Металл на постоянные магниты

Обновлено: 17.05.2024

В нашем магазине представлены постоянные магниты различных сплавов и марок материала. Неодимовые магниты, ферриты, самарий кобальт, альнико.

История применения постоянных магнитов

С древнейших времен постоянные магниты применялись в медицине. Клеопатра носила магнитный амулет. В Древнем Китае применялись магнитные камни для лечения тела и восстановления энергии «Ци».

О благоприятном влиянии постоянных магнитов писали известные врачи и философы: Гиппократ , Авиценна , Аристотель . В средневековье врач Гилберт опубликовал сочинение «О магните», лечил королеву Елизавету I от артрита с помощью постоянного магнита. Русский врач Боткин также использовал методы магнитотерапии .

Первым искусственным магнитным материалом была углеродистая сталь, которая содержала примерно 1,2—1,5 % углерода.

Магнитные свойства стали восприимчивы к механическим и температурным воздействиям. В результате использования постоянных магнитов на основе углеродистой стали отмечалось «старение» ее магнитных свойств.

Доктор Хонд из Тохокского университета создал новый тип стали — КS с высокой намагниченностью и значительной коэрцитивной силой, методом легирования стали хромом и вольфрамом до 3 %, а также кобальтом с хромом до 6 %.

Высокая остаточная индукция у постоянных магнитов из сталей KS осуществлялась благодаря уменьшению размагничивающего фактора. С этой целью постоянные магниты изготавливались удлинённой, подковообразной формы.

В 1932 году доктор Т.Мискима создал новый вид стали МК методом легирования стали KS никелем , медью и алюминием . Это качественный скачок в разработке постоянных магнитов, которые позднее получили название Альнико (ЮНДК (по российским стандартам).


В Японии коммерческие ферритовые магниты появились в 1955 году, в России — в середине 1960-х.


В лаборатории U.S. Air Force Material Research найдено интерметаллическое соединение самария с кобальтом ( SmCo5 ). Это значительный технологический прорыв в изготовлении постоянных магнитов.

Постоянный магнит, изготовленный из сплава SmCo5 , по характеристикам достиг (ВН)макс = 16-24 МГсЭ, а на соединении Sm2Co17 — 32 МГсЭ, коэрцитивная сила была увеличена до 560—1000 кА/м.


Постоянные магниты из сплава Самарий-Кобальт изготавливаются промышленностью с 1980-х годов. Примерно в это же время были открыты в США и Японии неодимовые магниты из материалов Неодим-Железо-Бор (Nd-Fe-B).

В Японии производство неодимовых магнитов осуществлялось по аналогии магнитов SmCo: производство порошка из литого сплава, далее прессование в магнитном поле и спекание.

В США при производстве неодимовых магнитов применяется следующая технология: сначала создается аморфный сплав, потом он измельчается и изготавливается композиционный материал.

Магнитный порошок смешивается с резиной, винилом, нейлоном или другими пластиками в композиционную массу, из которой после прессования изготавливаются различные изделия.

Магниты из композиционного материала имеют более низкие магнитные свойства по сравнению со спеченными материалами, легко обрабатываются механически, и не требуют гальванических покрытий.


Магниты из Nd2Fe14B появились на рынке постоянных магнитов в 1990-х годах и очень быстро достигли на спечённых образцах энергии в 400 кДж/м 3 . У неодимовых магнитов широкая сфера применения:

Магнит обладает очень большой прижимной (отрывной) силой, Неодим Железо Бор (NdFeB широкое применение в промышленности, а также решает ряд задач в бытовой (домашней) сфере.

Неодимовые магниты оказались более востребованными на рынке по сравнению с другими видами постоянных магнитов, особенно в микроэлектронике.

Из чего изготавливают постоянные магниты

Любые постоянные магниты изготавливают из ферромагнитных веществ. К группе этих материалов относятся железо, кобальт, гадолиний, а также множество химических соединений и сплавов. Все эти вещества даже после выключения намагничивающего поля сохраняют намагниченность. В зависимости от типа материала, используемого для изготовления магнитов, выделяют такие группы изделий:

Ферритовые магниты

Феррит – это материал, магнитная проницаемость которого значительно превосходит соответствующие показатели черных металлов. Разработанные на его основе в 50-х гг. XX века магниты стали более доступной и практичной альтернативой дорогостоящим магнитам из металлических сплавов. В качестве основы материала используется оксид железа Fe2O3 в соединении с ферритом бария или ферритом стронция. Специфика такого состава обуславливает хрупкость и твердость готовых изделий, которые могут разрушиться при ударе или сгибе. Учитывая, из чего изготавливают постоянные магниты на основе ферритов, для материала характерны невысокие показатели остаточной индукции, определяющие сравнительно недолгий срок службы магнита. Тем не менее ферритовые магниты обладают рядом бесспорных достоинств:

· Устойчивость к размагничиванию.

Литые магниты

Изобретенные в 30-х гг. XX века литые магниты (монокристаллические) широко используются в ряде научных и промышленных отраслей благодаря целому ряду уникальных достоинств. Изделия получили название Альнико по названию элементов, входящих в состав его сплава: алюминий, никель и кобальт. Материал с высокой остаточной намагниченностью характеризуется низкой коэрцитивной силой. Из-за этого его можно легко размагнитить и намагнитить обратно. Магниты Альнико остаются востребованными и незаменимыми в целом ряде промышленных отраслей благодаря следующим преимуществам:

· Устойчивость к нагреву. Максимальный показатель рабочей температуры для магнитов Alnico составляет +450..+550⁰ C .

· Стойкость к коррозии. Материал сохраняет свои эксплуатационные качества в условиях высокой влажности и при непосредственном контакте с водой.

Редкоземельные магниты

В настоящий момент вопрос, из чего делают постоянные магниты с лучшими эксплуатационными свойствами, имеет только один ответ – из элементов лантаноидной группы. Благодаря непревзойденным показателям магнитной силы редкоземельные супермагниты открывают широкие возможности для создания более компактных и простых магнитных конструкций практически в любых сферах деятельности. Магниты на основе лантаноидов сочетают большую коэрцитивную силу и высокую сопротивляемость внешним магнитным полям.

  • · Неодим, железо и бор (неодимовые магниты). Если вам нужен действительно сильный магнит, то лучшего решения просто не найти. Этот материал используется для производства поисковых магнитов, которые при собственной массе в 2-3 кг способны удерживать объекты весом 300 кг и больше. Учитывая, как делают постоянные магниты на основе неодимового сплава, следует обеспечить качественную защиту порошкового материала. При нарушении целостности оцинкованного покрытия он поражается ржавчиной даже при обычной влажности воздуха.
  • · Самарий и кобальт (самариевые магниты). При своей сравнительно высокой цене этот материал обладает такими существенными преимуществами, как устойчивость к коррозии и отсутствие ограничений в механической обработке. Также самариевые магниты характеризуются стойкостью к высоким температурам они сохраняют свои магнитные свойства даже при +350⁰ C .

Выгодно заказывайте любые магниты и изделия на их основе

Из чего состоят магниты

В советские годы все магниты имели почти одинаковый состав. Их изготавливали из ферромагнитных сплавов, где менялось процентное соотношение материалов. Но уже тогда велись научные изыскания по изобретению новых магнитов. Сегодня магнитное производство предлагает самые разные материалы, способные сохранять магнитное поле.

Из чего состоят разные виды магнитов

Сила и свойства магнитов зависят от их состава. Распространение получили следующие виды сплавов.

Ферритовые магниты активно применялись в радиотехнике и вычислительной технике

1. Ферриты
Это соединения оксида железа Fe2O3 с оксидами других металлов, обладающие ферромагнитными свойствами. Нашли применение в электронике, радиотехнике и прочих отраслях, где сила магнитного поля особой роли не играет. Это дешевые магниты, поэтому они используются в создании разнообразных устройств. Ферриты отличаются коррозийной стойкостью и средней температурной устойчивостью.

виды магнитов - альнико1 675х344.jpg


2. Сплавы Альнико
Представляют собой соединение железа со сплавом алюминия, никеля, меди и кобальта (AlNiCo). Магниты Альнико на основе этого сплава отличаются высокой магнитной силой и температурной устойчивостью, поэтому используются в условиях нагрева до 550 градусов по Цельсию. Однако не применяются повсеместно, поскольку отличаются высокой стоимостью. Такие сплавы незаменимы при создании других постоянных магнитов.

Иногда попадаются поисковый магнит вылавливает очень неожиданные предметы


3. Неодимы
Это сплав редкоземельных металлов — неодима, бора и железа (NdFeB). Не имеют конкурентов по мощности и долговечности, так как могут удерживать предметы, тысячекратно превосходящие их по массе. Неодимовые магниты появляются в результате сложного производственного процесса, при котором используется вакуумное плавление, прессование, спекание и другие манипуляции. Единственный недостаток — плохая устойчивость к тепловому воздействию — при нагреве быстро теряют свои свойства. Если исключить тепловой удар, то служат такие магнитные элементы почти вечно — теряют не более 1% мощности за 100 лет.

Велосипед "выужен" поисковым магнитом. Поисковые магниты делают из неодима, у него максимальная грузоподъемность при минимальных размерах

магниты самарий-кобальт 675х344.jpg

4. Самарий-кобальт
Сплав двух редкоземельных металлов — кобальта и самария SmCo5 или Sm2Co17. Легируются и другими металлами — медью, цирконием, гадолинием и т.п. По мощности такие сплавы уступают неодимовым, но превосходят все остальные аналоги. Отличаются стойкостью к коррозии и температурному воздействию. Незаменимы при работе в сложных условиях, когда требуется надежность и безотказность работы. Находятся в той же ценовой категории, что и неодимовые сплавы.

магнитопласт 675х344.jpg


5. Полимерные постоянные магниты
Производятся из композиционных материалов с включением магнитного (обычно феррит-бариевого) порошка. За основу берутся разнообразные полимерные компоненты. Магнитопласты имеют низкую магнитную силу, зато отличаются непревзойденной коррозионной стойкостью в той степени, в которой ею обладает и другие полимеры. Конечные свойства каждого полимерного магнита зависят от процентного содержания магнитной смеси. Если используется порошок редкоземельных магнитов (неодим-железо-бор, самарий-кобальт), то магнитопласт получается мощнее. Главное преимущество — невероятная пластичность, позволяющая выпускать магниты любой формы и размеров.

Холодильник - не просто место для хранения еды, это целая история семейных событий и путешествий


6. Магнитный винил
Являет собой смесь резины и магнитного порошка (ферритового). Процентного содержание последнего составляет 70-75% от массы. Чем больше этого порошка, тем выше магнитная сила изделия. Из преимуществ материала отличают износоустойчивость и огромный диапазон рабочих температур (от −300°C до +800°C). Магнитный винил устойчив к воздействию влаги и пластичен. За счет гибкости подходит для изготовления изделий любых конфигураций.

Постоянные магниты - виды и свойства, формы, взаимодействие магнитов

Ферромагнитное изделие, способное сохранять значительную остаточную намагниченность после снятия внешнего магнитного поля, называется постоянным магнитом.

Постоянные магниты изготавливают из различных металлов, таких как: кобальт, железо, никель, сплавы редкоземельных металлов (для неодимовых магнитов), а также из естественных минералов типа магнетитов.

Постоянные магниты - виды и свойства, взаимодействие магнитов

Сфера применения постоянных магнитов сегодня очень широка, однако назначение их принципиально везде одно и то же — как источник постоянного магнитного поля без подвода электроэнергии. Таким образом, магнит — это тело, обладающее своим собственным магнитным полем.

Магнит и магнитное поле

Само же слово «магнит» происходит от греческого словосочетания, которое переводится как «камень из Магнесии», по названию азиатского города, где были в древности открыты залежи магнетита — магнитного железняка. С физической точки зрения элементарным магнитом является электрон, а магнитные свойства магнитов вообще обуславливаются магнитными моментами электронов, входящих в состав намагниченного материала.

Постоянный магнит является частью магнитных систем электротехнических изделий. Работа устройств с постоянными магнитами, как правило, основана на преобразовании энергии:

механической в механическую (сепараторы, магнитные муфты и т. п.);

механической в электромагнитную (электрогенераторы, громкоговорители и т. п.);

электромагнитной в механическую (электродвигатели, динамики, магнитоэлектрические системы и т. п.);

механической во внутреннюю (тормозные устройства и т. п.).

К постоянным магнитам предъявляются следующие требования:

высокая удельная магнитная энергия;

минимальные габариты при заданной напряженности поля;

сохранение работоспособности в широком диапазоне рабочих температур;

устойчивость к воздействию внешних магнитных полей; – технологичность;

низкая стоимость исходного сырья;

стабильность магнитных параметров во времени.

Разнообразие задач, решаемых при помощи постоянных магнитов, вызывает необходимость создания множества форм их исполнения. Часто постоянным магнитам придается форма подковы (т. н. "подковообразные" магниты).

На рисунке приведены примеры форм промышленно выпускаемых постоянных магнитов на основе редкоземельных элементов с защитным покрытием.

Промышленно выпускаемые постоянные магниты различной формы

Промышленно выпускаемые постоянные магниты различной формы: а – диск; б – кольцо; в – параллелепипед; г – цилиндр; д – шар; е – сектор полого цилиндра

Также выпускаются магниты из магнитотвердых металлических сплавов и ферритов в виде стержней круглого и прямоугольного сечения, а также трубчатые, С-образные, подковообразные, в виде пластин прямоугольной формы и др.

После того как материалу придана форма, он должен быть намагничен, т. е. помещен во внешнее магнитное поле, т.к. магнитные параметры постоянных магнитов определяются не только их формой или материалом, из которого они изготовлены, но и направлением намагничивания.

Заготовки намагничивают, используя постоянные магниты, электромагниты постоянного тока или намагничивающие катушки, через которые пропускаются импульсы тока. Выбор способа намагничивания зависит от материала и формы постоянного магнита.

В результате сильного нагревания, толчков постоянные магниты могут частично или полностью потерять свои магнитные свойства (размагнититься).

Петля гистерезиса

Характеристики размагничивающего участка петли магнитного гистерезиса материала, из которого изготовлен постоянный магнит, определяют свойства того или иного постоянного магнита: чем выше коэрцитивная сила Нс, и чем выше остаточная магнитная индукция Вr – тем сильнее и стабильнее магнит.

Коэрцитивная сила (буквально в переводе с латинского - «удерживающая сила») — сила, препятствующая изменению магнитной поляризации ферромагнетиков.

Пока ферромагнетик не поляризован, т. е. элементарные токи не ориентированы, коэрцитивная сила препятствует ориентировке элементарных токов. Но когда ферромагнетик уже поляризован, она удерживает элементарные токи в ориентированном положении и после того, как внешнее намагничивающее поле устранено.

Этим объясняется остаточный магнетизм, который наблюдается у многих ферромагнетиков. Чем больше коэрцитивная сила, тем сильнее выражено явление остаточного магнетизма.

Итак, коэрцитивная сила — это значение напряжённости магнитного поля, необходимого для полного размагничивания ферро- или ферримагнитного вещества. Таким образом, чем большей коэрцитивной силой обладает конкретный магнит, тем он устойчивее к размагничивающим факторам.

Единица измерения коэрцитивной силы в системе СИ — Ампер/метр. А магнитная индукция, как известно, - это векторная величина, являющаяся силовой характеристикой магнитного поля. Характерное значение остаточной магнитной индукции постоянных магнитов — порядка 1 Тесла.

Магнитный гистерезис — наличие последствия поляризации магнетиков приводит к тому, что намагничивание и размагничивание магнитного материала происходят неодинаково, т. к. намагничивание материала все время немного отстает от намагничивающего поля.

При этом часть энергии, затраченной на намагничивание тела, при размагничивании не возвращается обратно, а превращается в тепло. Поэтому многократное перемагничивание материала связано с заметными потерями энергии и иногда может вызвать сильное нагревание намагничиваемого тела.

Чем сильнее выражен гистерезис в материале, тем больше потери в нем при перемагничивании. Поэтому для магнитных цепей с переменным магнитным потоком применяют материалы, не обладающие гистерезисом (смотрите - Магнитопроводы электротехнических устройств).

Игровой набор с постоянными магнитами

Магнитные свойства постоянных магнитов могут изменяться под действием времени и внешних факторов, к которым относятся:

Изменение магнитных свойств характеризуется нестабильно- стью постоянного магнита, которая может быть структурной или магнитной.

Структурная нестабильность связана с изменениями кристаллической структуры, фазовыми превращениями, уменьшением внутренних напряжений и т. п. В этом случае исходные магнитные свойства могут быть получены восстановлением структуры (например, термообработкой материала).

Магнитная нестабильность обусловлена изменением магнитной структуры вещества магнита, которая стремится к термодинамическому равновесию с течением времени и под влиянием внешних воздействий. Магнитная нестабильность может быть:

обратимой (возвращение к исходным условиям восстанавливает исходные магнитные свойства);

необратимой (возращение исходных свойств может быть достигнуто только путем повторного намагничивания).

Грузоподьемный магнит

Постоянный магнит или электромагнит - что лучше?

Применение постоянных магнитов для создания постоянного магнитного поля вместо эквивалентных им электромагнитов позволяет:

уменьшить массогабаритные характеристики изделий;

исключить применение дополнительных источников питания (что упрощает конструкцию изделий, снижает стоимость их изготовления и эксплуатации);

обеспечить практически неограниченное время поддерживания магнитного поля в рабочих условиях (в зависимости от применяемого материала).

Недостатками постоянных магнитов являются:

хрупкость материалов, применяемых при их создании (это затрудняет механическую обработку изделий);

необходимость защиты от влияния влаги и плесневых грибков (для ферритов ГОСТ 24063), а также от воздействия повышенных влажности и температуры.

Виды и свойства постоянных магнитов

Ферритовые магниты хоть и отличаются хрупкостью, но обладают хорошей коррозийной стойкостью, что при невысокой цене делает их наиболее распространенными. Такие магниты изготавливают из сплава оксида железа с ферритом бария или стронция. Данный состав позволяет материалу сохранять свои магнитные свойства в широком температурном диапазоне — от -30°C до +270°C.

Применение ферритового магнита

Магнитные изделия в форме ферритовых колец, брусков и подков широко используются как в промышленности, так и в быту, в технике и электронике. Их используют в акустических системах, в генераторах, в двигателях постоянного тока. В автомобилестроении ферритовые магниты устанавливают в стартеры, в стеклоподъемники, в системы охлаждения и в вентиляторы.

Ферритовые магниты отличаются коэрцитивной силой порядка 200 кА/м и остаточной магнитной индукцией порядка 0,4 Тесла. В среднем, ферритовый магнит может прослужить от 10 до 30 лет.

Постоянные магниты на основе сплава из алюминия, никеля и кобальта отличаются непревзойденной температурной устойчивостью и стабильностью: они способны сохранять свои магнитные свойства при температурах до +550°C, хотя коэрцитивная сила, характерная для них, относительно мала. Под действием относительно небольшого магнитного поля, такие магниты потеряют исходные магнитные свойства.

Посудите сами: типичная коэрцитивная сила порядка 50 кА/м при остаточной намагниченности порядка 0,7 Тесла. Однако несмотря на эту особенность, магниты альнико незаменимы для некоторых научных исследований.

Постоянные магниты на основе сплава из алюминия, никеля и кобальта

Типичное содержание компонентов в сплавах альнико с высокими магнитными свойствами изменяется в следующих пределах: алюминий - от 7 до 10%, никель - от 12 до 15%, кобальт - от 18 до 40%, и от 3 до 4% меди.

Чем больше кобальта, тем выше индукция насыщения и магнитная энергия сплава. Добавки в виде от 2 до 8% титана и всего 1% ниобия способствуют получению большей коэрцитивной силы — до 145 кА/м. Добавка от 0,5 до 1% кремния обеспечивает изотропию магнитных свойств.

Если нужна исключительная устойчивость к коррозии, окислению и температуре до +350°C, то магнитный сплав самария с кобальтом — то что надо.

По стоимости самарий-кобальтовые магниты дороже неодимовых за счёт более дефицитного и дорогого металла — кобальта. Тем не менее, именно их целесообразно применять в случае необходимости иметь минимальные размеры и вес конечных изделий.

Наиболее целесообразно это в космических аппаратах, авиационной и компьютерной технике, миниатюрных электродвигателях и магнитных муфтах, в носимых приборах и устройствах (часах, наушниках, мобильных телефонах и т.д.)

Самариевые магниты

Благодаря особой коррозийной стойкости, именно самариевые магниты применяются в стратегических разработках и военных приложениях. Электродвигатели, генераторы, подъемные системы, мототехника – сильный магнит из сплава самария-кобальта идеально подходит для агрессивных сред и сложных условий эксплуатации. Коэрцитивная сила порядка 700 кА/м при остаточной магнитной индукции порядка 1 Тесла.

Неодимовые магниты на сегодняшний день очень востребованы и представляются наиболее перспективными. Сплав неодим-железо-бор позволяет создавать супермагниты для различных сфер, начиная с защелок и игрушек, заканчивая электрогенераторами и мощными подъемными машинами.

Неодимовые магниты

Высокая коэрцитивная сила порядка 1000 кА/м и остаточная намагниченность порядка 1,1 Тесла, позволяют магниту сохраняться на протяжении многих лет, за 10 лет неодимовый магнит теряет лишь 1% своей намагниченности, если температура его в условиях эксплуатации не превышает +80°C (для некоторых марок до +200°C). Таким образом, лишь два недостатка есть у неодимовых магнитов — хрупкость и низкая рабочая температура.

Магнитный порошок вместе со связующим компонентом образует мягкий, гибкий и легкий магнит. Связующие компоненты, такие как винил, каучук, пластик или акрил позволяют получать магниты различных форм и размеров.

Магнитопласты

Магнитная сила, конечно, уступает чистому магнитному материалу, но иногда такие решения необходимы для достижения определенных необычных для магнитов целей: в производстве рекламной продукции, при изготовлении съемных наклеек на авто, а также в изготовлении различных канцелярских и сувенирных товаров.

Одноименные полюса магнитов отталкиваются, а разноименные полюса притягиваются. Взаимодействие магнитов объясняется тем, что любой магнит имеет магнитное поле, и эти магнитные поля взаимодействуют между собой. В чем, например, причина намагничивания железа?

Согласно гипотезе французского ученого Ампера, внутри вещества существуют элементарные электрические токи (токи Ампера), которые образуются вследствие движения электронов вокруг ядер атомов и вокруг собственной оси.

При движении электронов возникают элементарные магнитные поля. И если кусок железа внести во внешнее магнитное поле, то все элементарные магнитные поля в этом железе ориентируются одинаково во внешнем магнитном поле, образуя собственное магнитное поле куска железа. Так, если приложенное внешнее магнитное поле было достаточно сильным, то после его отключения кусок железа станет постоянным магнитом.

Взаимодействие магнитов

Знание формы и намагниченности постоянного магнита позволяет для расчетов заменить его эквивалентной системой электрических токов намагничивания. Такая замена возможна как при расчете характеристик магнитного поля, так и при расчетах сил, действующих на магнит со стороны внешнего поля.

Для примера проведем расчет силы взаимодействия двух постоянных магнитов. Пусть магниты имеют форму тонких цилиндров, их радиусы обозначим r1 и r2, толщины h1, h2 , оси магнитов совпадают, расстояние между магнитами обозначим z, будем считать, что оно значительно больше размеров магнитов.

Возникновение силы взаимодействия между магнитами объясняется традиционным способом: один магнит создает магнитное поле, которое воздействует на второй магнит.

Для расчета силы взаимодействия мысленно заменим магниты с однородной намагниченностью J1 и J2 круговыми токами, текущими по боковой поверхности цилиндров. Силы этих токов выразим через намагниченности магнитов, а их радиусы будем считать равными радиусам магнитов.

Разложим вектор индукции B магнитного поля, создаваемого первым магнитом в месте расположения второго на две составляющие: осевую, направленную вдоль оси магнита, и радиальную - перпендикулярную ей.

Для вычисления суммарной силы, действующей на кольцо, необходимо мысленно разбить его на малые элементы Idl и просуммировать силы Ампера, действующие на каждые такой элемент.

Используя правило левой руки, легко показать, что осевая составляющая магнитного поля приводит к появлению сил Ампера, стремящихся растянуть (или сжать) кольцо – векторная сумма этих сил равна нулю.

Наличие радиальной составляющей поля приводит к возникновению сил Ампера, направленных вдоль оси магнитов, то есть к их притяжению или отталкиванию. Останется вычислить силы Ампера — это и будут силы взаимодействия между двумя магнитами.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Свойства ферромагнитных материалов и их применение в технике

Вокруг проводника с электрическим током, даже в вакууме, существует магнитное поле. И если в это поле внести вещество, то магнитное поле изменится, поскольку любое вещество в магнитном поле намагничивается, то есть приобретает больший или меньший магнитный момент, определяемый как сумма элементарных магнитных моментов, связанных с частями, из которых состоит данное вещество.

Суть явления заключается в том, что молекулы многих веществ обладают собственными магнитными моментами, ведь внутри молекул движутся заряды, которые образуют элементарные круговые токи, и значит сопровождаются магнитными полями. Если внешнего магнитного поля к веществу не приложено, магнитные моменты его молекул ориентированы в пространстве хаотично, и суммарное магнитное поле (как и общий магнитный момент молекул) такого образца будет равно нулю.

Ежели образец внести во внешнее магнитное поле, то ориентация элементарных магнитных моментов его молекул приобретет под действием внешнего поля преимущественное направление. В результате суммарный магнитный момент вещества уже не будет нулевым, ведь магнитные поля отдельных молекул в новых условиях не компенсируют друг друга. Так у вещества возникает магнитное поле B.

Если же молекулы вещества изначально не имеют магнитных моментов (есть и такие вещества), то при внесении подобного образца в магнитное поле, в нем индуцируются круговые токи, то есть молекулы приобретают магнитные моменты, что опять же в результате приводит к возникновению у образца суммарного магнитного поля B.

Большинство известных веществ слабо намагничиваются в магнитном поле, но встречаются и такие вещества, которые отличаются сильными магнитными свойствами, их то и называют ферромагнетиками. Примеры ферромагнетиков: железо, кобальт, никель, а также их сплавы.

К ферромагнетикам относятся твердые вещества, которые при невысоких температурах обладают самопроизвольной (спонтанной) намагниченностью, сильно изменяющейся под действием внешнего магнитного поля, механической деформации или изменяющейся температуры. Именно так ведут себя сталь и железо, никель и кобальт, а также из сплавы. Их магнитная проницаемость в тысячи раз выше чем у вакуума.

Именно по этой причине в электротехнике для проведения магнитного потока и для преобразования энергии традиционно используют магнитопроводы из ферромагнитных материалов.

Магнитопровод из ферромагнитного материала

У подобных веществ магнитные свойства зависят от магнитных свойств элементарных носителей магнетизма — электронов, движущихся внутри атомов. Конечно, электроны, двигаясь по орбитам в атомах вокруг своих ядер, образуют круговые токи (магнитные диполи). Но при этом электроны вращаются еще и вокруг своих осей, создавая спиновые магнитные моменты, которые как раз и играют главную роль в намагничивании ферромагнетиков.

Ферромагнитные свойства проявляются лишь тогда, когда вещество пребывает в кристаллическом состоянии. Кроме того данные свойства сильно зависят от температуры, ведь тепловое движение препятствует устойчивой ориентации элементарных магнитных моментов. Так, для каждого ферромагнетика определяется конкретная температура (точка Кюри), при которой структура намагничивания разрушается и вещество превращается в парамагнетик. Например для железа это 900 °C.

Даже в слабых магнитных полях ферромагнетики способны намагнититься до состояния насыщения. Кроме того их магнитная проницаемость зависит от величины приложенного внешнего магнитного поля.

Вначале процесса намагничивания магнитная индукция B в ферромагнетике растет сильнее, а значит магнитная проницаемость его велика. Но когда наступает насыщение, дальнейшее увеличение магнитной индукции внешнего поля не приводит больше к нарастанию магнитного поля ферромагнетика, и значит магнитная проницаемость образца уменьшилась, теперь она стремится к 1.

Важное свойство ферромагнетиков — остаточная намагниченность. Допустим, в катушку поместили ферромагнитный стержень, и, повышая ток в катушке, довели его до насыщения. После этого отключили ток в катушке, то есть убрали магнитное поле катушки.

Можно будет заметить, что стержень размагнитился не до того состояния, в котором он пребывал вначале, его магнитное поле окажется больше, то есть будет иметь место остаточная индукция. Стержень превратился таким образом в постоянный магнит.

Чтобы обратно размагнитить такой стержень, необходимо будет приложить к нему внешнее магнитное поле противоположного направления, и с индукцией равной остаточной индукции. Значение модуля магнитной индукции поля, которое необходимо приложить к намагниченному ферромагнетику (постоянному магниту) чтобы размагнитить его, называется коэрцитивной силой.

Кривые намагничивания (петли гистерезиса)

Явление, когда при намагничивании ферромагнетика индукция в нем отстает от индукции приложенного магнитного поля, называется магнитным гистерезисом (смотрите - Что такое гистерезис).

Кривые намагничивания (петли гистерезиса) у разных ферромагнитных материалов отличаются друг от друга.

У некоторых материалов петли гистерезиса широкие — это материалы с высокой остаточной намагниченностью, их относят к магнитно-твердым материалам. Магнитно-твердые материалы применяют в изготовлении постоянных магнитов.

Магнитно-мягкие материалы наоборот - имеют узкую петлю гистерезиса, малую остаточную намагниченность, они легко перемагничиваются в слабых полях. Именно магнитно-мягкие материалы применяют в качестве магнитопроводов трансформаторов, статоров двигателей и т. п.

Сегодня ферромагнетики играют очень важную роль в технике. Магнитно-мягкие материалы (ферриты, электротехнические стали) используются в электромоторах и генераторах, в трансформаторах и дросселях, а также в радиотехнике. Из ферритов изготавливают сердечники катушек индуктивности.

Магнитно-твердые материалы (ферриты бария, кобальта, стронция, неодим-железо-бор) применяют для изготовления постоянных магнитов. Постоянные магниты находят широкое применение в электроизмерительных и акустических приборах, в двигателях и генераторах, в магнитных компасах и т. д.

Читайте также: