Металл в современной обработке

Обновлено: 20.09.2024

Обработка металла берет начало в доисторический период, когда древние люди научились отливать из меди орудья труда и наконечники стрел. Так началась эпоха металла, ископаемого которое и по сей день остается актуальным. Сегодня новые технологии обработки металла позволяют создавать различные сплавы, изменять технологические свойства, получать сложные формы и конструкции.

В наши дни самым востребованным материалом является железо. На его основе отливают множество сплавов с различным содержанием углерода и легирующих добавок. Кроме стали, в промышленности широко применяют цветные металлы, которые также используются в широком разнообразии сплавов. Каждый сплав характеризуется не только эксплуатационными свойствами, но и технологическими, что и определяет способ его обработки:

  • литье;
  • термическая обработка;
  • механическая обработка резанием;
  • холодная или горячая деформация;
  • сваривание.

Литейное производство

Литье – это самый первый способ, который стал применять человек. Первой была медь, а выплавлять железо из руды в сыродутной печи начали в XII веке до н. э. Современные технологии позволяют получать различные сплавы, рафинировать и раскислять металл. Например, раскисление меди фосфором делает ее более пластичной, а переплавка в инертной среде повышает электропроводимость.

Литейное производство

Последними достижениями в металлургии стали появление новых сплавов. Разработаны новые, более качественные марки нержавеющей высоколегированной стали аустенитного и ферритного класса. Появились более долговечные и устойчивые к коррозии жаростойкие, жаропрочные, кислотостойкие и пищевые стали AISI 300-ой и 400-ой серии. Некоторые сплавы были усовершенствованны и в их состав в качестве стабилизатора введен титан.

В цветной металлургии также были получены сплавы с оптимальными характеристиками для той или иной отрасли. Вторичный алюминий общего назначения 1105, алюминий высокой чистоты А0 для пищевой промышленности, авиалиний, среди которого наиболее востребованы в авиационной промышленности марки АВ, АД31 и АД 35, устойчивый к морской воде корабельный алюминий 1561 и АМг5, свариваемые алюминиевые сплавы легированные магнием или марганцем, жаропрочные алюминии, такие как АК4. Широкий спектр сплавов на основе меди – бронза и латунь также отличаются характерными особенностями и удовлетворяют все потребности народного хозяйства.

Формирование технологических характеристик сплава

На современном рынке металлопроката представлены различные полуфабрикатные изделия из различных сплавов стали и цветмета. При этом одна и та же марка может предлагаться в различном технологическом состоянии.

Термическая обработка

Посредством термической обработки сплав может доводиться до максимально жесткого и прочного состояния или наоборот до более пластичного. Твердое состояние «Т» ‒ термически закаленный, достигается нагревом до определенной температуры и последующим резким охлаждением в воде или масле. Мягкое состояние «М» ‒ термически отожженный, когда после нагрева остывание производится медленно. Для алюминия также существуют термические методы естественного и искусственного старения.

Термическая обработка металлов

Для каждой марки определены свои режимы термообработки, изучены влияния напряжения на коррозионные свойства, что также позволяет формировать технологические процессы.

Упрочнение давлением

Этот способ был известен еще нашим предкам. Кузнецы увеличивали плотность материала, куя его на холодную. Это называлось отклепать косу или клинок. Сегодня этот процесс получил название ‒ нагартовка, которая в маркировке проката обозначается «Н». Современные технологии позволяют получать механическое упрочнение любой степени с высокой точностью. Например, «Н2» ‒ полунагартовка, «Н3» ‒ треть нагартовка и т. д.

Упрочнение металлов давлением

Метод заключается в максимально возможном механическом обжатии с последующим частичным отожжением до необходимого технологического состояния.

Химическая обработка

Травление поверхности химическими реактивами. Способ применяется для изменения зернистости поверхности и придания ей матового или блестящего оттенка. Обычно методика используется как доработка поверхности проката, произведенного горячей деформацией.

Защита от коррозии

Кроме покрытия защитными лаками или композита с пластиком, в современной металлургии применяют 4 основных способа:

  • анодирование – анодная поляризация в растворе электролита с целью получения оксидной пленки, защищающей от коррозии;
  • пассивирование – защитный пассивный слой появляется вследствие воздействия окисляющих агентов;
  • гальванический метод покрытия одного металла другим. Процесс достигается за счёт электролиза. В частности, покрытие стали никелем, оловом, цинком и другими металлами, устойчивыми к коррозии;
  • плакирование – применяется для защиты алюминиевых сплавов, недостаточно устойчивых к коррозии. Методика заключается в механическом покрытии слоем чистого алюминия (прокатом, волочением).

Технология биметаллов

Метод основан на сращивании различных металлов посредством возникновения между ними диффузионной связи. Его суть состоит в необходимости получения материала, обладающего качествами двух элементов. Например, высоковольтные провода должны быть достаточно прочными и характеризоваться высокой электропроводимостью. Для этого сращивают сталь и алюминий. Стальная сердцевина провода принимает на себя механическую нагрузку, а алюминиевая оболочка становится превосходным проводником. В термометрической технике используют биметаллы с различным коэффициентом термического расширения.

Детали из биметаллов

В России биметаллы также используются для чеканки монет.

Механическая обработка

Это неотъемлемая часть любого металлообрабатывающего производства, которая выполняется режущим инструментом: резка, рубка, фрезеровка, сверление и др. На современном производстве применяются высокоточные и высокопроизводительные станки и комплексы с ЧПУ. При этом до недавнего времени новые технологии в обработке металлов были недоступны на строительных площадках при сборке металлоконструкций. Механизм выполнения производства работ по месту монтажа предусматривал применение ручных механических и электрических инструментов.

Механическая обработка металлов

Сегодня разработаны специальные магнитные станки с программным управлением. Оборудование позволяет выполнять сверление на высоте под любым углом. Устройство полностью контролирует процесс, исключая неточности и ошибки, а также позволяет высверливать отверстия большого диаметра, что раннее на высоте было практически невозможно.

Обработка давлением

По способу обработка давлением различается на горячую и холодную деформацию, а по виду ‒ на штамповку, ковку, прокат, вытяжку и высадку. Здесь также внедрена механизация и компьютеризация производства. Это значительно снижает себестоимость продукта, в то же время повышает качество и производительность. Недавним достижением в области холодной деформации стала холодная ковка. Специальное оборудование позволяет с минимальными затратами производить высокохудожественные и одновременно функциональные элементы декора.

Сваривание

Среди ставших уже традиционными методами можно выделить электродуговую, аргонодуговую, точечную, роликовую и газовую сварку. Разделить сварочный процесс можно также на ручной, автоматический и полуавтоматический. При этом для высокоточных процессов сварки применяются новые методы.

Лазерная сварка

Благодаря применению сфокусированного лазера появилась возможность производства сварочных работ на мелких деталях в радиоэлектронике или присоединение твердосплавных режущих элементов к различным фрезам.

Лазерная сварка

В недалеком прошлом технология обходилась достаточно дорого, но с применением современного оборудования, в котором импульсный лазер заменили газовым, методика стала более доступной. Оборудование для лазерной сварки или резки также оснащается программным управлением, а при необходимости производится в вакууме или инертной среде

Плазменная резка

Если по сравнению с лазерной резкой плазменная отличается большей толщиной реза, то по экономичности в разы её превосходит. Это самый распространенный на сегодня метод серийного производства с высокой точностью повторения. Методика заключается в выдувании электрической дуги высокоскоростной струей газа. Уже существуют и ручные плазменные резаки, которые являются превосходящей альтернативой газовой резке.

Новейшие разработки в производстве сложных и малоразмерных деталей

Какая бы совершенная не была механическая обработка у нее есть свой предел по минимальным габаритам производимой детали. В современной радиоэлектронике используются многослойные платы, содержащие сотни микросхем, каждая из которых содержит тысячи микроскопических деталей. Производство таких деталей может показаться волшебством, но это возможно.

Электроэрозионный метод обработки

Технология основана на разрушении и выпаривании микроскопических слоев металла электрической искрой.

Электроэрозионный метод обработки металлов

Процесс выполняется на роботизированном оборудовании и контролируется компьютером.

Ультразвуковой метод обработки

Этот способ похож на предыдущий, но в нем разрушение материала происходит под воздействием высокочастотных механических колебаний. В основном ультразвуковое оборудование применяют для разделительных процессов. При этом ультразвук используется и в других областях металлообработки ‒ в очистке металла, изготовлении ферритовых матриц и др.

Нанотехнологии

Метод фемтосекундной лазерной абляции остается актуальным способом получения в металле наноотверстий. При этом появляются новые, менее затратные и более эффективные технологии. Изготовление металлических наномембран путем пробивания отверстий методом ионного травления. Отверстия получаются диаметром 28,98 нм с плотностью 23,6х10 6 на мм 2 .

К тому же ученые из США разрабатывают новый, более прогрессивный способ получение металлического массива наноотверстий методом испарения металла по шаблону из кремния. В наши дни свойства таких мембран изучаются с перспективой применения в солнечных батареях.

Технология обработки металлов

Технология обработки металлов

Технология обработки металла позволяет создавать изделия различной формы и размера. Металлические детали используются повсеместно – в промышленности и быту. Самыми древними способами обработки, которыми пользуются и в наши дни, являются литье и ковка. Также применяют механические, термические, художественные и электрические технологии.

Соблюдение всех технологических этапов и правильное выполнение операций позволяет получить качественные изделия. Подробнее о технологиях обработки металла читайте в нашем материале.

Литье как древняя технология обработки металлов

Литьем называют изготовление изделий при помощи заливки форм горячим металлом. Когда расплав затвердевает, он полностью повторяет внутренние очертания формы. Благодаря современным технологиям обработки металлов удается создавать более сложные отливки, оставляя минимальные припуски на завершающую механическую обработку.

Существуют такие методы литья:

  • В песчаные формы. Данная технология является наиболее популярной, так как предполагает минимальные затраты. С ее помощью делают грубые заготовки, отверстия и полости в которых формируют, помещая в форму подходящие стержни.
  • В кокиль. Так называют разборную, обычно металлическую форму, из которой изделие извлекают после застывания металла. Этот подход дает возможность изготавливать качественные полуфабрикаты.
  • Под давлением в пресс-формах. Данная технология обработки используется для цветных металлов, также к ней прибегают при работе с некоторыми марками стали.
  • По выплавляемым моделям. Благодаря этому подходу можно создавать изделия сложной формы. Из стеарина или иного материала делают модель детали предельной точности, наносят на нее суспензию, чтобы сформировать оболочку. В высушенную и прокаленную оболочковую форму заливают жидкий металл. Далее его охлаждают на воздухе либо в термостате.

Технологии обработки металлов давлением (ОМД)

ОМД позволяет решать ряд важных задач: изготавливать заготовки и изделия необходимых параметров, улучшать микроструктуру металла и физико-механические показатели отливок, снижать усадочную пористость заготовок.

Технологии обработки металлов давлением

Специалисты выделяют такие ключевые направления ОМД:

  • холодные процессы – протекают при температурах, не достигающих порога рекристаллизации;
  • горячая ОМД – осуществляется в температурных условиях, превышающих температуру рекристаллизации.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Сегодня на предприятиях используются такие технологии механической обработки металлов давлением:

    • Горячая прокатка. Применяется при изготовлении листового, трубного, сортового, фасонного проката. Горячекатаные изделия могут подвергаться холодному деформированию для получения более сложных продуктов.
    • Холодная прокатка. Призвана повысить точность размеров, улучшить качество поверхности и прочие свойства изделий, созданных при помощи метода горячей прокатки.
    • Холодное и горячее волочение. Предполагает получение длинномерного проката нужного сечения при помощи протягивания металла через отверстие соответствующей формы. Заготовки всегда подбираются таким образом, чтобы площадь их сечения была меньше площади отверстия. По этому принципу изготавливают различные прутки, фасонный прокат малого сечения, тонкостенные трубы, имеющие небольшой диаметр.
    • Горячая и холодная штамповка. Данная технология обработки металлов давлением используется людьми много веков – при помощи холодного метода изготавливали металлическую посуду, так как процесс был простым и дешевым.

    Специалисты выделяют листовую и объемную штамповку. Результатом объемной является пространственное изменение заготовки: из простой формы, например, шара, цилиндра, параллелепипеда, куба, получают сложное изделие. Листовая штамповка имеет большую сферу применения, позволяя изготавливать все: от небольших деталей до корпусов автомобилей и другого транспорта.

    • Ковка. Может быть ручной или механизированной, но в любом случае предполагает нагрев заготовки. Стоит отметить, что ручной метод теперь используется только при художественной металлообработке.
    • Холодное и горячее прессование (экструдирование). Речь идет о современной технологии обработки металлов, благодаря которой изготавливают длинномерные профильные изделия. Для этого заготовки выдавливают через один и более каналов. Холодным способом могут обрабатываться, например, алюминий и медь, то есть мягкие цветные металлы, а также сплавы на их основе. Горячий метод позволяет работать со сталью.
    • Комбинированная обработка. Чтобы добиться определенного эффекта, сочетают разные подходы к обработке металла давлением либо дополняют их иными методами.

    Технологии обработки металлов резанием

    Технология обработки металла резанием включает в себя целый набор процессов, благодаря которым с будущей детали срезаются слои и превращаются в стружку. Либо происходит разделение заготовки на необходимые части.

    Существует черновая, получистовая и чистовая разновидность обработки. В качестве заготовок могут использоваться отливки, различный прокат, детали, изготовленные методом штамповки, ковки, прессования.

    Технологии обработки металлов резанием

    Обработка резанием включает в себя такие основные подходы:

    • Токарная обработка (точение). Позволяет изготавливать на токарных станках с помощью резцов фасонные детали, а также изделия конической, цилиндрической формы.
    • Сверление. Направлено на получение сквозных или глухих отверстий нужного диаметра и глубины. Может сочетаться с растачиванием, развертыванием, рассверливанием, зенкерованием. Осуществляется при помощи токарных и различных типов сверлильных станков.
    • Фрезерование. Производится на фрезерных станках дисковыми, цилиндрическими, торцевыми, концевыми, угловыми фрезами.
    • Шлифование. Является чистовой операцией, позволяющей снизить шероховатость поверхности до показателей, установленных чертежами. Такого эффекта достигают на шлифовальных станках с использованием абразивных кругов, лент, хонинговальных головок.
    • Операции по разделению заготовок на части – резка и рубка. Данные способы требуют использования ручного или механизированного инструмента, термического воздействия. На производствах в рамках этой технологии обработки металла прокат режут ножницами-гильотинами, пресс-ножницами, механическими и гидропрессами, угловысечными станками.

    Скоростные методы резания доступны благодаря металлообрабатывающим станкам с ЧПУ – они работают в автоматическом режиме, опираясь на заранее внесенную программу.

    Термическая обработка металлов

    Термическая обработка металлов и сплавов предполагает нагрев до установленной температуры с последующей выдержкой и охлаждением. При этом остывать изделие может с разной скоростью и в различных средах. Таким образом удается задать микроструктуру и физико-механические свойства, позволяющие выполнять определенные технические задачи.

    Термическая обработка металлов

    Основные технологии термической обработки металлов:

    • Отжиги II рода. При отжиге I рода заготовки из стали нагревают до температуры, не способной привести к фазовым превращениям материала. К этому методу относятся процессы гомогенизации, рекристаллизации, снятия остаточных напряжений и снижения твердости. Фазовые превращения происходят со сталью при отжиге II рода, позволяя снизить ее прочность и твердость, добиться более высоких показателей пластичности, ударной вязкости, что важно для дальнейших механических операций.
    • Закалка. Данная технология обработки используется для металлов и сплавов, которые претерпевают фазовые превращения при нагреве до высокой температуры и охлаждении в воде или масле. Процедура обязательно проводится вместе с отпуском – так снижаются хрупкость и напряжения, свойственные сталям после закалки. После использования двух указанных методов повышается прочность, твердость, стойкость заготовки к износу.
    • Термомеханическая обработка (ТМО). Предполагает применение пластической деформации вместе с термообработкой: горячая пластическая деформация комбинируется с закалкой, холодная совмещается с процедурой старения, позволяя сообщать необходимые свойства сталям, сплавам на основе алюминия, магния.

    Сварка металлов и сплавов

    Под сваркой понимают плавление кромок деталей посредством высокой температуры и их неразъемное соединение.

    Сварка металлов и сплавов

    Выделяют следующие основные технологии обработки металла сваркой:

    • Электрическая. Используется чаще других способов и предполагает контактную сварку либо работу с покрытыми плавящимися электродами, неплавящимися электродами в защитной газовой среде или применение сварочной проволоки. Электросварка может быть точечная и роликовая, при которой токопроводящий ролик формирует между заготовками сплошной шов.
    • Газовая. При данном подходе применяется кислород в качестве окислителя и горючий газ. Например, ацетилен или его более доступный по цене вариант – МАФ (то есть метилацетилен-алленовая фракция) либо природный газ, пропанбутановая смесь, водород, пр.
    • Химическая. Кромки нагреваются благодаря теплу от химической реакции. Данная технология обработки металла позволяет сваривать изделия в труднодоступных местах и под водой.

    Электрические методы обработки металлов

    Механическая обработка является практически невозможной в случае с хрупкими, прочными и непластичными металлами и сплавами – в такой ситуации выручают электрические методы.

    Электрические методы обработки металлов

    Новейшие технологии обработки металлов позволяют изготавливать максимально точные изделия сложных форм, соответствующие чертежам. Такие подходы получили распространение в машиностроении, производстве бытовых приборов, электроники.

    На крупных предприятиях применяются специальные станки для изготовления деталей по таким технологиям обработки металлов:

    Технология электроэрозионной обработки

    Благодаря данному подходу удается получить сложные фигурные пазы, отверстия, делать гравировку, производить штампы, кокили, пресс-формы и прочие элементы, необходимые для металлообработки.

    На поверхность заготовки воздействуют электроэрозией, в процессе которой разряд тока разрушает поверхности электродов.

    Электроискровые и электроимпульсные станки позволяют осуществлять операции, где роль основного инструмента играет электрод. Ему изначально придают форму, совпадающую с будущей конфигурацией изделия. Далее заготовка помещается в ванну с жидкостью, не проводящей ток. Инструмент выполняет функцию катода, а деталь является анодом – их подключают к источнику тока и сближают.

    Когда искровой промежуток сокращается до предельных показателей, между анодом и катодом возникает разряд, а обрабатываемая поверхность моментально разогревается до +10 000 °C. Материал локализировано плавится, испаряется, с его поверхности происходит выброс микрочастиц, напоминающий микровзрыв. Частицы застывают в жидкости и опускаются на дно ванны.

    Подобные технологии обработки металлов особенно ценятся за экономичность, так как предполагают практически безотходное и энергосберегающее производство.

    Технология электрохимической обработки

    В основе подхода лежит использование электролита, то есть проводящий электричество жидкости. В нее помещают заготовку и под воздействием электролита верхние слои металла растворяются. Таким образом можно полировать детали, затачивать режущий инструмент, удалять ржавчину и окислы, наносить гравировку на металлические покрытия. Процедура упрощает профилирование заготовок, производство изделий крайне малой толщины.

    Если необходимо изменить размеры деталей, электрохимический метод дополняют режущими механизмами – они удаляют верхнюю растворенную пленку металла.

    Технология анодно-механической обработки

    Данная технология обработки металлов сочетает в себе первые два описанных подхода. Функцию анода выполняет заготовка, тогда как катодом является вращающийся инструмент. Оба элемента находятся в электролите, где пропускается постоянный ток.

    Заготовка плавится, покрываясь пленкой, не способной проводить электричество. Вращающийся инструмент точечно удаляет данную пленку, вызывая местное оплавление деталей, так как в очищенных зонах проходит ток с большой плотностью. Ненужные оплавления убирает механически вращающийся инструмент.

    Метод наиболее эффективен при работе с металлами и сплавами, имеющими высокую твердость и вязкость.

    Современные производства активно применяют электрические способы, поскольку некоторые виды металлов не поддаются другой обработке из-за своей прочности и твердости.

    Химическая обработка металлов

    Химические составы позволяют удалять ржавчину и грязь с поверхностей металлических изделий, повышать их стойкость к коррозии. А гальваническая технология обработки металлов необходима для нанесения защитного покрытия на заготовки.

    Химическая обработка металлов

    Выделяют следующие способы использования химических веществ в работе с металлами:

    • Цементация, при которой материал насыщается углеродом.
    • Борирование, или обогащение бором, что позволяет добиться большей стойкости к износу.
    • Хромирование предполагает повышение устойчивости к коррозийным процессам при сохранении изначальной прочности, так как дополнительным элементом насыщают исключительно верхние слои металла.
    • Азотирование позволяет увеличить устойчивость металла к механическому воздействию и влиянию влажной среды.

    Кроме того, в рамках данной технологии обработки на металлы может наноситься защитный слой алюминия.

    Технологии художественной обработки металлов

    Металлообработка позволяет менять форму, размеры и свойства деталей, а также придавать им декоративный внешний вид. Мастера изготавливают отдельные изделия либо оформляют готовые конструкции.

    Чаще всего для художественных целей прибегают к следующим технологиям обработки металлов:

    Вне зависимости от конкретного способа в первую очередь изделия разогревают, поскольку от степени пластичности зависит сложность дальнейшей работы.

    Рекомендуем статьи

    Металл относится к твердым материалам, обработка которых невозможна без специального оборудования и использования повышенной температуры. При помощи доступных сегодня методов удается изменять размеры, форму, технические характеристики заготовок, а также украшать изделия, добиваясь более эстетичного внешнего вида.

    Почему следует обращаться именно к нам

    Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

    Наши производственные мощности позволяют обрабатывать различные материалы:

    • цветные металлы;
    • чугун;
    • нержавеющую сталь.

    При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

    Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

    Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

    Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

    Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

    Новейшие технологии в металлургии

    Как и в любой другой производственной области, в металлургии постоянно разрабатываются и внедряются новейшие технологии. Они позволяют снижать финансовые затраты, наращивать объемы производства и улучшать качество. Компании, занимающие лидирующие позиции на рынке, стараются быть в курсе всех инноваций и по возможности используют их.

    Добыча золота

    Среди новейших технологий в цветной металлургии важное место занимает добыча золота. Для получения золотой руды ученые разработали следующие современные способы:

    Скважинная гидродобыча золота

    1. Скважинная гидродобыча золота. В основе метода лежит подача жидкости по скважинам, которая размывает породу. Далее происходит откачка жидкого раствора с частичками металла на поверхность уже по другим скважинам.
    2. Золото можно извлекать из россыпей и руд микробиологическим способом с применением специальных бактерий Thiobacillus ferroxidans. Они делают возможным процесс выщелачивания драгоценного металла из концентратов. Эта методика значительно экономит бюджет, так как не требуется дорогостоящий обжиг. Кроме того, она экологична, потому что не происходит загрязнения воздуха токсическими испарениями.

    Производство стали

    Новейшие технологии добычи металлов позволяют получать сталь. Она образуется путем соединения углерода с железом и разными гелирующими элементами (если есть такая необходимость). Способов ее выплавки существует несколько. Вот самые высокопродуктивные и современные:

    Электроплавильный способ производства стали

    1. Электроплавильный. Суть метода ─ выплавление качественной легированной стали с помощью дуговых печей. Подобные агрегаты характеризуются тем, что металл в них плавится очень быстро. Кроме того, возможно получение стали и сплавов любого состава. Неметаллические включения, сера и фосфор содержатся в них в небольшом количестве. Использование данного способа пока ограничено из-за высокой стоимости электроэнергии.
    2. Конверторный. Основа процесса – это продувка кислородом жидкого металла, окисление чугуна и трансформирование его в сталь. Из преимуществ метода следует отметить высокую производительность, низкую себестоимость стали, компактность и простоту устройства конвертера.

    Доменное производство

    В доменных печах осуществляется освобождение из руды железа и выплавление чугуна. Он бывает двух видов:

    • литейный (для отливки чугунных заготовок);
    • предельный (применяется для изготовления стали).

    Доменное производство

    Усовершенствование доменного производства направлено на увеличение мощности печей и улучшение подготовки сырых материалов к плавке. Кроме того, большое внимание уделяется прогрессивным технологиям, направленным на автоматическое управление за ходом работы печей.

    Обработка металла

    Новые технологии в металлургии и металлообработке позволяют повысить производительность труда, улучшить качество изделий и уменьшить количество отходов.

    Гидроабразивная резка металла

    Среди научных достижений в сфере обработки металла можно выделить следующие:

    1. Гидроабразивная резка. При данном способе на материал воздействует тонкая водяная струя, насыщенная абразивными веществами. Она подается в рабочую зону под высоким давлением. Такая технология с успехом используется на производствах, где не допускается искрообразование и чрезмерное нагревание металла. Подобные установки позволяют эффективно очистить ржавчину с поверхности, снять микронеровности.
    2. Электрохимическая обработка. Она используется для любых металлов и сплавов, в независимости от их механических свойств и химического состава. В основе метода ─ растворение материала в электролитическом составе под действием тока определенной величины. Как результат – поверхностные слои металлов насыщаются сульфидами, нитридами, карбидами. Такие соединения обычно образуются только при высоких температурах. Технология востребована для производства радиаторов, пластин и других биметаллических деталей.
    3. Лазерная резка. Это способ появился недавно, но уже приобрел большую популярность. Он имеет неоспоримые преимущества: качественные результаты, невысокую цену, эффективность. Для такой резки характерно испарение металла под воздействием лазерного луча. Благодаря данной методике можно получить на заготовках даже минимальные отверстия. Лазером производится размерная прошивка тугоплавких химических элементов (молибдена, вольфрама) и изготовляются детали самых сложных форм без потери качества.
    4. Магнитноимпульсная обработка. Обрабатываемые изделия подвергаются действию мощных импульсов магнитных полей, вследствие чего возникают характерные вихревые потоки в заготовках. Методика подходит для получения из стали листовых заготовок, формовки малопластичных сплавов (бериллия, титана).

    Вторичное сырье. Переработка

    Ресурсы черной и цветной руды истощаются ежегодно, а рынок ее потребления имеет тенденцию к неуклонному росту. Металлопродукция всегда необходима во многих областях: судостроении, производстве сантехники, строительной индустрии, машиностроении. Поэтому вполне разумно заниматься переработкой изделий и деталей, которые уже отработали свой ресурс. Это неплохая и прибыльная идея для развития частного бизнеса.

    Вторичная переработка металла

    Наиболее просто перерабатывать однотипные металлы, со сплавами же дело обстоит сложнее. Металлический лом отделяют от других отходов, прессуют, запаковывают и отправляют на литейные предприятия. Там он подвергается дальнейшей обработке и переплавке в электрических индукционных печах.

    В качестве сырья для повторной переработки чаще используются:

    Использование вторичного сырья не только экономически оправдано, но и положительным образом сказывается на экологии. В отличии от первичного литья, здесь не происходит выделения тяжелых металлов и других вредных соединений в окружающую среду.

    Металлургия — это та отрасль, в которую постоянно происходят финансовые вливания для разработки инновационных технологий. Поэтому в ближайшие годы появится еще немало интересных новинок, которые прочно войдут в повседневные производственные процессы.

    Современные технологии в металлообработке

    Применяя современные технологии в металлообработке, промышленные предприятия создают различные детали и узлы любой сложности. Они востребованы в приборостроительной, машиностроительной, мебельной и множестве других отраслей. Речь идёт о самых разных товарах, от обычных гвоздей, заканчивая турбинами и трубами.

    На предприятиях для этих задач применяется несколько методик и оборудование с высокой производительностью. В первую очередь это автоматические и винторезные токарные станки.

    Технологии металлообработки

    Первые применяются для поточного массового производства различных деталей. Вторые – для малосерийного или штучного. Для обработки заготовок применяются зенкеры, свёрла, резцы, метчики и другие инструменты. Простейшие модели управляются оператором вручную. Более продвинутые устройства работают в связке с компьютерным оборудованием по заранее подготовленной программе. В частности, используются станки с ЧПУ.

    Также для изменения геометрии, механических и иных свойств применяются литьё, сварка, обработка давлением, включая прессование, штамповка. Выбор метода зависит от технического задания, стоящего перед предприятием, сроков, необходимой скорости и производительности.

    Фрезерные станки

    Чтобы из металлической заготовки выточить нужную деталь или инструмент, применяются установки, обрабатывающие материал фрезами. Принцип работы прост:

    • Изделие зажимают, чтобы она оставалась неподвижной;
    • Устанавливается фреза заданной формы и размера;
    • Выполняется обработка по разметке. Как только фреза доводит изделие до нужных параметров, станок отключают. На автоматических моделях выключение производится по программе.

    Технологии металлообработки

    Суть методики – снятие слоя материала – т.н. «припуска». Она позволяет изготовить изделия сложной формы, выполнить на поверхности канавки, пазы или шипы, и даже нанести на табличку надпись. Фрезерование – метод, с помощью которого изготавливаются нестандартные изделия.

    Способы резки

    Далее мы затронем основы технологий металлообработки, применяемые на металлорежущих станках. Сложно представить металлообрабатывающую отрасль без резки. Суть метода заключается в удалении лишнего материала с заготовки с целью придания нужных форм и габаритов. Существует несколько способов, базирующихся на механическом, абразивном, термическом и химическом воздействии на металл. Они отличаются точностью, скоростью и энергозатратами.

    Для каждой задачи эффективен конкретный вид обработки. Так для тонколистового проката или тонкостенных изделий эффективна лазерная резка.

    Подобные инновационные технологии в металлообработке имеют несколько важных преимуществ:

    • Обеспечивается точность, качество, отсутствие дефектов – окалины, заусенцев.
    • Выполняется термическое упрочнение.
    • Подходит для тугоплавких материалов – вольфрама, молибдена.

    Технологии металлообработки

    Сфокусированный луч испаряет слой металла на месте соприкосновения.

    Передовые разработки

    Новые технологии металлообработки не ограничиваются лазером. Также применяются следующие методики:

    • Магнитоимпульсная – заготовку помещают в электромагнитное поле. Изделие помещается в диэлектрик, и силовые линии воздействуют на его поверхности. Таким способом проводят формовку бериллия, титана, листовой стали.
    • Высокочастотная, ультразвуковая. Эффективна для термообработки поверхностей металлов и сплавов.
    • Электроэрозионная – разрушение металлического слоя воздействием электрической дуги, искры или импульса. Микрочастицы плавятся, постепенно вымываясь из обрабатываемой зоны эмульсией или маслом. Параллельно увеличивается твёрдость заготовки в зоне воздействия разряда.
    • Плазменная – подходит для чёрных, цветных и тугоплавких металлов. Вместо режущего инструмента используется струя плазмы. Она образуется при воздействии электрической дуги на подаваемый через сопло газ. Газы используются двух типов – активные – водяной пар, водород, аргон и азот и неактивные – кислород и воздух. Сфера применения этого способа – резка чёрного металла.

    Технологии металлообработки

    Все перечисленные способы обработки отличаются высокой точностью исполнения резки, они могут применяться на любых предприятиях, где имеются условия для монтажа такого оборудования. Отличаются расходом электроэнергии, иными затратами.

    Методики без нагрева поверхностей

    Если техпроцесс требует выполнять резку без нагрева поверхности и риска образования искр, актуальна гидроабразивная обработка. В этом случае воздействие на материал оказывается струёй воды, смешанной с абразивным материалом. Подача осуществляется под высоким давлением.

    Ещё один «холодный» способ – криогенная порезка. Суть аналогичная – струю жидкого азота на сверхзвуковой скорости под давлением подают на участок металла. Создаваемый эффект даёт возможность разрезать высокопрочные материалы, объекты большой толщины. Поток имеет температуру до -179С и давление, регулируемое в пределах 400 – 4000 кг/кв.см.

    В сети легко найти видео с примерами различных методик абразивной, химической, термической, электромагнитной, плазменной или механической обработки.

    Металлы и их сплавы издавна используются человеком для изготовления инструментов и оружия, украшений и ритуальных предметов, домашней утвари и деталей механизмов.

    Чтобы превратить металлические слитки в деталь или изделие, их требуется обработать, или изменить их форму, размеры и физико-химические свойства. За несколько тысячелетий было разработано и отлажено множество способов обработки металлов.

    Обработка металла

    Особенности обработки металла

    Многочисленные виды металлообработки можно отнести к одной из больших групп:

    • механическая (обработка резанием);
    • литье;
    • термическая;
    • давлением;
    • сварка;
    • электрическая;
    • химическая.

    Литье — один из самых древних способов. Он заключается в расплавлении металла и розливе его в подготовленную форму, повторяющую конфигурацию будущего изделия. Этим способом получают прочные отливки самых разных размеров и форм.

    Про другие виды обработки будет рассказано ниже.

    Сварка

    Сварка также известна человеку издревле, но большинство методов были разработаны в последнее столетие. Сущность сварки заключается в соединении нагретых до температуры пластичности или до температуры плавления кромок двух деталей в единое неразъемное целое.

    В зависимости от способа нагрева металла различают несколько групп сварочных технологий:

    • Химическая. Металл нагревают выделяемым в ходе химической реакции теплом. Термитную сварку широко применяют в труднодоступных местах, где невозможно подвести электричество или подтащить газовые баллоны, в том числе под водой.
    • Газовая. Металл в зоне сварки нагревается пламенем газовой горелки. Меняя форму факела, можно осуществлять не только сварку, но и резку металлов.
    • Электросварка. Самый распространенный способ:
      • Дуговая сварка использует для нагрева и расплавления рабочей зоны тепло электрической дуги. Для розжига и поддержание дуги применяют специальные сварочные аппараты. Сварка ведется обсыпными электродами или специальной сварочной проволокой в атмосфере инертных газов.
      • При контактной сварке нагрев осуществляется проходящим через точку соприкосновения соединяемых заготовок сильным электротоком. Различают точечную сварку, при которой детали соединяются в отдельных точках, и роликовую, при которой проводящий ролик катится по поверхности деталей и соединяет их непрерывным швом.

      Дуговая сварка

      С помощью сварки соединяют детали механизмов, строительные конструкции, трубопроводы, корпуса судов и автомобилей и многое другое. Сварка хорошо сочетается с другими видами обработки металлов.

      Электрическая обработка

      Метод основан на частичном разрушении металлических деталей под воздействием электрических разрядов высокой интенсивности.

      Его применяют для прожигания отверстий в тонколистовом металле, при заточке инструмента и обработке заготовок из твердых сплавов. Он также помогает достать из отверстия обломившийся и застрявший кончик сверла или резьбового метчика.

      Графитовый или латунный электрод, на который подано высокое напряжение, подводят к месту обработки. Проскакивает искра, металл частично оплавляется и разбрызгивается. Для улавливания частиц металла промежуток между электродом и деталью заполняют специальным маслом.

      Ультразвуковая обработка металла

      Ультразвуковая обработка металла

      К электрическим способам обработки металлов относят и ультразвуковой. В детали возбуждаются колебания высокой интенсивности с частотой свыше 20 кгц. Они вызывают локальный резонанс и точечные разрушения поверхностного слоя, метод применяют для обработки прочных сплавов, нержавейки и драгоценностей.

      Особенности художественной обработки металлов

      К художественным видам обработки металлов относят литье, ковку и чеканку. В средине XX века к ним добавилась сварка. Каждый способ требует своих инструментов и приспособлений. С их помощью мастер либо создает отдельное художественное произведение, либо дополнительно украшает утилитарное изделие, придавая ему эстетическое наполнение.

      Художественная чеканка

      Чеканка — это создание рельефного изображения на поверхности металлического листа или самого готового изделия, например, кувшина. Чеканку выполняют и по нагретому металлу.

      Способы механической обработки металлов

      Большую группу способов механической обработки металлов объединяет одно: в каждом из них применяется острый и твердый по отношению к заготовке инструмент, к которому прикладывают механическое усилие. В результате взаимодействия от детали отделяется слой металла, и форма ее изменяется. Заготовка превышает размерами конечное изделие на величину, называемую «припуск»

      Разделяют такие виды механической обработки металлов, как:

      • Точение. Заготовка закрепляется во вращающейся оснастке, и к ней подводится резец, снимающий слой металла до тех пор, пока не будут достигнуты заданные конструктором размеры. Применяется для производства деталей, имеющих форму тела вращения.
      • Сверление. В неподвижную деталь погружают сверло, которое быстро вращается вокруг своей оси и медленно подается к заготовке в продольном направлении. Применяется для проделывания отверстий круглой формы.
      • Фрезерование. В отличие от сверления, где обработка проводится только передним концом сверла, у фрезы рабочей является и боковая поверхность, и кроме вертикального направления, вращающаяся фреза перемещается и вправо-влево и вперед-назад. Это позволяет создавать детали практически любой требуемой формы.
      • Строгание. Резец движется относительно неподвижно закрепленной детали взад- вперед, каждый раз снимая продольную полоску металла. В некоторых моделях станков закреплен резец, а двигается деталью. Применяется для создания продольных пазов.
      • Шлифование. Обработка производится вращающимся или совершающим продольные возвратно- поступательные движения абразивным материалом, который снимает тонкие слои с поверхности металла. Применяется для обработки поверхностей и подготовки их к нанесению покрытий.

      Шлифовка металла

      Каждая операция требует своего специального оборудования. В технологическом процессе изготовления детали эти операции группируются, чередуются и комбинируются для достижения оптимальной производительности и сокращения внутрицеховых расходов.

      Обработка металла давлением применяется для изменения формы детали без нарушения ее целостности. Существуют следующие виды:

      Перед ковкой заготовку нагревают, опирают на твердую поверхность и наносят серию ударов тяжелым молотом так, чтобы заготовка приняла нужную форму.

      Исторически ковка была ручной, кузнец разогревал деталь в пламени горна, выхватывал ее клещами и клал на наковальню, а потом стучал по ней кузнечным молотом, пока не получался меч или подкова. Современный кузнец воздействует на заготовку молотом кузнечного пресса с усилием до нескольких тысяч тонн. Заготовки длиной до десятков метров разогреваются в газовых или индукционных печах и подаются на ковочную плиту транспортными системами. Вместо ручного молота применяются кузнечные штампы из высокопрочной стали.

      Ковка

      Для штамповки требуется две зеркальные по отношению друг к другу формы — матрица и пуансон. Тонкий лист металла помещают между ними, а потом с большим усилием сдвигают. Металл, изгибаясь, принимает форму матрицы. При больших толщинах листа металл нагревают до точки пластичности. Такой процесс называют горячая штамповка.

      Во время штамповки могут выполняться такие операции, как:

      • гибка;
      • вытягивание;
      • осаживание;
      • и другие.

      С помощью штамповки выпускают широчайший ассортимент изделий — от корпусов бытовой техники до колесных дисков и бензобаков.

      Обработка с помощью резки

      Металл поступает на предприятие в виде проката — листов или профилей стандартных размеров и толщин. Чтобы разъединить лист или профиль на изделия или заготовки нужных размеров, применяют обработку резкой.

      Для профиля чаще всего используют резку абразивным кругом или дисковой пилой.

      Для раскроя листов металла применяют несколько видов резки:

      • Ручная. Газосварщик с газовой горелкой вырезает куски металла нужного размера и формы. Применяется в небольших мастерских и на опытных производствах.
      • Газовая. Установка газовой резки режет пламенем автоматизированной газовой горелки и позволяет не только быстро произвести раскрой листа, но и разложить вырезанные заготовки по контейнерам для доставки их на сборочные участки . Режет металл лазерным лучом. Отличается высокой точностью и малым коэффициентом отходов. Кроме резки, может выполнять операции сварки и гравировки — нанесения на металл не удаляемых надписей.
      • Плазменная. Режет металл факелом высокоионизированного газа — плазмы. Применяется для раскроя листов из твердых и специальных сплавов.

      Лазерная резка

      В условиях промышленного производства и средних или крупных серий на первый план выходит такое понятие, как коэффициент использования металла. Он повышается как за счет более плотной раскладки деталей по площади, так и за счет прогрессивных технологий резки, дающих меньше отходов

      Химическая обработка металлов для повышения защитных свойств материала

      Химическая обработка металла — это воздействие на него специальными веществами с целью вызвать управляемую химическую реакцию.

      Выполняются как подготовительные операции для очистки поверхности перед сваркой или покраской, так и как финишные отделочные операции для улучшения внешнего вида изделия и защиты его от коррозии.

      Цинкование металла

      С помощью электрохимической обработки гальваническим методом наносят защитные покрытия.

      Термические виды обработки металлов

      Термическая обработка металлов применяется для улучшения их физико-механических свойств. К ней относя такие операции, как:

      • отжиг;
      • закалка;
      • отпуск;
      • старение;
      • нормализация.

      Термическая обработка стали

      Термическая обработка стали

      Термическая обработка заключается в нагревании детали до определенной температуры и ее последующем охлаждении по специальной программе.

      Отжиг

      Заготовку нагревают до температуры пластичности и медленно охлаждают прямо в печи.

      Отжиг снижает твердость стали, но существенно повышает пластичность и ковкость.

      Обработка металла

      Применяется перед штамповкой или раскаткой. Во время отжига снимаются внутренние напряжения, возникшие при отливке или механической обработке.

      Закалка

      При закалке заготовку прогревают до температуры пластичности и держат в таком состоянии в течение определенного времени, за которое стабилизируются внутренние структуры металла. Далее изделие быстро охлаждают в большом количестве воды или масла. Закалка существенно повышает твердость материала и снижает его ударную вязкость, повышая, таким образом, и хрупкость. Применяют для элементов конструкций, подверженных большим статическим и малым динамическим нагрузкам.

      Отпуск

      Проводится после закалки. Образец нагревают до температуры, несколько меньшей температуры закалки, и охлаждают медленно. Это позволяет компенсировать излишнюю хрупкость, появившуюся после закалки. Применяется в инструментальном производстве

      Старение

      Искусственное старение заключается в стимуляции фазовых превращений в массе металла. Его проводят при умеренном нагреве для придания материалу свойств, возникающих при естественном старении за долгое время.

      Нормализация

      Нормализация проводится для повышения ковкости без заметного снижения твердости за счет приобретения сталью мелкозернистой структуры.

      Ее применяют перед закалкой и для повышения обрабатываемости резанием. Проводят так же, как и отжиг, но остывает заготовка на открытом воздухе.

      Читайте также: