными технологическими характеристиками.

1 Группы легирующих элементов и их обозначение

Компоненты, используемые для улучшения свойств сталей, разбивают по степени применимости на три подвида:

  1. Никель – обозначение в готовом сплаве – Н, молибден – М;
  2. Марганец – Г, хром – Х, кремний – С, бор – Р;
  3. Ванадий – Ф, ниобий – Б, титан – Т, цирконий – Ц, вольфрам – В.

К третьему подвиду относят и остальные элементы для легирования – азот (обозначение – А), медь (Д), алюминий (Ю), кобальт (К), бор (Р), фосфор (П), углерод (У), селен (Е). Отметим, что подобное деление обусловлено в основном экономическими соображениями, а не сугубо физическими.

Группы легирующих элементов и их обозначение

По характеру воздействия добавок на модификации (полиморфные), наблюдаемые в сталях, все легирующие элементы делят на два типа. К первому относят компоненты, которые при любых температурах способны стабилизировать аустенит (в основном это марганец и никель). Вторая группа включает в себя элементы, которые при определенном своем содержании могут поддерживать ферритную структуру сплава (алюминий, молибден, хром, кремний, вольфрам и другие).

По механизму влияния на свойства и структуру сталей добавки причисляют к одному из трех типов:

  1. Легирующие элементы, способные создавать карбиды углерода при реакции с последним (бор, молибден, титан, цирконий).
  2. Добавки, обеспечивающие полиморфные превращения (альфа-железо в гамма-железо).
  3. Химэлементы, при использовании которых получаются интерметаллические соединения (ниобий, вольфрам).

Правильное легирование сталей подразумевает введение в их состав тех или иных добавок в строго рассчитанных количествах. При этом оптимальных результатов металлурги достигают в случае, когда "насыщение" сплавов производится комплексно.

2 Какие свойства сплавов позволяют улучшить легирующие добавки?

Легирование дает возможность снизить деформируемость изделий, производимых из различных марок стали, снизить порог хладоломкости сплавов, свести к минимуму риск появления в них трещин, значительно уменьшить скорость закалки и при этом повысить:

  • прокаливаемость;
  • ударную вязкость;
  • текучесть;
  • сужение (относительное);
  • коррозионную стойкость.

Все легирующие добавки (кроме кобальта), повышают прокаливаемость сталей и уменьшают (зачастую весьма существенно) критическую скорость закалки. Достигается это за счет увеличения устойчивости аустенита в сплавах.

Образующие карбиды элементы способны замещать атомы железа в цементите. За счет этого карбидные фазы становятся более устойчивыми. При выделении карбидов из твердых растворов наблюдается явление дисперсионного упрочнения сталей. Другими словами – сплав получает дополнительную твердость.

Какие свойства сплавов позволяют улучшить легирующие добавки?

Также карбидообразующие добавки делают процесс коагуляции дисперсных частиц в сталях более медленным и препятствуют (при нагреве) росту аустенитных зерен. Благодаря таким легирующим компонентам сплавы становятся намного прочнее.

Аустенитную структуру улучшают любыми легирующими добавками, кроме углерода и азота.

Насыщенный добавками аустенит получает высокий показатель теплового расширения, становится парамагнитным, у него снижается предел текучести. Композиции с подобными свойствами незаменимы для выпуска немагнитных и нержавеющих сталей. Аустенитные сплавы, кроме того, прекрасно упрочняются при грамотно проведенной холодной деформации.

Стали, имеющие ферритную структуру, при легировании также обретают добавочную прочность. Максимальное влияние на этот показатель оказывает хром и марганец. Обратите внимание! Прочностные характеристики сплавов увеличиваются при снижении геометрических параметров ферритных зерен.

3 Влияние конкретных химических элементов на свойства стали – коротко об основном

Давайте посмотрим, какие именно характеристики готовых сплавов способны улучшить те или иные добавки:

  • Вольфрам создает карбиды, которые повышают красностойкость и показатели твердости стали. Также он облегчает процесс отпуска готовой продукции, снижая хрупкость стали.
  • Кобальт увеличивает магнитный потенциал металла, его ударостойкость и жаропрочность.
  • Никель повышает прокаливаемость, прочность, коррозионную стойкость, пластичность сталей и делает их более ударопрочными, снижает предел хладноломкости.
  • Титан придает сплавам высокую плотность и прочностные свойства, делает металл коррозионностойким. Стали с такой добавкой хорошо обрабатываются специальным инструментом на металлорежущих агрегатах.
  • Цирконий вводят в сплавы, когда необходимо получить в них зерна со строго определенными размерами.
  • Марганец делает металл устойчивым к износу, повышает его твердость, удароустойчивость. При этом пластичные свойства сталей остаются на прежнем уровне, что важно. Заметим – марганца нужно вводить не менее 1 %. Тогда влияние этого элемента на эксплуатационные показатели сплава будет ощутимым.
  • Медь делает металлургические композиции стойкими к ржавлению.
  • Ванадий измельчает зерно сплава, делает его прочным и очень твердым.
  • Ниобий вводят для снижения явлений коррозии в сварных изделиях, а также для повышения кислотостойкой стальных конструкций.
  • Алюминий увеличивает окалийность и жаропрочность.
  • Неодим и церий используют для сталей с заданной заранее величиной зерна, сплавов с малым содержанием серы. Эти элементы также снижают пористость металла.
  • Молибден повышает прочность сплавов на растяжение, их упругость и красностойкость. Кроме того, эта легирующая добавка делает стали стойкими к окислению при высоких температурах.

Влияние конкретных химических элементов на свойства стали – коротко об основном

Больше влияние на характеристики сталей оказывает кремний. Он повышает окалийность и упругость металла. Если кремния содержится около 1,5 %, сталь становится вязкой и при этом очень прочной. А при его добавке более 1,5 % сплавы обретают свойства магнитопроницаемости и электросопротивления.

Грамотно выполненное легирование сталей обеспечивает их особыми свойствами. И современные металлургические предприятия активно используют этот процесс для выпуска широкой номенклатуры сплавов с высокими технологическими характеристиками.

Легирование стали

Легирование стали

Сталь представляет собой сплав железа (не меньше 45%) и углерода (до 2,14%). Последний повышает прочностные характеристики металлов, при этом, если сравнивать с химически однородным металлом, понижает их пластичность. В процессе производства стали концентрация углерода специально доводится до необходимых значений. Контроль за содержанием углерода позволяет получать несколько видов стали:

  • Низкоуглеродистую – содержание углерода не более 0,25%.
  • Среднеуглеродистую – не более 0,6%.
  • Высокоуглеродистую – 0,6 – 2,14%.

В металле также могут обнаруживаться и иные примеси, поэтому стали классифицируются как легированные и нелегированные. Последние представляют собой железно-углеродный сплав, в составе которого присутствуют и другие элементы в виде примесей или добавок меньше установленного предельного содержания.

Легирование стали

Легированные стали

Элементы, содержание которых превышает обычное предельное значение, указанное в стандартах, называются легирующими добавками. Изменение химического состава металла путем введения легирующих добавок называется легированием стали. Основные цели легирования:

  • повышение прокаливаемости;
  • получение специфических прочностных свойств;
  • вызов желаемых структурных изменений;
  • получение специальных химических или физических свойств;
  • улучшение и упрощение технологии термообработки;
  • повышение коррозионной стойкости и устойчивости к различным температурам.

Исходя из вышесказанного следует, что легирование стали – это металлургический процесс плавки, в ходе которого в него вводятся различные добавки. Добавление легирующих элементов производится двумя способами:

  • Объемным – компоненты проникают в глубинную структуру материала путем их добавления в шихту или расплав.
  • Поверхностный – введение легирующих компонентов только верхний слой стали, на глубину 1-2 мм. Такой способ придает материалу определенные свойства, к примеру, антифрикционные.

Легирование стали-2

Легирующие элементы

  • Хром – увеличивает прочность и твердость, повышает ударную вязкость. В инструментальные стали добавляется для повышения прокаливаемости. В случае нержавеющих сталей – определяет коррозионную стойкость.
  • Никель – повышает прочность и твердость при сохранении высокой ударной вязкости. Понижает пороговую температуру хрупкости. Это влияет на хорошую прокаливаемость сталей, особенно при участии хрома и молибдена.
  • Марганец - повышает твердость и прочность за счет пластических свойств. Марганцевая сталь характеризуются повышенным пределом упругости и более высокой стойкостью к истиранию.
  • Кремний – в металлургическом процессе играет роль раскислителя. Его добавление увеличивает прочность и твердость стали.
  • Молибден – повышает прокаливаемость сталей больше, чем хром и вольфрам. Уменьшает хрупкость металла после высокого отпуска.
  • Алюминий – сильно раскисляет, предотвращает рост аустенитных зерен.
  • Титан – понижает зернистость, что приводит к большей устойчивости к появлению расколов и трещин. Улучшает восприимчивость к металлообработке.

Легирующих добавок может быть несколько, и для получения тех или иных характеристик их введение может производиться на разных этапах плавки.

Помимо того, что в состав стали вводят различные добавки, в самом материале также присутствуют примеси, которые полностью убрать из состава невозможно:

  • Углерод – способствует повышению твердости, прочности и ударостойкости. Однако его превышение в составе металла понижает пластичность и все вышеперечисленные характеристики.
  • Марганец – раскислитель, защищающий от кислорода и серы.
  • Сера – высоким считается ее содержание выше 0,6%, что плохо сказывается на пластичности, прочности, свариваемости и коррозионной устойчивости.
  • Фосфор – ведет к повышению текучести и хрупкости, понижает вязкость и пластичность.
  • Кислород, азот, водород – делают сплав более хрупким, снижают показатели его выносливости.

Легирование стали-3

Применение

Благодаря таким характеристикам, как прочность, устойчивость к нагрузкам, твердость, уменьшение намагниченности и нужный уровень вязкости, легированную сталь используют в самых разных сферах человеческой деятельности. Из нее производят:

  • медицинские инструменты, в том числе, и режущие;
  • детали с высокой опорной и радиальной нагрузкой;
  • элементы станков для металлообработки;
  • нержавеющую посуду;
  • детали автомобилей;
  • аэрокосмические детали;
  • пресс-формы и другие элементы для горячей штамповки, сохраняющие свои свойства при температуре до + 600 градусов;
  • измерительные приборы и так далее.

Классификация легированных сталей

Принимая принцип разделения по структуре, образованной в условиях медленного охлаждения стали в диапазоне температур, близких к солидусу, или в отожженном состоянии, сталь можно классифицировать следующим образом:

  • подевтектоид с ферритно-перлитной структурой;
  • эвтектоид с перлитной структурой;
  • гиперэвтектоид, содержащий вторичные карбиды, отделенные от аустенита;
  • ледебуритная сталь, в структуре которой встречаются первичные карбиды, выделившиеся при кристаллизации;
  • ферритная или аустенитная с осаждением карбидов или интерметаллических фаз. Обычно это стали с высоким содержанием легирующих элементов и низким содержанием углерода;
  • ферритно-мартенситная или ферритно-аустенитная сталь с наиболее часто высокотемпературным ферритом δ.

Все марки легированных сталей разделяют на три подвида в зависимости от количества полезных примесей:

  • Низколегированная – процентное содержание добавок около 2,5%. Прибавление некоторых положительных качеств при практически неизменных основных характеристиках.
  • Среднелегированная – процентное содержание добавок около 10%. Наиболее часто используемое соединение.
  • Высоколегированная – процентное содержание добавок варьируется от 10 до 50%. Высоколегированная сталь является максимально прочной и дорогой.

Независимо от того, какое процентное содержание добавок в составе металла, сталь разделяется на 3 подвида:

  1. Инструментальная – жаропрочный материал, используемый при производстве станочных и ручных инструментов (сверла, фрезы, стальные резцы и так далее).
  2. Конструкционная – прочная сталь, способная выдерживать высокие динамические и статические нагрузки. Используется при изготовлении двигателей и стальных механизмов в машиностроении, применяется в сфере строительства и станкостроения.
  3. С особыми свойствами – сталь, отличающаяся химической и термической устойчивостью (нержавеющая, кислотостойкая, магнитная, износостойкая, трансформаторная и другие виды). Ряд исследователей предлагают отдельное деление для данного вида сталей:
  • Жаропрочные – способны выдерживать температуру до 1000 градусов.
  • Окалиностойкие и жароустойчивые – стали, невосприимчивы к распаду.
  • Устойчивые к коррозии – применяются при производстве изделий, работающих в условиях высокой влажности.

Марки

В СНГ используется буквенно-цифровая маркировка легированных сталей. Буквами обозначают основные легирующие добавки, цифрами, идущими следом за буквами, обозначают процент их содержания в сплаве (округляя до целого числа). Если в металле присутствует не более 1,5% той или иной добавки, цифра не ставится. Процентное содержание углерода × 100 указывается вначале наименования стали. Буква A, стоящая в середине маркировки, указывает на содержание азота. Если две буквы A стоят в конце, это указывает на особо чистую сталь. Буква Ш в конце обозначает сталь особо высокого качества.

Маркировка может быть дополнена и другими обозначениями, к примеру:

  • Э — электротехническая;
  • P — быстрорежущая;
  • A — автоматная;
  • Л — полученная литьем.

Исчерпывающие перечни марок легированной стали указаны в ГОСТ 4543-71.

Оформите заявку на сайте, мы свяжемся с вами в ближайшее время и ответим на все интересующие вопросы.

Как и из чего получают сталь

Как и из чего получают сталь

Сталь — ковкий сплав железа с углеродом и другими легирующими элементами. Ее используют для изготовления металлопроката, посуды, медицинских инструментов, механизмов и различных деталей для промышленности. Сплав почти на 99 % состоит из железа. Углерод занимает от 0,1 до 2,14 % общей массы металла. Углерод, марганец, кремний, магний, фосфор и сера изменяют физико-химические свойства стали. Количество примесей определяет способы обработки металла и сферы его применения. Производство стали занимает весомую долю черной металлургии.

Из чего делают сталь?

Сталь — одна из самых востребованных в промышленности. Железо и углерод — основные компоненты для изготовления стали. Железо отвечает за пластичность и вязкость, а углерод — за твердость и прочность.

Получают деформируемый сплав железа, который поддается механической, термической, токарной и фрезерной обработке. Литьем, прессованием, резкой, шлифовкой и сверловкой добиваются нужной формы. Стальные изделия получают с точно выверенными размерами.

Железо и углерод занимают львиную долю от общей массы, но кроме них сталь всегда содержит другие примеси. Чистота по неметаллическим включениям определяет качества стали. Оксиды, сульфиды и вредные примеси делают ее хрупкой и непластичной. Их содержание снижают очисткой или вводят дополнительные компоненты, чтобы добиться нужных физико-химических свойств.

Примеси бывают полезными и вредными. Разделение условное и означает то, что элементы улучшают химический состав стали или ухудшают его свойства. К полезным элементам относятся марганец и кремний. Сера, фосфор, кислород, азот, водород — вредные примеси в составе стали.

Как влияют полезные и вредные примеси на свойства стали?

Эффект от различных элементов в сталях:

  • Марганец повышает прокаливаемость металла и нейтрализует вредное воздействие серы.
  • Кремний улучшает прочность и способствует раскислению сплава, удаляя оксиды и сульфиды.
  • Сера ухудшает пластичность и вязкость. Ее большое содержание проявляется красноломкостью: во время горячей обработки металл трескается в области красного или желтого каления.
  • Фосфор снижает пластичность и ударную вязкость сплава. Повышенное содержание фосфора приводит к хладноломкости: при механической обработке металл трескается или разламывается на куски.
  • Кислород и азот разрушают структуру стали, ухудшают вязкость и пластичность.
  • Водород приводит к хрупкости металла.

Чтобы удалить вредные примеси и неметаллические включения, жидкую сталь рафинируют. Используют комбинированное рафинирование в печи и вне печи. К примеру, раскисление, десульфурацию, дегазацию и другое. За счет очистки структура металла становится однородной, а качество возрастает.

сталь

Почему сталь сравнивают с чугуном?

Металлы похожи составом и способом изготовления. Чугун и сталь — сплавы железа, отличающиеся по концетрации углерода. В чугуне его свыше 2,14 % от общей массы, а в стали — не больше 2,14 %. Кроме процентной доли углерода в сплаве, они различны по свойствам. Чугун жаростойкий, теплоемкий, легкий и устойчивый к коррозии. А сталь прочнее, тверже и легче поддается механической обработке.

Плюсы и минусы стали

Сталь классифицируется по химическому составу и физическим свойствам. Разным маркам металла характерны свои преимущества и недостатки.

По сравнению с другими сплавами сталь отличается:

  • высокой прочностью;
  • твердостью;
  • устойчивостью к ударной, статической и динамической нагрузке;
  • пригодностью к сварке, резке и гибке заготовок механическим или ручным способом;
  • многолетней износостойкостью;
  • доступной стоимостью.

К минусам стали относится нестойкость к коррозии, тяжелый вес и намагничивание. Чтобы изделия из стали не портились, изготавливают нержавеющие марки. Чтобы получить устойчивый к коррозии сплав, добавляют хром. Также в составе могут присутствовать никель, молибден, титан, сера, фосфор.

производство стали

Способы производства

Используют три метода изготовления стали, у каждого из которых свои достоинства и недостатки.

Мартеновские печи

Применяемые печи выкладывают из хромо-магнезитового кирпича. В них плавят сырье, окисляют сплав и удаляют посторонние включения. Печи могут быть использованы для изготовления углеродистых и легированных сталей. Они нагреваются до температуры +2000оС, позволяют добавлять различные примеси.

Кислородно-конвертерный метод

Это способ, получивший звание универсального. Его используют в производстве ферромагнитных сплавов. Выплавляют сталь из жидкого чугуна и шихты. Задействуют конвертер, облицованный огнеупорными материалами. Чтобы ускорить процесс окисления, через него подают струю воздуха.

Электродуговой способ

Принцип производства заключается в выделении тепла при горении электрической дуги. Тепловой режим обеспечивает плавление сырья под температурой +6000оС. Благодаря нему получаются высококачественные сплавы. У этой группы больше остальных хорошо раскисленных сталей.

производство стали-2

Как получают сталь?

Производство стали состоит из нескольких этапов. Нарушения технологии влияют на свойства металла.

Расплавление шихты железных руд и нагрев ванны жидкого металла

На первом этапе плавят сырье на низкой температуре. При постепенном повышении температуры окисляется железо, кремний, марганец, фосфор. Затем повышают содержание оксида кальция, чтобы удалить фосфор.

Кипение ванны металла

Повышение температуры и интенсивное окисление железа путем введения руды, окалины и кислорода. Введение добавок позволяет получить оксид железа. С ним будет взаимодействовать углерод. Образующиеся пузырьки оксида углерода приводят сплав в кипящее состояние. К пузырькам прилипают сторонние примеси, тем самым очищая состав стали. Также удаляют сульфид железа, чтобы избавиться от серы.

Раскисление стали

В этом процессе восстанавливают оксид железа, который был растворен в жидком металле. Когда плавят шихту, кислород окисляет примеси, но в готовой стали он не нужен. Кислород понижает механические свойства стали, поэтому его нужно восстановить и удалить. Раскисляют стали ферромарганцем, ферросилицием, алюминием. Попадая в сплав, раскислители образуют оксиды низкой плотности, а затем отходят в шлак.

Как классифицируют сталь?

Физико-механические свойства и химический состав определяют виды металла. Сталь делят по составу, методу получения, структуре и примесям. Углеродистые и легированные стали различают по содержанию углерода и легирующим элементам. Сплавы обычного и высокого качества делят по содержанию примесей. Инструментальные, конструкционные и специальные стали делят в зависимости от назначения.

Углеродистые стали

Углеродистая сталь содержит углерод от 0,1 до 2,14 %. Количество углерода определяет группы стали:

  • Низкоуглеродистые содержат меньше 0,3 % углерода.
  • Среднеуглеродистые — от 0,3 до 0,7 %.
  • Высокоуглеродистые — более 0,7 до 2,14 %.

По процентному содержанию углерода определяют структуру сплава. Сталь с 0,8 % углерода сохраняет ферритно-перлитную структуру, с повышением меняет ее на перлит и цементит. Преобразования каждой фазы отражаются на прочностных характеристиках. Также углеродистые стали разделяют на группы А, Б, В, которые в свою очередь делятся на категории и марки.

Легированные

Сталь обогащают марганцем, хромом, никелем, молибденом и другими легирующими элементами. Количество примесей считают суммарно. В зависимости от их содержания различают:

  • низколегированные — до 2,5 % примесей;
  • среднелегированные — от 2,5 до 10 %;
  • высоколегированные — более 10 %.

Марганцем повышают прочность и твердость материала, хромом — стойкость к ударам, жаропрочность и устойчивость к коррозии. Никель делает сталь упругим и стойким к высоким температурам.

Марки стали отличаются сложной структурой. Обязательно указывают их состав в порядке убывания. Начинают с доли углерода, а затем прописывают меньшие доли легирующих добавок.

производство стали-3

Спокойные, полуспокойные и кипящие

Стали классифицируют по степени раскисления. Чем меньше в сплаве газов, тем равномернее его структура и чище состав. Спокойные стали содержат меньше закиси железа, а кипящие — большое количество оксидов. Пузырьки оксида углерода ухудшают прочностные и пластичные свойства металла. Спокойные стали стабильны, их используют в изделиях ответственного назначения. Полуспокойные марки — среднепрочные, их задействуют как конструкционный материал. Кипящие разрушаются, трескаются и плохо поддаются сварке, поэтому и стоят меньше. Они разрешены в простых конструкциях.

Строительные

Низколегированные сплавы обычного качества. Они обладают удовлетворительными механическими свойствами, выдерживают статические и динамические нагрузки, пригодны к сварке.

Инструментальные

Высокоуглеродистые или высоколегированные сплавы. Их используют для изготовления штампов, режущего и измерительного инструмента. Разделяют соответственно на штамповые металлы, сплавы для режущего и измерительного инструмента. Названия группы зависит от назначения сталей. К примеру, штамповую сталь используют для изготовления инструментов, которыми будут обрабатывать металлы под давлением.

Конструкционные

Стали с низким содержанием марганца. Их делят на цементируемые, высокопрочные, автоматные, шарико-подшипниковые и другие. Используют для изготовления узлов механизмов или конструкций.

Стали специального назначения

Эти сплавы относятся к конструкционным сталям. Они бывают жаропрочными, жаростойкими, кислотоупорными, криогенными, электротехническими, парамагнитными, немагнитными.

Металл добавка к сталям


КОБАЛЬТ - вещество серебристо-белого цвета с слегка желтоватым, розоватым или синеватым отливом. В металлургии применяется при легировании сталей, используемых для изготовления режущего и обрабатывающего инструментов. Кобальт повышает твердость и прочность стали, повышают ее жаропрочность и допускает закалку при более высоких температурах. и улучшают механические свойства, акцентирует отдельные эффекты других элементах в более сложных сталях.

Как микроэлемент, кобальт входит в состав витамина В12 и содержится в теле человека в соотношении 0.1-0.2мг на 1 кг. массы человека.

Благодаря его невысокой стоимости (25-30$/кг) кобальт довольно часто используется при производстве сталей (не путать стоимость кобальта с ценой инструмента, его включающего). Так, для обрабатывающего инструмента (сверла, резцы), содержание кобальта в стали обычно не превышает 5%. Тогда как для сталей, используемых для производства клинков и парикмахерских ножниц - от 0.3 до 1.5% (ст. VG-10, ATS-55 и др).



ВАНАДИЙ - пластичный тугоплавкий металл серебристо-белого цвета. В металлургии применяется как легирующая добавка для получения устойчивых к коррозии жаропрочных сталей. При добавке к стали увеличивает износостойкость и прочность, ограничивает размеры зерна. При нагревании выше 300 °C ванадий становится хрупким, практически полностью теряя пластичность. Ванадиевый сплав с добавкой 5-20% Ti сочетает низкотемпературную прочность и высокую пластичность с высокой прочностью при повышенной температуре и малой ползучестью. При токсическом отравлении у людей отмечаются воспаления кожи, слизистых оболочек глаз и дыхательных путей с развитием астмы, экземы и анемии.

В небольшом содержании входит в состав сталей марок VG-10, AUS-6, AUS-8 (0.1-0.3%), BG-42 (1.2%). Более широко ванадий применяется при производстве порошковых сталей, например VANADIS 10 (9.8%).



МОЛИБДЕН - блестящий тугоплавкий металл серебристо-белого цвета. Используется для легирования сталей жаропрочных и коррозиестойких сплавов. Молибден как добавка увеличивает прочность, твердость, прокаливаемость и ударную вязкость. Улучшает обрабатываемость и устойчивость к коррозии. Предотвращает высокотемпературные ползучести, помогает сохранить мелкие размеры зерен. Недостатком можно считать увеличение хрупкости при росте твердости стали. Ориентировочная стоимость 35-40$/кг.

Молибден применяется в сталях, используемых при производстве режущего инструмента - в ст. 440 и ATS-55 (до 0.75%), ст. VG-1 и AUS-8 (до 0.3%), ст. VG-10 (до 1.2%), ст. ATS-34 и BG-42 (до 4%). Молибден применяется и при производстве порошковых сталей, VANADIS 10 (1.5%).
===



ХРОМ - твердый металл голубовато-белого цвета. Хром повышает твердость стали, прочность (в т.ч. и на разрыв). Обеспечивает устойчивость к износу и коррозии - содержание хрома выше 12% в составе дает то, что известно как нержавеющая сталь. Является основным легирующим элементом, который обеспечивает коррозийную стойкость стали. Коррозийная стойкость хромо- содержащей стали объясняется в основном тем, что на поверхности изделия из такой стали образуется тонкая пленка нерастворимых окислов. При этом, как утверждает Википедия, большое значение имеет состояние поверхности изделия, отсутствие внутренних напряжений и дефектов. Хром входит в состав антикоррозийных сталей, применяемых для изготовления режущих инструментов - в ст. 20Х13, 30Х13, 40Х13, 65Х13 и ст. группы 420 (12-14%), ст. 95Х18 и группы 440 (16-18%), ст. ATS-35, ATS-55 и VG-10 (14-15%), ст. группы AUS (13-14%) и т.д.
===


УГЛЕРОД - в виде древесного угля применялся в древности для выплавки металлов. Он и сейчас является важнейшей примесью металла, играющей огромную положительную роль в процессах производства стали. Углерод присутствует в сталях большинства марок. Расширяя область температур устойчивого состояния и улучшая свойства железа, углерод позволяет получать сталь с широким диапазоном механических свойств. В сталях очень немногих марок специального назначения (электротехнической, нержавеющей, прочной и т.п.) углерод является нежелательной примесью. Углерод является главным потребителем кислорода, подводимого в ванну для окисления примесей, пример, в мартеновском скрап-рудном и конверторном процессе до 75—80% и более кислорода расходуется на окисление углерода. Поэтому управление процессом окислительного рафинирования во многих случаях производится главным образом к регулированию реакции окисления углерода. Пузыри СО, проходя через жидкий металл, также способствуют удалению из него газов и неметаллических включений в процессе плавки (особенно в подовых процессах) и во время вакуумирования.

Традиционно считается, что углерод увеличивает стойкость кромки и повышает предел прочности при растяжении, твердость стали и увеличивает устойчивость к износу и истиранию. Его высокие значения уменьшают коррозионную стойкость стали и изготовленных из нее инструментов.
===


МЕДЬ - пластичный металл красно-розового цвета. Как добавка к сталям увеличивает их стойкость к коррозии.


МАРГАНЕЦ - в чистом виде это твердый и хрупкий металл серебристо-белого цвета. Относится к черным металлам. Марганец ввиду образования прочных карбидов несколько снижает пластичность стали, особенно при обычной температуре. Поэтому в малоуглеродистой стали, идущей на глубокое штампование без нагрева (автомобильные кузова и др.), желательно низкое содержание (0,2—0,3%) марганца. Примерно такими же пределами ограничивается его содержание в углеродистом инструментальной стали, так как при более высоком содержании ухудшаются режущие свойства стали. Но при легировании инструментальной стали марганцем ее качество повышается благодаря улучшению прокаливаемости. Следует подчеркнуть, что повышение качества стали в результате легирования ее марганцем, так же как и другими элементами, оказывается существенным обычно лишь тогда, когда сталь подвергается соответствующей термической обработке. Поэтому применение легированной стали без термической обработки наносит большой ущерб.

Впрочем, марганцем улучшают свойства не только железа. Так, с его помощью металл очищают от серы, считающейся вредной примесью, а сплавы марганца с медью обладают высокой прочностью и коррозионной стойкостью. Считается, что марганец увеличивает прокаливаемость, износостойкость и прочность на разрыв. Является деоксидом и дегазатором для удаления кислорода из расплавленного металла. В больших количествах повышает твердость и хрупкость.
===


НИКЕЛЬ - металл серебристо-белого цвета. Как добавка повышает прочность и ударную вязкость стали. Используется в качестве компонента ряда нержавеющих сталей. Является основой большинства суперсплавов - нихром, белое золото, пермаллой, инвар и т.д. Цены на никель часто колеблются в пределах $15-18 тыс/тн.


НИОБИЙ - металл серо-стального цвета, покрывается голубоватой оксидной пленкой. Чистый металл пластичен и может быть прокатан в тонкий лист (до толщины 0, 01 мм.) в холодном состоянии без промежуточного отжига. Ниобий устойчив против действия соляной, серной, азотной, фосфорной и органических кислот любой концентрации. Коррозионная стойкость ниобия в кислотах и других средах, в сочетании с высокой теплопроводностью и пластичностью делают его ценным конструкционным материалом для аппаратуры в химических и металлургических производствах.

Ниобий входит в состав различных жаропрочных сплавов для газовых турбин реактивных двигателей. Легирование ниобием молибдена, титана, циркония, алюминия и меди резко улучшает свойства этих металлов, а также их сплавов. Существуют жаропрочные сплавы на основе ниобия в качестве конструкционного материала для деталей реактивных двигателей и ракет (изготовление турбинных лопаток, передних кромок крыльев, носовых концов самолётов и ракет, обшивки ракет). Ниобий и сплавы на его основе можно использовать при рабочих температурах 1000 — 1200°С. Карбид ниобия входит в состав некоторых марок твёрдых сплавов на основе карбида вольфрама, используемых для резания сталей. Ниобий широко используется как легирующая добавка в сталях. Добавка ниобия в количестве, в 6-10 раз превышающем содержание углерода в стали, устраняет межкристаллитную коррозию нержавеющей стали и предохраняет сварные швы от разрушения. Ниобий также вводят в состав различных жаропрочных сталей (например, для газовых турбин), а также в состав инструментальных и магнитных сталей.
===

АЗОТ - используется вместо углерода для матрицы стали. Атом азота будет функционировать так же, как атом углерода, но предлагает необычные свойства в области устойчивости к коррозии.


ФОСФОР - в сталях большинства марок является вредной примесью. Содержание его в исходной шихте обычно бывает в несколько раз выше допустимого в готовой стали. Поэтому в процессах плавки стали, как правиле возникает необходимость обязательной дефосфорации металла. Вредное влияние фосфора на сталь связано в первую очередь с тем, что он имеет неограниченную растворимость в жидком железе, но плохо растворяется в твердом железе, особенно в аустените. Поэтому при кристаллизации и дальнейшем охлаждении стали фосфор выделяется в виде фосфидов железа, которые, имея температуру плавления ниже температуры кристаллизации стали и обладая свойством смачивать металл, располагаются преимущественно по границам зерен. Фосфиды, которые выделяются в межосных пространствах дендритов в твердом железе при температуpax 650—680°С и выше, обладают склонностью перо распределяться и также переходить к границам зерен. В результате снижается пластичность металла, особенно ударная вязкость при низких температурах, т. е. фосфор вызывает хладноломкость стали. В связи с этим устанавливают особо строгие пределы содержания фосфора в сталях, предназначенных для работы в низко температурных условиях.


Повышенное содержание фосфора также ухудшает кузнечную свариваемость стали. Это может привести например, к плохому завариванию пустот в слитках при обработке давлением, в связи с чем могут увеличиваться отходы (головная обрезь) от слитков. Сталь с высоким содержанием фосфора обладает и так называемой синеломкостью, т.е. хрупкостью при температурах 500—600° С.


КРЕМНИЙ - может быть в аморфной форме (порошок) или кристаллической; цвет темно-серый, слегка блестящий. В металлургическом производстве используется как компонент сплава (бронза, силумин), раскислитель и дегазатор для удаления кислорода из расплавленного металла (чугун и стали), как модификатор свойств стали или легирующий элемент и т.д. Традиционного увеличивает прочность стали.


СЕРА - светло-желтое порошкообразное вещество. Сера является вредной примесью, снижающей механическую прочность и свариваемость стали, а также ухудшающей ее электротехнические, антикоррозионные и другие свойства. Отрицательное влияние серы на свойства стали обычно сказывается уже при содержании 0,01—0,015% (в некоторых случаях и при более низком). Ухудшение механических и некоторых других свойств стали при повышенном содержании серы объясняется тем, что сера имеет практически неограниченную растворимость в жидком железе, а в твердом железе растворяется плохо. Низкое содержание серы является важнейшим показателем высокого качества спокойной и кипящей стали.

Однако сказанное относится в основном к тем сталям, которые не подвергаются обработке резанием. В сталях, обрабатываемых резанием, сера повышает обрабатываемость, поэтому, например, в отдельные марки сталей серу вводят специально (0,1-0,2%).
===


ВОЛЬФРАМ - блестящий светло-серый металл, являющимся самым тугоплавким из металлов. Пластичен. Сплавы вольфрама, ввиду его высокой температуры плавления, получают методом порошковой металлургии. Сплавы, содержащие вольфрам, отличаются жаропрочностью, кислотостойкостью, твердостью и устойчивостью к истиранию. Вольфрам - важный компонент лучших марок инструментальных сталей. Добавляет сплаву ударную вязкость и увеличивает прокаливаемость.

Для механической обработки металлов и неметаллических конструкционных материалов в машиностроении (точение, фрезерование, строгание, долбление), бурения скважин, в горнодобывающей промышленности широко используются твёрдые сплавы и композитные материалы на основе карбида вольфрама (например, победит, состоящий из кристаллов WC в кобальтовой матрице; широко применяемые в Украине марки — ВК2, ВК4, ВК6, ВК8, ВК15, ВК25, Т5К10, Т15К6, Т30К4), а также смесей карбида вольфрама, карбида титана, карбида тантала (марки ТТ для особо тяжёлых условий обработки, например, долбление и строгание поковок из жаропрочных сталей и перфораторное ударно-поворотное бурение крепкого материала). Широко используется в качестве легирующего элемента (часто совместно с молибденом) в сталях и сплавах на основе железа. Высоколегированная сталь, относящаяся к классу "быстрорежущая", с маркировкой, начинающейся на букву Р, практически всегда содержит вольфрам.
==

P.S. Более подробно о сталях, упомянутых выше и о других, используемых для изготовления клинков, парикмахерского или маникюрного инструмента можно прочесть в ЭТОЙ статье.

Читайте также: