Металлический каркас промышленных зданий конструкции

Обновлено: 28.04.2024

При проектировании производственного здания необходимо иметь ряд сведений технологического, общестроительного и эксплуатационного характера. К сведениям технологического характера относятся данные о расположении и габаритах аппаратуры и рабочих агрегатов, подъемно-транспортного оборудования и его грузоподъемности; подземных каналов и трубопроводов различного назначения, а также о бытовых устройствах, специальных рабочих и ремонтных площадках, проходах, проездах и т. п. Сведения общестроительного характера содержат данные о топо­графии участка строительства, грунтах и их расчетных сопротивлениях, уровне грунтовых вод, местных строительных материалах и климатиче­ских условиях в районе строительства. Данные об эксплуатационном режиме здания - режим работы кра­нов и других подъемно-транспортных средств, временные нагрузки и их динамические воздействия; вопросы освещения, вентиляции и отопления. Кроме того, при проектировании необходимо учитывать вопросы, свя­занные с перспективами развития производства и соответствующей реконструкцией помещения, т. е. увеличение его габаритов и усиления несущих конструкций в связи с увеличением грузоподъемности подъемно-транспортных механизмов.


Выбор материала для строительных конструкций производственных зданий производится на основании анализа технико-экономических расчетов возможных сопоставимых вариантов конструктивных решений и сметно-финансовых расчетов с учетом рекомендаций «Технических правил по экономному расходованию металла, леса и цемента в строительстве» (ТП 101-61), утвержденных Государственным комитетом Совета Министров СССР по делам строительства.

Металлические несущие конструкции применяют для покрытий пролетом 30 м и более, для колонн высотой 15 м и выше, а также при наличии кранов грузоподъемностью более чем 30 т. В производственных корпусах с большими пролетами и значительной высотой, не имеющих больших нагрузок (гаражи, авторемонтные мастерские и др.), устройство маталлического каркаса может быть также целесообразным.

Элементы металлического каркаса производственного здания автотранспортного предприятия:

1 - колонны; 2 - подкрановые балки; 3 - горизонтальные связи по нижним и 8 - по верхним поя­сам стропильных ферм; 4 - сборные железобетонные плиты; 5 - фонарь; 6 - стропильные фермы; 7 - балка подвесного крана; 9 - вертикальные связи покрытия; 10 - вертикальные связи между колоннами; 11 - база колонны; 12 - анкерные болты

Металлический каркас представляет собой пространственную систему из несущих элементов, воспринимающих нагрузки от ограждающих конструкций (элементов кровли, стен и др.), мостовых кранов и другого технологического оборудования.

Элементами плоских поперечных рам каркаса являются стропильные фермы-ригели и колонны-стойки.

К элементам покрытия относятся фермы — стропильные и подстропильные (при большом шаге колонн), а также укладываемый по верхним поясам стропильных ферм сборный железобетонный настил или прогоны с плитами кровельного ограждения. Устройство беспрогонного покрытия более экономично по расходу металла и затрате труда.

Связи металлического каркаса обеспечивают его пространствен­ную жесткость; они воспринимают ветровые нагрузки на здание и инерционные усилия кранов.

Фонари устраивают для освещения и аэрации зданий; они могут быть как продольные (перпендикулярно рамам), так и поперечные. Совершенствование искусственного освещения и вентиляции позволяет отказаться от фонарей и перейти к бесфонарным типам производственных зданий. Эти здания в технологическом отношении лучше, так как они имеют постоянный световой, температурно-влажностный и аэрационный режим. Отсутствие световых и аэрационных фонарей значительно упрощает конструкцию здания и снижает его стоимость.

Подкрановые балки являются дополнительными продольными элементами каркаса, вместе с тем они воспринимают давление от колес мостовых кранов, обслуживающих цех.

Фахверк представляет собой плоскую систему металлических го­ризонтальных и вертикальных элементов, поддерживающих стеновое ограждение (стеновые сборные панели, плиты или каменную кладку).

К комплексу металлических конструкций производственных зданий относятся также рабочие площадки для поддержания и обслуживания производственного оборудования, лестницы, монорельсовые пути для внутрицехового транспортирования грузов и т. д.

Конструкции металлического каркаса здания должны удовлетворять ряду требований, главнейшими из которых являются эксплуатационные, экономические и производственно-монтажные.

Согласно эксплуатационным требованиям производственное здание и его габаритные размеры должны обеспечивать удобство обслуживания технологических агрегатов цеха, нормальную работу кранов и других подъемно-транспортных механизмов, возможность осуществления достаточного освещения, вентиляции и т. п., а также отвечать определенным условиям производственной эстетики. Конструкция каркаса в целом и отдельные его элементы должны обладать необходимой прочностью и устойчивостью, а также поперечной и продольной жесткостью.

К экономическим требованиям относятся: всемерное сокращение затрат, связанных с возведением здания, максимально возможное снижение стоимости материалов, транспортирования, изготовления и монтажа конструкций, а также сокращение сроков возведения. Вопрос экономии стали является основным, поэтому особое внимание обращают на целесообразность применения того или иного материала для конструкции и на рациональное конструктивное решение каркаса, требующее минимального расхода металла.

Конструкции каркаса должны удовлетворять принципам индустри­ализации строительства, чему соответствует унификация и типизация основных параметров каркаса зданий и элементов металлических конструкций.

Экономическими требованиями предусматривается снижение стоимости эксплуатации сооружения и амортизационных расходов, зависящих от его срока службы.

В соответствии с производственно-монтажными требованиями элементы конструкций каркаса должны иметь возможно простую форму и состоять из минимального количества деталей; в каркасе следует при­менять максимальное количество однотипных элементов и деталей, что снижает трудоемкость их изготовления; необходимо стремиться к мини­мальному количеству монтажных элементов; конструкции, отправляе­мые с завода, как правило, должны вписываться в габариты предусмот­ренного вида транспорта; следует проектировать укрупнительную сборку элементов каркаса.

Нагрузки от кранов рассчитываются приневыгодном положение кранов. При торможение кранов возникают горизонтальная нагрузка Т которая передается на конструкцию. Максимальное приближение кранов дает возможность рассчитать возникающие вертикальные нагрузки.

1. Максимально приближают краны друг к другу и определяют расчетную раму.

Изготовление металлических каркасов

Изготовление металлических каркасов

Современные металлические каркасы производят на заводах с новейшим оборудованием и эффективными системами контроля качества. На сегодняшний день благодаря целому ряду уникальных преимуществ очень распространена строительная технология, основой производства которой является изготовление металлических каркасов.

Сферы применения металлических каркасов

Применение металлических каркасов очень выгодно. Именно поэтому их используют строительные организации, занимающиеся возведением зданий. При этом главное – по максимуму использовать функциональность металлических конструкций.

Как правило, рамы железных каркасов применяются при строительстве:

  • жилых зданий – благодаря легкости стальных элементов;
  • высотных зданий – из-за скорости возведения, повышенной прочности и небольшой массы;
  • временных сооружений – так как все элементы быстро снимаются и устанавливаются;
  • промышленных помещений и складских зданий – из-за возможности создания больших площадей с минимумом затрат.

1. Металлокаркасы для зданий и сооружений.

Сегодня каркасное строительство является самым распространенным способом возведения промышленных сооружений. К его основным преимуществам относятся: простая установка деталей, легкость материалов, быстрота строительства. Если на стадии проектирования использовать металлический каркас, то можно гораздо точнее рассчитать вероятные климатические и сейсмические нагрузки для безопасного монтажа конструкции.

Металлокаркасы имеют высокие эксплуатационные свойства и предоставляют широкие возможности для изменения их конструкции под определенный проект, требующий установки дополнительного оборудования.

Сферы применения металлических каркасов

Оформляя заказ на изготовление металлического каркаса для промышленного сооружения, вы можете удобно объединить это с разработкой конструкций для производственного оборудования (бункеров, градирен, эстакад и пр.). Комплексный подход позволяет одновременно совмещать изготовление металлокаркасов, их проектирование и разработку конструкции складского оборудования, при этом обеспечивая безопасность сооружений и соблюдая все требования ГОСТ.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Также существует множество решений по созданию этажей разной высоты в пределах одного строения и проектирования внутреннего пространства в жилых зданиях с каркасной конструкцией. Благодаря данному подходу у заказчика появляется возможность корректировать подземные и надземные части помещения с учетом своих предпочтений.

Проектировщик, использующий в работе металлические каркасы, получает возможность реализовать четырехстороннее опирание ригелей на колонны под нужным углом, а также аккуратно вписать в общую конструкцию сложные плоскости и линии. Особые физические и механические свойства проката вполне позволяют это сделать. Данные преимущества очень важны при возведении общественных и административных зданий с индивидуальной архитектурой, а также при строительстве высотных зданий из металлокаркаса.

Что же касается изготовления металлоконструкций для быстровозводимых, разборных и временных сооружений, то они активно используются в сфере добычи полезных ископаемых. Организации, добывающие газ, нефть и строящие газопроводы, уже давно убедились в легкости и выгодности применения металлокаркасов в создании временных помещений.

Изготовление металлоконструкций для быстровозводимых, разборных и временных сооружений

Многие современные производители занимаются изготовлением металлических каркасов для бытовок и временных административных зданий, быстровозводимого и разборного жилья.

2. «Вспомогательные» металлокаркасы.

Металлические каркасы не всегда выполняют такие «объемные» функции, о которых упоминалось ранее. Например, их часто применяют для возведения лестниц разного типа: металлических, деревянных, бетонных. При этом сначала устанавливают каркас, после чего обшивают ступени выбранным облицовочным материалом: камнем, деревом, металлом или др. Такие лестницы становятся более долговечными и прочными именно благодаря металлокаркасу.

Отдельно следует сказать об изготовлении металлических каркасов для мебели. Они называются интерьерными. Интерьеры, в которых используются эти конструкции, с каждым годом становятся все более популярными. И неудивительно, ведь металлокаркасная мебель может выглядеть достаточно привлекательно. К ее главным преимуществам относится устойчивость к большим нагрузкам и внешним воздействиям, а также долговечность.

Чаще всего нам встречается мебель простого дизайна, которую размещают в служебных помещениях. Однако дизайнеры порой удивляют изготовлением неповторимых, уникальных предметов по индивидуальным заказам. Такие вещи, безусловно, становятся украшением любого интерьера.

Другие варианты применения металлических каркасов – возведение различных покрытий для бассейнов, сложных потолочных конструкций, сборных полов, перегородок разного типа.

Принципы изготовления металлических каркасов

Металлоконструкция является такой же несущей основой для здания, как и фундамент. Вот почему так важно правильно выбрать материал ее изготовления. Специалисты давно признали, что металлический каркас – один из самых прочных, благодаря ему строение может простоять очень долгое время. Такая конструкция помогает смыкать поверхности пола, потолка и стен в одну комнату. Разумеется, при этом необходимо соблюдать все стандарты. Тогда изделие будет достаточно основательным, прочным и надежным. Обычно срок использования металлоконструкции определяет сам клиент.

Рекомендуем статьи по металлообработке

Чтобы в случае чрезвычайных ситуаций базис остался в хорошем виде, производители используют для изготовления металлических каркасов материалы, отвечающие всем критериям надежности и безопасности. Так, за счет облегченной обрешетки сокращается время установки конструкции и существенно снижается вес всего устройства.

Каркасы состоят из легких металлических деталей, которые фиксируются резьбовыми соединениями болтов и гаек. Поэтому такие конструкции довольно быстро разбираются и собираются. Установка их осуществляется посредством сварки или крепежа.

Принципы изготовления металлических каркасов

Давайте рассмотрим самые распространенные виды изготовления металлокаркасных конструкций:

  1. На болтах. Каркас поставляется на место строительства и уже на месте производится его сборка. Этот тип конструкции заказчики предпочитают использовать чаще всего, так как работа с ней на стройплощадке выражается лишь в поднятии стальных элементов с помощью крана и фиксации их болтами.
  2. Легкие. Подходят для строительства небольших и жилых зданий (практически аналогично «деревянному» строительства). Из легких стальных конструкций формируют тонкие листы, которые затем сгибают в нужные элементы.
  3. Обычные. Металлические части одинаковы по длине и свариваются на конечной структуре. Чтобы улучшить условия работы, изготовление конструкции происходит уже на стройплощадке.

Монтаж металлокаркаса можно производить в любое время. Это означает, что погодные условия не играют большой роли при строительстве и установке обрешетки. Разумеется, форс-мажорные обстоятельства при этом не учитываются.

Преимущества и недостатки изготовления металлических каркасов на заказ

Для нас стало привычным видеть повсюду каркасные строения, основу изготовления которых составляет древесина. Однако ассортимент каркасов намного шире, и металлоконструкции в последнее время используются все чаще. Давайте попробуем разобраться, в чем сходство и отличие разных видов.

Многие современные отечественные производители занимаются изготовлением металлических каркасов. Несмотря на то, что россияне обычно делают все самостоятельно, они должны понимать: построить качественный металлокаркас очень сложно. Дело не только в монтаже, но и в проектировании. Даже из-за самых незначительных просчетов вся металлоконструкция может развалиться. Причем не имеет значения, будет ли она несущей или использоваться под вентилируемый фасад.

Преимущества и недостатки изготовления металлических каркасов на заказ

Говоря об уникальных преимуществах изготовления металлокаркасов, следует особо отметить их невысокую себестоимость. Если проектирование будет грамотным, то даже небольшое количество деталей не ухудшит прочность конструкции.

Высокое качество металлоконструкций подтверждается их популярностью в таких развитых странах, как Япония и США. На территориях данных государств находится немало производственных цехов, сооруженных на основе металлокаркасов и полноценно функционирующих. Благодаря изготовлению таких конструкций бизнес окупается намного быстрее, а ремонт зданий облегчается, что очень важно в условиях промышленной деятельности.

Кроме того, скорость строительства каркасного здания довольно высокая. А возводить постройки можно в любое время года, даже зимой, что неприемлемо для монолитных конструкций. Это еще одно преимущество, которое играет определяющую роль в строительстве промышленных зданий.

Возможность выполнять работы в любое время года, выгодная стоимость, быстрое возведение – именно эти уникальные особенности сделали изготовление металлокаркасов таким популярным в большинстве стран мира.

Каркасное здание

Разумеется, у металлокаркасных конструкций есть и некоторые недостатки. Однако их совсем немного. Прежде всего следует упомянуть о так называемых «мостиках холода» (поперечные и продольные металлические соединения обладают способностью передавать холод внешней среды, значительно снижая температуру в помещении).

Другой минус – низкая устойчивость металлических каркасов к огню. Дело в том, что несущие конструкции довольно быстро деформируются от прямого воздействия огня при пожаре. К тому же, у них отсутствует высокая несущая способность.

В любом случае мы уже убедились в том, что у изготовления металлических каркасов намного больше преимуществ, чем недостатков. Большинство компаний сегодня предпочитают возводить крепкие и качественные каркасные строения.

От чего зависит цена на изготовление металлических каркасов

Давайте рассмотрим особенности образования цен на изготовление металлических каркасов, предназначенных для постройки зданий. На точность расчета стоимости комплекта оказывает влияние множество разных причин, включая исходные данные заказа.

Как мы уже говорили, металлический каркас является основной несущей конструкцией, которая удерживает все строение. Его также можно назвать остовом быстровозводимого сооружения или здания. Новейшие технологии каркасного строительства становятся все более популярными на строительном рынке, так как позволяют экономить финансовые вложения и сокращать сроки строительно-монтажных работ. К тому же, современные строители еще больше упростили процесс возведения сооружений, разработав вариант проекта «полной комплектации», который также называют «проектом под ключ».

Получается, что во избежание каких-либо проблем, касающихся эксплуатации строения, выгоднее делать заказ у профессиональных производителей на изготовление полного «комплекта металлического каркаса». А для того чтобы не столкнуться с возможными ошибками в расчетах, лучше заказать все элементы возводимого сооружения (от каркаса до кровли и ограждающих конструкций) у одной и той же компании. Тогда вы сможете быстро и легко собрать все детали и элементы металлокаркаса.

От чего зависит цена на изготовление металлических каркасов

Теперь становится понятно, что представляет собой изготовление металлического каркаса «в комплекте». Давайте попробуем рассчитать его цену.

Начнем с перечня элементов, входящих в стоимость такого набора:

  • гайки, шайбы и болты для соединения деталей;
  • стойки фахверка и основные колонны;
  • фасонные элементы;
  • балки покрытия;
  • стеновые прогоны;
  • горизонтальные и вертикальные связи;
  • кровельные прогоны.

Следует отметить, что только зная точное число всех элементов, нужных для возведения определенного здания, вы сможете вычислить конкретную стоимость изготовления «комплекта».

Кроме того, цена будет зависеть и от размеров строения. Так, в стандартную комплектацию металлического каркаса при необходимости добавляются соответствующие сборочным чертежам дополнительные конструкции, необходимые для установки инженерных коммуникаций.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Каркасы производственных зданий

Каркасы производственных зданий представляют собой комплекс конструкции, предназначенных для восприятия постоянных нагрузок от веса ограждающих и несущих конструкций, снеговой и ветровой нагрузок, а также нагрузок от технологического оборудования.

Основными конструктивными элементами каркаса являются: колонны, ригели перекрытий, стропильные конструкции покрытий (фермы или балки), связи и подкрановые конструкции. Для естественного освещения и вентиляции по покрытиям зданий могут устраиваться светоаэрационные или аэрационные фонари (рис.9.1).

В зависимости от схемы компоновки каркасы могут быть однопролетными и многопролетными. Наиболее распространены стальные каркасы одноэтажных однопролетных производственных зданий.

Каркасы одноэтажных производственных зданий можно разделить на плоскостные и пространственные. В каркасах плоскостной системы основными несущими конструкциями являются плоские поперечные рамы, которые соединяются между собой системой продольных связей. Поперечная

рама воспринимает только нагрузки, действующие в ее плоскости. Нагрузки, действующие вдоль здания, воспринимаются продольными кострукциями, в состав которых включаются вертикальные связи по колоннам, колонны, подкрановые балки. В каркасах пространственной системы при действии любых нагрузок в работу включаются все или большинство элементов и расчетный блок смещается целиком.

Сетка колонн одноэтажных зданий массового применения назначается размером 6х18, 6х24, 6x30, 6x36, 12x18, 12x24, 12x30 и по торцам часто устраиваются дополнительные фахверковые колонны с шагом 6 м для крепления ригелей под легкие стеновые панели или железобетонные стеновые панели длиной 6 м.

Конструкция ригеля сплошного или сквозного сечения зависит главным образом от пролета. При пролетах более 18 м ригели проектируются сквозными в виде ферм с целью экономии материалов.

Пространственная жесткость и устойчивость каркасов одноэтажных зданий в период монтажа и в период эксплуатации обеспечиваются структурной системой связей, поставленных в пределах блока покрытия и в пределах высоты колонны каркаса (рис.9.2).

Горизонтальные связи по верхним поясам устанавливают в поперечном направлении, и они обеспечивают устойчивость сжатых элементов верхнего пояса ферм от вертикальных нагрузок. В беспрогонной системе функцию связей по верхним поясам могут выполнять железобетонные плиты, которые крепят на сварке к верхнему поясу, а связи устанавливают только по краям температурного отсека на период монтажа. Горизонтальные связи по нижним поясам ферм устанавливают как в поперечном, так и в продольном направлениях. Поперечные связи по нижним поясам устанавливают, как правило, в торцах и температурного отсека, и они служат связевыми фермами для восприятия ветровых нагрузок.

Продольные связи по нижним поясам устраивают преимущественно в зданиях с кранами тяжелого режима работы.

Вертикальные связи по фермам устраивают между опорными стойками ферм и в середине пролета. Их основное назначение - создать жесткий пространственный связевой блок, состоящий из стропильных ферм и поперечных связей по верхним и нижним поясам. К этому блоку распорками или прогонами по верхним поясам присоединяются остальные фермы.

Наиболее легкими и в тоже время жесткими являются крестовые связи. Их рассчитывают только на растяжение. В запас прочности работу сжатого элемента связей не учитывают.

Связевые фермы с треугольной решеткой, работающей на растяжение и сжатие, по расходу металла уступают связевым фермам с крестовой решеткой, однако они проще в изготовлении и монтаже, поэтому в последнее время они получают широкое применение.

Кроме связей по шатру устраивают вертикальные связи между колоннами каркаса в продольном направлении (рис.9.2.ж-к), которые обеспечивают жесткость каркаса здания в продольном направлении от воздействия продольных нагрузок, продольных тормозных сил мостовых кранов и ветра. Простейшая конструкция - крестовые или раскосные системы связей (рис.9.2.ж,з). По средним рядам для обеспечения свободного прохода устраиваются портальные или полупортальные системы связей (рис9.2.н, к).

Для одноэтажных промзданий со стальным каркасом наибольшее применение получили рамы бесшарнирного типа (рис.9.3.а). Для одноэтажных промышленных и неких зданий с железобетонным и смешанным каркасом (колонны - железобетонные, ригели - металлические) используют рамы с шарнирным соединением ригеля с колонной и с жестким соединением колонны с фундаментами.

В стальных каркасах соотношение моментов инерции сечений ригеля и стоек рамы задают из конструктивных соображений:

для однопролетных рам

Для многопролетных рам

где Iinf, Isnp - моменты инерции подкрановой и надкрановой частей сечения колонн в однопролетном здании;

Isnp - момент инерции надкрановой части сечения колонны;

Ib - момент инерции поперечного сечения ригеля.

На рис.9.3.б приведена расчетная схема однопролетной рамы.

Ригель каркаса с шарнирным сопряжением ригеля со стойками рассчитывают как обычную балку (ферму) или как неразрезную систему, опертую на ряд колонн. Стойки рамы рассчитывают как внецентренно - сжатые колонны, защемленные в фундаменте.

Конструкции металлического каркаса многоэтажных промышленных зданий.

Металлические каркасы одноэтажных производственных зданий проектируют как плоскостные стоечно-балочные системы, монтируемые из сборных металлических элементов заводского изготовления. Они должны обладать необходимой прочностью и пространственной устойчивостью.

В поперечном направлении прочность и устойчивость обеспе­чиваются системой одно- или многопролетных рам, стойки кото­рых чаще всего жестко защемлены в фундамент, а вверху имеют шарнирную связь с несущими элементами покрытия — ригелями. Шарнирное крепление вверху обуслов­ливается тем, что обеспечить жесткую связь ригеля с колон ной значительно сложнее, чем шарнирную, и, кроме того, возни­кают большие возможности типизации элементов каркаса.

В продольную раму каркаса включаются все колонны попе­речных рам температурного блока, находящиеся на одной оси, с расположенными по ним подкрановыми балками или распор­ками и вертикальными связями, установленными между колон­нами . -На устойчивость каркаса в продольном направлении оказывают влияние высота здания, наличие диска, обеспечивающего равномерное распределение горизон­тальных усилий, возникающих при ветре и торможении мостовых кранов, железобетонные настилы, укладываемые по ригелям рам температурного блока, привариваются к их верхнему поясу. Швы между настилами замоноличиваются.

Фундаменты. В ж.б. каркасе ф-ты проектируют:

6.

7. По конструктивному решению ф-ты: отдельностоящие, свайные(для глубокого заложения)

8. По способу возведения: сборные, монолитные

9. Материал: железобетон

10. Заделка колонн в ф-т: пенькового типа(мет.каркас иил смешанный).

Глубина заложения зависит от: грунта основания, наличия или отсутствия подвала, уровня промерзания грунта. Уровня грунтовых вод. Колеблется в пределах 1,35-3,75м. Масса элементов сборного ф-та до 6т. Фундаментная опорная плита укладывается на выравнивающий слой песка или утрамбованного щебня.

В фундаментов пенькового типа соединение обеспечивается путем сварки арматурных выпусков.

Наружные и внутренние самонесущие стены опирают на фундаментные ж.б. балки. которые укладываются между подколонниками ф-та на ж.б. столбики(приливы) размерами 300х600мм.Длина балок зависит от ширины подколонника и места укладки.

Верх фундаментных балок на отм. -0,030м. Поверх ф-тной балки устраивается гидроизоляция из ЦПР или 1-2 слоев рулонного материала на битумной мастике.


Колонны. Стальные колонны каркаса в зави­симости от их поперечного сечения разделяют на сплошные постоянного и переменного сечения (рис. 25.1, а), решетчатые (сквозные) переменного сечения (рис. 25.1, б), раздельные пе­ременного сечения (рис. 25.1, в). Ко­лонны устраивают для бескрановых зданий и для зданий, оборудованных кранами; колонны принимают совмест­но нагрузки от покрытия и от кранов (см. рис. 25.1, а, б). Кроме того, при большой грузоподъемности кранов ко­лонны раздельно воспринимают наг­рузки от покрытия и от кранов (см. рис. 25.1, в). Соединения элементов колонн выполняют сварными, а при особо тяжелых крановых нагрузках — клепаными. Нагрузку от колонн на фундаменты передают через башмаки, которые кре­пят к фундаментам анкерными болта­ми. Размеры башмаков определяют расчетом; они зависят от величин на­грузок, передаваемых колоннами

Обвязочные балки в стальном кар­касе устраивают из одного профиля (швеллера или двутавра) или состав­ного сечения.

Стальные подкрановые балки мо­гут быть разрезными и неразрезными, сплошными и решетчатыми. Разрезные подкрановые балки и фермы (рис. 25.4, а, б), получили наибольшее распрост­ранение. Они просты в конструктивном решении, индустриальны, но по срав­нению с неразрезными имеют несколь­ко больший расход стали. Неразрез­ные подкрановые балки (см. рис.

25.4, б) имеют лучшие условия эксп­луатации подкрановых путей.

На рис. 25.5 представлены подкра­новые балки: сплошные — прокатные из двутавра и составные — сварные или клепаные (рис. 25.5, а), решетча­тые — шпренгельного типа (рис. 25.5, б) и в виде ферм (рис. 25.5, в).


Стальные фермы могут быть раз­личной формы и очертания, выбор ти­па ферм зависит он назначения и объемно-планировочного решения про­мышленного здания. В практике строи­тельства применяют фермы с парал­лельными поясами, полигональные, треугольные, с параллельными пояса­ми с затяжкой, сегментные, парабо­лические и др.

Фермы с параллельными поясами применяют для зданий с плоским по­крытием, а также для устройства под­стропильных конструкций. Их пролет может достигать 60 м и более. Поли­гональные фермы устраивают при по­крытиях с рулонной кровлей при про­летах до 36 м. Треугольные фермы дают возможность осуществить покры­тия с крутыми кровлями из асбесто-цементных или стальных листов, вслед­ствие чего высота ферм в середине пролета достигает значительных раз­меров, а это ограничивает их пролеты величиной 36—48 м.

Фермы с крутыми скатами (рис. 25.8, в) используют для пролетов 18, 24, 30 и 36 м при кровлях из листовых материалов. Размеры панелей ферм унифицированы и соответствуют ук­рупненным модулям, т. е. 1,5 м. Высо­та полигональных ферм на опорах для всех пролетов принята одинаковой — 2,2 и 0,45 м при крутых скатных кровлях.

Большепролетные фермы (рис. 25.9) могут перекрывать пролеты до 90 м и иметь различные схемы решеток: треугольную, раскосную, крестовую и др. Выбор схемы решетки зависит от характера приложения нагрузки, очер­тания и высоты ферм. ь

Элементы фермы: верхний и ниж­ний пояса, стойки и раскосы — выпол­няют из прокатных уголков в виде стержней парного профиля. Соеди­няют стержни в узлах сваркой при по­мощи фасонок (косынок) из листовой стали, располагаемых между уголками (рис. 25.10). В целях унификации уз­ловых соединений решетку в типовых полигональных фермах и в фермах с параллельными поясами принимают треугольной.


Стальные рамы предназначены для устройства несущих конструкций по­крытий при больших пролетах. По срав­нению с балочными рамные покрытия имеют меньшую массу, большую жес­ткость в поперечном направлении и меньшую высоту ригеля. Недостатка­ми рамных конструкций являются боль­шая ширина колонн и чувствитель­ность к неравномерным осадкам опор удобные в изготовлении, транспорти­ровании и монтаже (рис. 25.15, а). При больших пролетах в промышлен­ных зданиях целесообразна укрупнен­ная разбивочная сетка вертикальных несущих конструкций. В этом случае прибегают к комбинированному реше­нию, применяя в качестве поперечных несущих конструкций — арки, а в ка­честве продольных конструкций — фермы (рис. 25.15, б). В целях осве­щения внутреннего пространства естественным светом продольные фер­мы опирающиеся на поперечные арки, приподнимают и создают таким обра­зом зубчатый (шедового типа) про­филь покрытия, идущий по очертанию поперечных арок (рис. 25.15, в).

Связи. Пространственную жест­кость и устойчивость ферм, рам, арок и других плоскостных конструкций кар­каса зданий обеспечивают системой связей, устанавливаемых между этими конструкциями (рис. 25.16).

В покрытиях устраивают горизон­тальные (продольные и поперечные) и вертикальные связи, а между колон­нами устанавливают продольные вер­тикальные связи.

Продольные горизонтальные связи располагают вдоль рядов колонн в плоскостях нижнего и верхнего поясов крайних панелей ферм. Они представ­ляют собой продольные связевые фер­мы с параллельными поясами. Попе­речные горизонтальные связи обра­зуют поясами двух смежных стропиль ных ферм и расположенной между ними решеткой. Их устраивают у тор­цов здания, а также с обеих сторон каждого деформационного шва, а при большом расстоянии между деформа­ционными швами — через каждые 60 м.

Горизонтальные поперечные связи по верхним и нижним поясам ферм совмещают в плане.

Если несущую конструкцию ограж­дающей части покрытия выполняют из крупноразмерных железобетонных плит, то они образуют жесткий диск и выполняют функции горизонтальных связей по верхним поясам ферм. При прогонном варианте покрытия устой­чивость верхних поясов ферм, распо­ложенных в промежутках между дву­мя поперечными связевыми фермами, обеспечивают прогонами, а над участ­ками под фонарями — специальными растяжками из уголков.

Вертикальные связи в покрытии служат опорами для поперечных гори­зонтальных связевых ферм и гаранти­руют правильность взаимного распо­ложения в вертикальной плоскости стропильных ферм при монтаже.

Покрытие. Совмещают в себе функции перекрытия и крыши; бесчердачные; из несущих и ограждающих элементов.

3. Плоские: балки, фермы, рамы, арки.

4. Пространственные: оболочки, складки, купола, своды, висячие системы


Стены промышленных зданий. Конструктивные схемы. Типы. Воздействия на стены. Требования к ним.

Стены производственных зданий по сравнению со стенами гражданских зданий подвергнуты более сложному комплексу внешних и внутренних сило­вых и несиловых воздействий (рис. 27.1). Поэтому к конструктивному ре­шению стен промышленных зданий предъявляются не только общие тре­бования, но и требования, свойствен­ные в каждом отдельном случае характеру технологического процесса.

Наружные стены совместно с покрытиями защищают внутреннее пространство зданий от различных внешних воздействий, зависящих от конкретно заданного климатического района строительства.


Температурно-влажностный режим внутренней среды производственных помещений и климатические условия района строительства — решающие исходные данные, на основе которых устанавливают необходимую величину сопротивления теплопередаче стен.

В зависимости от конструктивной схемы здания и по роду статической работы стены подразделяют на несу­щие, самонесущие и навесные.

Несущие стены воспринимают нагрузки от собственной массы, по­крытий, перекрытий и в ряде случаев от подъем но-транспортного оборудо­вания. В промышленном строительст­ве несущие стены применяют редко, для их устройства используют кирпич, крупные и мелкие блоки и др. ^ ^Самонесущие стены воспринимают

нагрузки от собственной массы, ветра и передают их на каркас при помощи гибких или скользящих связей, не препятствующих осадке стен. Само­несущие стены выполняют в виде крупных панелей или блоков и камен­ных материалов; первое решение — более индустриальное, а следователь­но, более рациональное и предпочти­тельное.

Навесные стены воспринимают нагрузки от собственной массы и ветровые нагрузки в пределах только одного этажа при многоэтажных зданиях или в пределах одного шага(одной панели) в одноэтажных каркасных зданиях. Эти стены выполняют в основном функции ограждающих конструкций, так как свою массу они передают на каркас через опорные стальные столики или через обвязочные балки Навесные стеновые панели изго­товляют из легких материалов, благо­даря чему не требуется дополнитель­ного усиления колонн каркаса. Этому требованию в большей мере отвечают многослойные панельные конструкции и листовые материалы.

Для предохранения стен от про­никания грунтовой влаги в их нижней части устраивают гидроизоляцию из рулонных материалов или из цемент­ного раствора. Гидроизоляционный слой укладывают между фундамент­ными балками, на которые опирают стены, и нижней частью стен на отметке 0,03, т. е. на 30 мм ниже уров­ня пола. Дождевые и талые воды отводят от стен путем устройства отмостки.

Стены из крупных панелей

Применяются в виду экономичности строительства(полная заводская готовность) и сокращения сроков строительства. Различают однослойные и трехслойные конструкции панелей. Однослойные: имеют внутренний и наружный отделочный слой и армированный средний слой из легкого ячеистого бетона. Трехслойные: внутр. и наруж. отделочный слой, снаружи внутрь – слой из легкого бетона, эффективный утеплитель (пенополистирол), слой тяжелого бетона. Виды панелей: цокольная(1,2м), рядовые(h=1,2, 1,5, 1,8м L=6;12м), угловые (h=1,2, 1,5, 1,8м L=6,33;12,33м), перемычечные, парапетные(h=0.9м), карнизные(h=1,5м), простеночные(l=1.2м). Толщина стен 200,240,300,350,400мм. Стеновые панели опирают на фундаментные балки, последующие панели подвешивают при помощи закладных деталей к колоннам(фахверкам)

Стены из кирпича и крупных блоков.

В строительстве пром.зд применяются реже и в основном для отдельностоящих пром.зд.

Стены из кирпича. Толщина стен рассчитываются исходя я теплотехнического расчета и среднем составляет 250-510мм. Для усиления стен применяются вертикальные элементы - пилястры, выступы, повышающие жесткость конструкций, если на стены оприаются конструкции покрытия. Самонесущие стены выносят за наруж. грань колонн каркаса. В качестве надпроемных перемычек используются обвязочные балки. Связь стен и колонн осуществляется с помощью анкером и клямеров через каждые 1,2-2,4м

Стены из крупных блоков изготавливаются из легкого ячеистого бетона. Толщина стен – 300,400,500мм. Габариты блокоа Lxh: рядовые 1000(3000)х600(1200), угловые 1300(2250)х600(1200), перемычечные 3500(6000)х600, парапетные 1000(3000)х600, карнизные1000(3000)х600. Длина блока кратна 50М(500мм). Укладывают с перевязкой и расшивкой швов.

Ограждающие элементы покрытий промышленных зданий. Воздействия на покрытие. Требования, предъявляемые к ним, материалы.

К ограждающим конструкциям предъявляются след.требования:

· Хорошие изоляционные качества

· Пожаро- и вызрывобезопасность

· Долговечность и корр.стойкость

· Индустриальность и экономичность в строительстве и эксплуатационных условий.

1. По наличию чердака: бесчердачные с тех.этажом

2. По водоотводу: внутренний, наружный

3.
По конструктивному решению: прогонная, беспрогонная

4. По утепляющим качествам покрытия: утепленные, холодные

На выбор ограждающих конструкций влияет комплекс внутр и внешних воздействий.

Основные типы конструкций:

1. Утепленные с несущими ж.б плитами

2. Утепленные с несущими конструкциями из металла(прогонами)


3. неутепленные с несущими ж.б плитами

4. неутепленные с несущими конструкциями из металла(прогонами).

Состав покрытия для пункта 1-2: несущая конструкция(плиты или прогоны), пароизоляция, теплоизоляция, стяжка ЦПР, кровля. Состав покрытия для пункта 3-4: несущая конструкция, стяжка, кровля. Плиты имеют габариты: ширина 1,5м, 3м, длина 6м, 12м, высота 0,3м. прогоны – швеллера №14,16,18,20, длиной 6м, 12м. По прогонам устраиваются зачастую: проф.настил, трехслойные панели с мет.обшивками, асбестоцем.плиты, монопанели, оцинкованный стальной лист.

Стальной каркас одноэтажных промышленных зданий

Колонны постоянного сечения для зданий, необорудованных мостовыми кранами выполняются из прокатных или сварных двутавроав. Их параметры. Стальная база колонны, её элементы и их сопряжения.

Колонны для зданий, оборудованных мостовыми кранами могут быть одноветвевые и сквозные. Консоли колонн представляют собой комбинацию стальных пластин или выполняется из прокатных или сварных двутавров. Ветви в сквозных колоннах соединяются двухплоскостной решеткой из уголков.


Рис.7.1 Стальные колонны одноэтажного промышленого здания.


Рис.7.2 Базы стальных колонн одноэтажного промышленого здания.

Стальные подкрановые балки выполняются из прокатных или сварных из двутавров.


Рис.7.3 Стальные подкрановые балки.

Жесткость балки обеспечивается ребрами жесткости, расположенными на расстоянии 1000 мм (для балок пролетом 12 м) и 1500 мм (для балок пролетом 6000 м). Ребра жесткости не доводятся до нижней полки на 60 мм для того чтобы нижняя растянутая полка не была разрезана сварными швами и не потеряла свою несущую способность. По торцам балок имеются опорные стальные пластины с отверстиями для болтовых соединений торцов балок на консоли колонны.

Пространственная жесткость и устойчивость стального каркаса обеспечивается вертикальными и горизонтальными связями о которых было упомянутых выше.

Вертикальные связи по стальным колоннам.

Этажерки

Применяются, когда для некоторых производств технологическое оборудование частично или полностью может располагаться вне здания, т.е. на открытых площадках.

Они могут располагаться и внутри здания павильонного типа при наличии вертикального локального технологического процесса.

По расположению – внутренние и наружные;

По этажности – низкие до 4-5 этажей, и высокие более 5 этажей;

По способу возведения – стационарные и сборно-разборные;

По материалу каркаса – сборные железобетонные, монолитные железобетонные, стальные.

Объемно-планировочные параметры этажерок: сетка колонн 6×6 м; 6×4,5 м; 6×9 м; 4,5×9 и др. высота этажа первого 4,8 – 7,2 м, остальных 4,8 м.

Элементы каркаса: колонны, ригели перекрытий, настилы перекрытий, вертикальные связи. Колонны выполняются из прокатных или сварных двутавров, ригели – прокатные двутавры или швеллеры, перекрытия – сборные желзобетонные плиты или стальные листы. Сборно-разборные этажерки выполняют с соединением элементов на болтах. Стальные этажерки могут быть по этажности низкие до 4-5 этажей и высокие более 5 этажей (могут быть высотой до 100 м).

Железобетонные этажерки выполняют, если применение ж/б каркаса дает снижение стоимости строительства. Недостатки ж/б этажерок – увеличение массы конструкций, сложность сопряжения узлов и крепления технологического оборудования к этажерке. Максимальная высота ж/б этажерки 18 м.

Достоинства применения внутренних этажерок:

1. Снижение себестоимости строительства за счет отсутствия наружных ограждающих конструкций;

2. Максимальная унификация конструктивных элементов;

3. Увеличение производственной площади, занятой технологическим оборудованием;

4. Универсальность и максимальная приспособляемость к технологическим процессам.

Достоинства применения наружных открытых этажерок:

1. Снижение стоимости на 10-15 %;

2. Сокращение сроков строительства;

3. Сокращение сроков монтажа оборудования;

4. Создание условий для рационального расположения оборудования на сложном рельефе местности;

5. Снижение эксплуатационных расходов;

6. Снижение пожаро-взрывоопасности;

7. Облегчение конструкции;

8. Легкий доступ к очагам пожара.

Недостатки: необходимость защиты от коррозии, утепление технологического оборудования в зимнее время.

Читайте также: