Металлы в природе доклад

Обновлено: 04.10.2024

Из всех химических элементов в природе найдено 88; такие элементы, как технеций Tc (порядковый номер 43), прометий Pm (61), астат At (85) и франций Fr (87), а также все элементы, следующие за ураном U (порядковый номер 92), впервые получены искусственно. Некоторые из них в исчезающе малых количествах обнаружены в природе.

Из химических элементов наиболее распространены в земной коре кислород и кремний. Эти элементы, вместе с алюминием, железом, кальцием, натрием, калием, магнием, водородом и титаном, составляют более 99 % массы земной оболочки, так что на остальные элементы приходится менее 1 %. В морской воде, помимо кислорода и водорода — составных частей самой воды, высокое содержание имеют такие элементы, как хлор, натрий, магний, сера, калий, бром и углерод. Массовое содержание элемента в земной коре называется кларковым числом или кларком элемента.

Содержание элементов в коре Земли отличается от содержания элементов в Земле, взятой как целое, поскольку химические составы коры, мантии и ядра Земли различны. Так, ядро состоит в основном из железа и никеля. В свою очередь, содержания элементов в Солнечной системе и в целом во Вселенной также отличаются от земных. Наиболее распространённым элементом во Вселенной является водород, за ним идёт гелий. Исследование относительных распространённостей химических элементов и их изотопов в космосе является важным источником информации о процессах нуклеосинтеза и об эволюции Солнечной системы и небесных тел.

Распространённость химических элементов в земной коре

Углерод — основной элемент жизни — содержится в атмосфере в виде диоксида углерода. В океане и пресных водах Земли углерод находится в двух главных формах: в составе органического вещества и в составе взаимосвязанных неорганических частиц: гидрокарбонат-иона, карбонат иона и растворенного диоксида углерода СО2. Большое количество углерода сосредоточено в виде органических соединений в животных и растениях. Много «неживого» органического вещества имеется в почве. Углерод литосферы содержится также в карбонатных минералах (известняк, доломит, мел, мрамор).

Межпредметные связи в курсе школьного предмета химии на предмете .

. активен. Рассмотрим некоторые реакции. 1. Оксид углерода (IV) – кислотный оксид, ему . тепловых лучей углекислым газом. От этого климат Земли резко утеплился (“Парниковый эффект”, глава “География”). 2.4 Химические свойства углекислого газа Оксид углерода (IV) химически довольно .

Часть углерода входит в состав нефти, каменного угля и природного газа. Самыми крупными резервуарами углерода являются морские отложения и осадочные породы на суше. Однако бoльшая часть этого вещества не взаимодействует с атмосферой, а подвергается круговороту через твердую часть Земли в геологических временных масштабах. Поэтому эти резервуары играют лишь второстепенную роль в сравнительно быстром цикле углерода, протекающем с участием атмосферы. Следующим по величине резервуаром является морская вода. Но и здесь глубинная часть океанов, где содержится основное количество углерода, не взаимодействует с атмосферой так быстро, как их поверхность. Самыми маленькими резервуарами являются биосфера суши и атмосфера. Именно небольшой размер последнего резервуара делает его чувствительным даже к незначительным изменениям процентного содержания углерода в других (больших) резервуарах, например, при сжигании ископаемых топлив.

Кислород на Земле содержится, в основном, в литосфере в виде диоксида кремния и силикатов. Кроме того, кислород есть в составе воды, образующей гидросферу. В атмосфере кислород находится в молекулярном виде. Он является продуктом процессов жизнедеятельности растений и в то же время одним из основных условий существования жизни на Земле. Образование свободного кислорода связано со световой энергией Солнца. Исходным сырьем для образования кислорода служит вода. Почти весь свободный кислород на Земле — это результат реакции фотосинтеза органического вещества из воды и диоксида углерода. Некоторое количество кислорода образуется при разложении воды в верхних слоях атмосферы. Кислород входит в состав многих органических соединений. Между живыми организмами и атмосферой происходит постоянный обмен кислородом. Несмотря на выделение кислорода зелеными растениями, его содержание в атмосфере не увеличивается. Одновременно с фотосинтезом происходит разложение органического вещества, при этом поглощается практически весь выделившийся кислород. Часть кислорода расходуется на окисление неорганических веществ. Незначительное количество атмосферного кислорода участвует в цикле образования и разрушения озона.

Водород на Земле находится, преимущественно, в гидросфере в составе воды. Содержание его в литосфере и атмосфере сравнительно невелико. Он входит также в состав органических веществ. Огромные массы водорода, наряду с кислородом, участвуют в круговороте воды — одном из наиболее мощных циклических процессов на планете. Особенностью водорода является его способность (наряду с гелием) уходить из поля тяготения Земли благодаря своей малой атомной массе. Эти потери компенсируются выделением водорода из мантии. Молекулярный водород поступает в атмосферу Земли в результате вулканической деятельности, его выделяют также некоторые бактерии. После появления на нашей планете живых организмов водород стал связываться в органическом веществе.

Азот, вследствие исключительной прочности молекулы N2, почти полностью сосредоточен в атмосфере. Часть газообразного азота растворена в природных водах, которые содержат и растворенные азотсодержащие органические вещества и неорганические ионы: катион аммония, нитрит-ион и нитрат-ион. Поскольку азот не образует нерастворимых солей, он только в редких случаях накапливается в литосфере. Так, в южноамериканской пустыне Атакама есть скопления нитрата натрия, который, несмотря на высокую растворимость в воде, сохраняется благодаря исключительно сухому климату. Слово «азот» буквально означает «безжизненный», поскольку он не поддерживает дыхание. Однако этот элемент является обязательной составной частью белков. Поэтому азот в значительном количестве содержится в живых организмах и «мертвом» органическом веществе. Азот непрерывно перемещается между атмосферой, океаном, живыми организмами и почвой. В атмосфере под действием электрических разрядов азот переходит сначала в монооксид азота, а затем в диоксид азота. Влага воздуха и кислород превращают диоксид азота в азотную кислоту. Соединения азота попадают в атмосферу с выбросами промышленных предприятий и транспорта, а в природные воды — с бытовыми и промышленными отходами. Слишком большое количество растворимых соединений азота в почве приводит к росту их содержания в продуктах питания и питьевой воде, это может стать причиной серьезных заболеваний. Соединения азота накапливаются в водоемах и вызывают зарастание озер и водохранилищ. Пока подобные явления наблюдаются лишь в отдельных районах, где в окружающую среду попадает много соединений азота. В целом же природа пока справляется с тем количеством связанного азота, которое производится человеком.

По естествознанию «Атмосфера Земли»

. воздуха выполняет в географической оболочке определенные функции. Свободный кислород обеспечивает дыхание и горение. Кислород атмосферы в основном имеет биогенного происхождения – фотосинтетический. Азот , химически мало активен, . двуокиси углерода, содержащейся в воздухе, и в то же время – место обитания водорослей вносящих большой вклад в снабжение атмосферы кислородом. 4). Атмосфера в своем .

Сера содержится в атмосфере в небольших количествах, в основном, в виде сероводорода и диоксида серы. Довольно много этого элемента (в виде сульфат-ионов) находится в гидросфере. В литосфере сера встречается в виде простого вещества (самородная сера) и в составе многочисленных минералов — сульфидов и сульфатов металлов. Кроме того, соединения серы есть в углях, сланцах, нефти, природном газе. Сера входит в состав многих белков, поэтому она всегда содержится в организмах животных и растений. Выделяясь из глубин Земли, газообразные соединения серы (преимущественно диоксид серы и сероводород) растворяются в подземных водах. Здесь они образуют малорастворимые сульфиды (главным образом пирит — дисульфид железа) и сульфаты (в частности, сульфат кальция).

Малорастворимые сульфиды, содержащиеся в горных породах, в результате жизнедеятельности некоторых бактерий частично окисляются, превращаясь в легко растворимые сульфаты. Водорастворимые сульфаты выносятся с поверхности суши с речным стоком, поставляя сульфат-ионы в Мировой океан. В результате активного связывания серы в земной коре, гидросфере и живых организмах, содержание сероводорода и диоксида серы в атмосфере мало и непостоянно.

Фосфор содержится в земной коре и живых организмах в небольших количествах; тем не менее, он имеет очень большое значение для растений и животных. Без этого элемента невозможен синтез белков. Кроме того, фосфор входит в состав костей и зубов. Именно недостаточное количество фосфора чаще всего ограничивает рост массы живого вещества. Значительная часть фосфора содержится в почвах. Фосфор образует многочисленные минералы (например, фосфориты), однако они не часто встречаются в горных породах в больших количествах. В атмосфере фосфор практически отсутствует. В природных водах фосфор присутствует в составе органических соединений и взвешенных твердых частиц. Лишь небольшая его часть находится в растворе в виде ортофосфат-иона и гидроортофосфат-иона. В океане «органический» фосфор многократно переходит от одного живого организма к другому и медленно накапливается в донных отложениях в виде малорастворимых фосфатов. Эти потери фосфора компенсируются только из одного источника — выветривающихся горных пород суши, куда они попадают со дна океанов в результате длительных геологических процессов.

Понятие, виды и элементы договора хранения

. (§ 2 главы 47 ГК) и специальным видам хранения (§ 3 главы 47 ГК). 1. Понятие, виды и элементы договора хранения По договору хранения одна сторона (хранитель) обязуется хранить вещь, переданную . выделяет несколько разновидностей договора хранения, знание которых помогает лучше уяснить природу установленных законом правил о хранении. Не вдаваясь в подробный анализ отдельных видов договора, так как .

Натрий — один из главных элементов, аккумулированных в земной коре в процессе ее выплавления. Он легко освобождается из структур силикатов при выветривании кристаллических пород. Катион Na+ переносится с континентальным стоком в океан. С «солеными ветрами» натрий частично возвращается на сушу. Существенно меньшее количество элемента выносится с поверхности суши в океан с ветровой пылью. Натрий постоянно присутствует в почвах. Он принимает активное участие в засолении почв, в которых образует соли с хлорид- и сульфат-ионами.

Хлор, в отличие от натрия, содержится в гранитном слое в небольших количествах. Он вовлекается в круговорот не за счет разрушения горных пород, а благодаря процессам дегазации мантии и выносу вулканических газов. Этот элемент перемещается между оболочками Земли параллельно с натрием. Он аккумулируется в океанской воде в форме хлорид-ионов. Значительные массы хлора, так же как и натрия, многие миллионы лет мигрируют с поверхности суши в Мировой океан. Вторая особенность глобального геохимического цикла хлора, выраженная еще более сильно, чем в цикле натрия — активная миграция в атмосфере в составе аэрозолей и возврат значительных масс этого элемента на сушу. На территориях, где отсутствуют стоки, хлор вместе с натрием накапливается в почве и замкнутых водоемах.

Кальций относится к главным элементам земной коры. Содержание этого элемента уменьшается от глубин Земли к гранитному слою литосферы. Кальций в земной коре образует многочисленные минералы. При выветривании силикатов освобождается большое количество этого элемента. Его водорастворимые соединения, главным образом гидрокарбонат, поступают в природные воды и мигрируют с ними в океан. Хотя этот процесс развивается на протяжении более 2 млрд. лет, концентрация элемента в океанической воде всего лишь в 30 раз больше, чем в речных водах. Это обусловлено низкой растворимостью карбоната кальция, а главное — активным поглощением элемента планктонными организмами и выведением его в осадок. Данные процессы способствуют накоплению кальция в составе мощных толщ известняков, доломитов, известковых глин.

Калий вместе с другими щелочными и щелочно-земельными химическими элементами аккумулировался в земной коре в процессе ее выплавления. Калий входит в состав наиболее распространенных силикатов. При их разрушении этот элемент, в основном, переходит в глинистые минералы. В то же время он частично высвобождается и вовлекается в водную миграцию. Ионы калия активно абсорбируются дисперсным минеральным веществом, а также поглощаются высшими растениями, поэтому калий более прочно удерживается в пределах суши, чем кальций и натрий. В океан некоторое количество калия выносится в виде ионов, однако большая масса элемента переносится в форме взвесей глинистых частиц. Калий активно мигрирует в системе поверхность океана — атмосфера — поверхность океана в составе аэрозолей.

Гальванические элементы

. при зарядке аккумулятор работает как электролизер, а при разрядке – как гальванический элемент. В упрощенном виде аккумулятор представляет собой два электрода (анод и катод) и ионный . сульфата свинца Pb2+ + SO42– = ↓PbSO4. Суммарная токообразующая реакция процесса разрядки аккумулятора: Pb + PbO2 + 2H2SO4 = 2PbSO4↓ + 2H2O, а схема работающего аккумулятора как гальванического элемента имеет вид (–) .

Кремний — второй (после кислорода) по массе элемент земной коры. Он интенсивно накапливался в веществе литосферы в процессах его выплавления. Кремний в виде высокодисперсного кремнезема (SiO2) повсеместно содержится в природных водах и используется многими морскими организмами для построения скелета. Биологический круговорот кремния в океане обусловлен преимущественно жизнедеятельностью диатомовых и радиоляриевых планктонных водорослей и последующим растворением их скелетов. Для водной миграции кремния характерно преобладающее движение от суши к океану, которое не компенсируется в обратном направлении. Значительное количество кремния перемещается в виде растворимых соединений, однако в составе обломочного материала его выносится во много раз больше.

Свинец накапливается в земной коре не только за счет выплавления его из вещества мантии, но и в результате радиоактивного распада изотопов урана (238U, 235U) и тория (232Th).

При выветривании горных пород катионы свинца высвобождаются, большая часть их сорбируется высокодисперсными глинистыми частицами и гидроксидами железа, а меньшая поступает в грунтовые воды. В составе взвесей, а также в виде органических соединений, простых и комплексных ионов свинец выносится с речным стоком и осаждается преимущественно в дельтах и узкой прибрежной полосе шельфа. Небольшое количество свинца, попадающее в океан, выпадает в осадок благодаря биофильтрации морской воды организмами планктона. Таким образом, Мировой океан — глобальный аккумулятор растворимых форм свинца.

Цинк обычно сопутствует свинцу в земной коре, однако биосферная геохимия этих элементов существенно различается. В отличие от свинца, цинк — один из главных микроэлементов, он входит в состав многих ферментов, участвует в синтезе рибонуклеиновых кислот и хлорофилла. Большая часть цинка в растениях связана с легко разрушающимися тканями и быстро удаляется из растительных остатков (в отличие от свинца, который прочно фиксирован в растительных остатках).

Водорастворимые формы цинка составляют очень небольшую часть от общей массы металла, однако они активно вовлекаются в водную миграцию. Цинк активно участвует в массообмене между сушей и атмосферой. С атмосферными осадками на поверхность суши водорорастворимых форм цинка выпадает значительно больше, чем захватывается ветром в атмосферу в виде минеральной пыли.

1)Ревель П., Ревель Ч. Среда нашего обитания. В четырех книгах (перевод с англ.).

2)Добровольский В.В. Основы биогеохимии. Учеб. пособие для геогр., биол., геол., с.-х. спец. вузов. М., Высш. шк., 1998

3)Андруз Дж., Бримблекумб П., Джикелз Т., Лисс П. Введение в химию окружающей среды (перевод с англ.).

Примеры похожих учебных работ

Нефтегазоносные бассейны краевых частей платформ

. своей работе «Некоторые за­кономерности нефте-газонакопления на платформах» приводит такое определение: «Нефтегазоносной про­винцией называется . М. Губкиным. В своей работе «О генезисе нефтяных месторождений Северного Кавказа» И. М. Губкин в качестве .

Артезианские воды

. Если, благодаря скважине или колодцу, два водоносных горизонта сообщаются, то при обращенном рельефе артезианские воды . в восточной части Австралии. 1.2 Структура артезианского бассейна Артезианский бассейн – это бассейн подземных вод, приуроченный .

Промышленные воды

. Ж -- кремнистые термальные. Минеральные лечебные воды подразделяются на воды для внутреннего (питьевые) а наружного . поликомпонентны. Примером является азотная термальная минеральная вода Ходжа-Обигарм в Гиссарском хребте Тянь-Шаня: минерализация .

Вода и ее применение в современных технологиях

. ­рона (рис.2). Плотность. Несмотря на то что вода — вещество, принятое в качестве эталона меры плотности, объема . тем выше как ученый стоит в ряду своих коллег. Автор обращает также внимание на то, что без воздуха жизнь возможна (анаэробы), а без воды .

Роль подземных вод в формировании и разрушении залежей нефти и газа

. разными классами подземных вод. Каждый бассейн пластовых вод венчается геогидродинамической системой безнапорных (грунтовых) вод. Глубже по разрезу бассейна пластовых вод довольно часто залегают безнапорные пластовые воды (со свободным зеркалом .

Вода, которую мы пьем

. в контакте с водой принимают коллоидную форму, поэтому вода, которая сама по себе не имеет никакой питательной . Кавендиша о том, что при сгорании горючего воздуха (водорода) образуется вода, подтвердилась: полученная жидкость, исследованная по всем .

  • Технологии и технологи
  • Инженерные сети и оборудование
  • Промышленность
  • Промышленный маркетинг и менеджмент
  • Технологические машины и оборудование
  • Автоматизация технологических процессов
  • Машиностроение
  • Нефтегазовое дело
  • Процессы и аппараты
  • Управление качеством
  • Автоматика и управление
  • Металлургия
  • Приборостроение и оптотехника
  • Стандартизация
  • Холодильная техника
  • Архитектура
  • Строительство
  • Метрология
  • Производство
  • Производственный маркетинг и менеджмент
  • Текстильная промышленность
  • Энергетическое машиностроение
  • Авиационная техника
  • Ракетно-космическая техника
  • Морская техника

Все документы на сайте представлены в ознакомительных и учебных целях.
Вы можете цитировать материалы с сайта с указанием ссылки на источник.

Характеристика и свойства металлов (химия, 9 класс)

Большинство химических элементов относится к металлам (химия, 9 класс). Под этим материалом подразумеваются простые вещества, наделенные определенным комплексом свойств: кристаллическая структура, блеск, высокая теплопроводность и электропроводимость, а также ее зависимость от нагрева, способность легко отдавать электроны, ковкость, тягучесть, склонность к образованию сплавов.

Металл

Общая характеристика

В атомах металлов наружные электроны удерживаются довольно слабо (если сравнивать с другими, неметаллическими, элементами). В химических реакциях металлы обычно выступают в качестве восстановителей — это объясняется тем, что они имеют низкую степень ионизации.

Для металлов и их сплавов характерна металлическая связь, то есть та, что возникает за счет перекрытия валентных электронов. Это дает возможность осуществлять взаимные атомные смещения без нарушения кристаллической решетки (это объясняет тот факт, что эти вещества более пластичные по сравнению с неметаллами).

Типы металлов

Современная периодическая система насчитывает 118 элементов (правда, часть из них до сих пор не признана), и большая часть из них именно металлы. В свою очередь, они делятся на «подвиды»:

  • Щелочные (примером таких выступают натрий Na, калий K, цезий Cs, франций Fr и прочие).
  • Щелочноземельные — кальций Ca, стронций Sr, барий Ba.
  • Переходные — медь Cu, серебро Ag, золото Au. Эта группа — самая многочисленная, она насчитывает 38 веществ.
  • Легкие — алюминий Al, олово Sn, титан Ti.
  • Полуметаллы — кремний (Si), бор (B), мышьяк (As), сурьма (Sb).
  • Лантаноиды — лантан (La), лютеций (Lu), скандий, иттрий.
  • Актиноиды (они до конца не изучены) — торий, плутоний, уран, нептуний.

Примечательно, что такие элементы, как магний и бериллий, нельзя отнести ни к одной из групп — их свойства отличаются от характеристик прочих металлов. Например, при нормальных условиях они устойчивы к воздействию воды и воздуха, потому что имею тончайшую оксидную пленку по всей своей поверхности.

Большинство металлов при нормальных условиях находятся в твердом состоянии. Но бывают исключения: например, ртуть и франций (условно) при комнатной температуре и обычном атмосферном давлении.

Твердость у всех элементов отлична. Температура плавления колеблется от -39°C (Hg) до 3410 °C (W). В зависимости от плотности они делятся на легкие (Li) и тяжелые (Os, Ir).

Нахождение в природе и получение

Металлы

Металлы (общая формула записывается как Me) могут присутствовать в природе как самородки. Это характерно для тех, что практически не окисляются на воздухе (пример: платина, золото, серебро, реже — ртуть и медь).

Они могут встречаться в самородном состоянии и как вкрапления в различных минералах. Но вот большие «куски» (самородки) образуют нечасто.

Активные Me в природе находятся в виде солей (нитраты, карбонаты, сульфаты, хлориды), оксидов. Минералы входят в состав руд и горных пород.

В промышленности Me получают восстановлением соответствующих руд. Один из основных методов получения Me — флотация (определенный способ обогащения руд, основанный на способности минералов удерживаться на межфазовой поверхности). В этом случае руду, содержащую необходимые элементы, переводят в определенную (единую) форму: например, в оксид: 4FeS2 + 11O2 → 2Fe2O3 + 8SO2. Полученные окислы затем восстанавливают. Сделать это возможно несколькими способами:

Медь

  • Металлотермия — восстановление элемента другим, более активным (с точки зрения химии): Cr2O3 + 2Al → 2Al2O3 + 2Cr; CuO + C → Cu + CO.
  • Термическое разложение. Fe (CO)5 (пентакарбонилжелезо)→ Fe + 5CO. Такой способ применяется, если нужно получить высокочистый элемент.
  • Электролиз. Используется для получения щелочных металлов: 2NaCL → 2Na + Cl2; 2LiCl → 2Li + Cl2.
  • Вытеснение более активным металлом менее активного из раствора соли. CuSO4 + Fe → FeSO4 + Cu.

Железо и его сплавы называют черными металлами, а медь, цинк, олово, свинец и прочие — цветными. Какие у них отличия: первая группа используется в основном для изготовления чугуна и стали, а вторая более универсальна в использовании, меньше подвержены коррозии, и более «податливы» к обработке.

Химические особенности

Все Me в свободном состоянии — восстановители, их степени окисления имеют положительное значение. Химическая активность этих веществ зависит от двух величин: электродного потенциала и энергии ионизации (в таблице Менделеева это значение увеличивается слева направо). Типичные реакции:

Химия

  • Взаимодействие с хлором и фтором: Cu + Cl2 → CuCl2.
  • Окисление кислородом (протекает не слишком энергично): 4Li + O2 → 2Li2O; K + O2 → KO2 (название этого соединения — надпероксид калия).
  • С серой протекают только при повышенных температурах: Fe + S → FeS. Золото и платина в подобных реакциях не участвуют.
  • Участие водорода приводит к образованию гидридов: Mg + H2 → MgH2; 2Na + H2 → 2NaH.
  • С углеродом взаимодействуют только активные металлы. 2Na + 2C → Na2C2 (ацетиленид натрия); Na2C2 + 2H2O → 2NaOH + C2H2 (ацетилен). 4Al + 3C → Al4C3 (метанид алюминия); Al4C3 + 12H2O → 3CH4 (метан) + 4Al (OH)3.
  • Реакции замещения с кислотами. В этом случае все будет зависеть от того, какая активность у элемента. Например: Zn + H2SO4 (разб) → ZnSO4 + H2; Zn + H2SO4 (конц) → ZnSO4 + S + H2O.
  • Вода будет давать реакцию по такой схеме: 2Na + 2H2O → 2NaOH + H2.
  • Возможны реакции с растворами солей: Fe + CuSO4 → FeSO4 + Cu.

Кроме того, металлы способны образовывать комплексы. Это происходит за счет наличия свободных электронных орбиталей.

Способность к комплексообразованию зависит от величины заряда и его радиуса: чем выше первый показатель и ниже второй, тем сильнее способность.

Названия таких соединений подчиняются определенной структуре: сначала указывается наименование аниона, а затем — катиона, из которых состоит вещество. Например: [Li (H2O)4]NO3 — нитрат тетрааквалития.

Образование сплавов

Если соединить несколько металлических (металых) компонентов в один, то можно получить материал, способный «перещеголять» по своим свойствам исходные материалы. Согласно определению, сплавы — это однородный продукт, состоящий из нескольких химических элементов с преобладанием металлических ингредиентов. Получают их при смешивании расплавленных Me. Различают такие виды:

  • Механические — это смесь мельчайших кристаллов компонентов, входящих в сплав.
  • Твердые — в этом случае в узлах кристаллической решетки находятся атомы сплавленных элементов.
  • Интерметаллические — материалы, полученные «растворением» элементов друг в друге.

Сплавы

Примечательно, что сплавы бывают не только состоящие исключительно из металлов — в них часто присутствуют и неметаллические вещества. При этом они могут не просто смешиваться механически, но и образовывать атомные соединения. Такие сплавы будут значительно отличаться по своим физическим и химическим свойствам от элементов-исходников. Кроме того, существует возможность заранее задавать свойства, которыми будет обладать полученный материал:

Получение Сплавов

Чугун

  • Чугун — сплав Fe с C, в котором присутствуют легирующие добавки. Используется для изготовления деталей, различных предметов в тяжелой промышленности (машиностроение, автомобилестроительная индустрия и прочие).
  • Латунь — медь + цинк. Материал устойчив к коррозии, легко сваривается со сталью. Благодаря своему цвету (золотистый) широко применяется для изготовления фурнитуры, художественных изделий.
  • Амальгама — металлическая смесь, содержащая ртуть. Применяется для золочения металлсодержащих изделий, в производстве зеркал, люминесцентных ламп.
  • Сталь — смесь железа с углеродом (но второго компонента меньше, чем в чугуне — всего до 1,8%), также с использованием легирующих добавок, в качестве которых используются Ni, P, Si, Mn, и некоторые другие. Используется для изготовления различных инструментов (слесарных, столярных), в строительстве, судоремонтной и авиационной промышленности.
  • Мельхиор — медь и никель. Применяется для изготовления посуды, бюджетных ювелирных и художественных изделий.
  • Бронза — медь, олово и легирующие добавки. Используется в машиностроении, ракетостроении, авиационной индустрии, для изготовления художественных изделий и прочего.
  • Дюралюминий (дюраль) — сплав Al + Cu + Mg + Mn. Используется в авиастроении, производстве скоростных поездов, и прочих отраслях машиностроения.

Современные технологии нуждаются в тысячах «нестандартных» металлических материалов, обладающих определенным свойствами.

Поэтому изучение этих элементов, проведение опытов с различными сплавами, еще долгое время будет являться одним из приоритетных направлений науки и промышленности.

Роль металлов в современной жизни человека

Отрасли хозяйства, в которых широко применяется металл. Виды металлопроката: цветной, черный и нержавеющий. Строительство как важнейшая сфера использования металла. Роль и место металла и металлических конструкций в современном социальном коллективе.

Рубрика Производство и технологии
Вид доклад
Язык русский
Дата добавления 26.02.2012
Размер файла 13,1 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Роль металлов в современной жизни человека

Современную жизнь невозможно представить без металла. Он используется в промышленности, в машиностроении, других отраслях хозяйства, а также в быту. Это и автомобили, и самолеты, и оборудование для кафе, и строительные материалы.

Металлопрокат делится на цветной, черный и нержавеющий. Цветной металлопрокат используется в большей степени для изготовления электро-технического оборудования, подъемно-кранового оборудования, в химической промышленности. Черный прокат получил широкое распространение в строительстве при возведении многоэтажных конструкций, в машиностроении, как и нержавеющий металлопрокат, который, кроме всего прочего, используется при изготовлении кровли и производстве водопроводных труб.

На протяжении многих веков металл является верным спутником человечества в его развитии, начиная с изготовления самых примитивных орудий труда. Уровень развития современного производства дает возможность повысить качество изделий из металлопроката и расширить сферу его применения. Металлопрокат используется в различных отраслях промышленности, таких как строительство, производство всевозможных машин и агрегатов, самолетостроение, электротехническая промышленность и т. д.

Решение многих задач разных областей деятельности человека возможно благодаря неотъемлемому их элементу, которым является металл. Главная сфера использования металла - это строительство, где при помощи созданных из такого материала конструкций проводятся довольно-таки сложные работы. Сейчас функционирует много специализированных предприятий, предоставляющих производство разнообразных конструкций из металла. На текущий момент основным преимуществом заводов этого профиля считается наилучшее соотношение стоимости и качества конструкций из металла. Необходимо сказать, что основным вопросом при производстве металлических конструкций является вопрос качества, от него напрямую зависит надежность строящихся домов. Быстровозводимые металлоконструкции имеют массу преимуществ: они могут быть изготовлены в рекордно короткие сроки, довольно недороги, легко собираются, при правильном применении служат не менее 45 лет. Алюминиевый лист, оцинкованный профнастил и множество других изделий изготавливаются на заводах, и ассортимент продукции весьма широкий. При любых строительных действиях сегодня фактически невозможно обойтись без металлоизделий, будь то ремонт квартиры или строительство дома.

Человек быстро привыкает к хорошему, поэтому не замечает насколько сильно некоторые материалы вошли в нашу жизнь. Например, металлоконструкции и различные металлические изделия, металл окружает нас повсюду и трудно представить без него жизнь человечества. Особенно часто металл используется в машиностроении, автомобилестроении и строительстве, наряду с другими строительными материалами. Металл это очень прочный и крепкий материал, он способен выдерживать огромные механические нагрузки. В Транспорте металл обеспечивает комфорт и безопасность. Производство металлоконструкций в современном мире великолепно налажено. Металл используется практически во всех сферах человеческой жизни, он обеспечивает на безопасность, ведь именно из него сегодня изготавливаются двери, ключи, замки и ограды, которые защищают нас и наше имущество. Из металла изготавливают различные строительные материалы, например профлист или металлочерепица стоимость работ с такими материалами приемлемая. Металл сегодня не заменимый материал, он прочный, надежный, легкий, безопасный, изделия из металла еще и привлекательны с эстетической точки зрения, только металл терпит незначительную деформацию структуры при физическом воздействии на него. В последнее время особенную популярность приобрело изготовление металлоконструкций. Металлоконструкции стали востребованным строительным материалом, наряду с такими материалами, как кирпич цена которого немного ниже. Современные металлоконструкции позволяют в кротчайшие сроки возводить различные здания и сооружения, которые по своей надежности ни в чем не уступают монолитно бетонным зданиям. Такая отрасль промышленности, как сельское хозяйство вообще не может обойтись без применения металлических изделий.

металл человек строительство

В современном социальном коллективе металл и его разные виды играют если самую важную, то совсем объективно полезную роль. Нынче металл есть во всех видах нашего взаимодействия с природой. Даже в походах на природу мы используем посуду из металла для приготовления блюд. Люди научились делать металл истинно разным - текучим, жестким, твердым. В одном металле обычно находиться очень много различных характеристик. К металлам относят определенные вещества с одинаковыми характеристиками. Отличительными признаками металлических элементов является способность отлично проводить электрическое напряжение, высокая теплопроводность. Дополнительные свойства металлических элементов обычно уже разноплановые у отдельного вида.

Подобные документы

Наиболее значимые для человека свойства металлов. Место металла в культурном развитии человечества. Использование различных свойств металла современным человеком. Значение металлопроката в отраслях промышленности. Круг отрезной для резки металла.

презентация [8,7 M], добавлен 22.01.2014

Понятие металла, электронное строение и физико-химические свойства цветных и черных металлов. Характеристика железных, тугоплавких и урановых металлов. Описание редкоземельных, щелочных, легких, благородных и легкоплавких металлов, их использование.

реферат [25,4 K], добавлен 25.10.2014

Металл для прокатного производства. Подготовка металла к прокатке. Зачистка слитков, полуфабрикатов. Нагрев металла перед прокаткой. Прокатка металла. Схемы косой, продольной и поперечной прокатки. Контроль технологических операций охлаждения металла.

реферат [60,6 K], добавлен 04.02.2009

Особенности сгибания заготовок из тонколистового металла в тисках и при помощи оправок, поочередность всех операций, характеристика инструментов. Анализ типичных дефектов при гибке металла. Этапы гибки прямоугольной скобы и металла круглого сечения.

презентация [399,9 K], добавлен 16.04.2012

Физическая сущность пластической деформации. Общая характеристика факторов, влияющих на пластичность металла. Особенности процесса нагрева металла, определение основных параметров. Специфика использования и отличительные черты нагревательных устройств.

лекция [21,6 K], добавлен 21.04.2011

Параметры процесса кристаллизации, их влияние на величину зерна кристаллизующегося металла. Влияние явления наклепа на эксплуатационные свойства металла. Диаграмма состояния железо-цементит. Закалка металла, состав, свойства и применение бороволокнитов.

контрольная работа [79,3 K], добавлен 12.12.2011

Крупные изобретения конца XVIII в. в металлургии. Экономичность процесса производства прессованием профилей сложной формы и сечений. Упругая, пластическая и холодная деформация металла. Классификация методов обработки металлов давлением. Роль силы трения.

Реферат по химии на тему "Металлы и Металлургия"

Наиболее динамичный период развития человечества обусловлено открытием человеком металлов и их сплавов. В природе в чистом виде встречаются небольшое количество металлов, таких как: золото, серебро и медь. К тому же, золото и серебро являются драгоценными металлами и использовались в ювелирных целях и чеканки монет. В тоже время самородная медь необладала необходимыми прочностными характеристиками, что требовало нахождение других материалов. Выше указанные причины стимулировли человечество в поиске новых металлов. В процессе изучению окружающего мира человек осознал, что в рудах содержится другие металлы с более востребованными характеристиками столь необходимыми человечеству. В результате этого человечество вынуждено было находить способы получение металлов из руд. Поэтому появилась металлургия, что дало огромные возможности для развитию человечеству.

Металлургия— область науки и техники, охватывающая процессы получения металлов из руд или других материалов, а также процессы, связанные с изменением химического состава, структуры и свойств металлических сплавов. В первоначальном, узком значении — искусство извлечения металлов из руд. В настоящее время металлургия является также отраслью промышленности.

Металлы — группа элементов, в виде простых веществ, обладающих характерными металлическими свойствами, такими, как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность, ковкость и металлический блеск.

Во многих странах мира идет интенсивный научный поиск по применению различных микроорганизмов в металлургии, то есть применение биотехнологии (биовыщелачивание, биоокисление, биосорбция, биоосаждение и очистка растворов). К настоящему времени наибольшее применение биотехнические процессы нашли для извлечения таких цветных металлов, как медь, золото, цинк, уран, никель из сульфидного сырья. Особое значение имеет реальная возможность использования методов биотехнологии для глубокой очистки сточных вод металлургических производств.

К металлургии относятся:

производство металлов из природного сырья и других металлосодержащих продуктов;
получение сплавов;
обработка металлов в горячем и холодном состоянии;
сварка;
нанесение покрытий из металлов;
область материаловедения, изучающая физическое и химическое поведение металлов, интерметаллидов и сплавов.
К металлургии примыкает разработка, производство и эксплуатация машин, аппаратов, агрегатов, используемых в металлургической промышленности. На условной границе между металлургией и горным делом находятся процессы окускования (подготовка обогащённого сырья к дальнейшей пирометаллургической переработке). С точки зрения академической науки их относят к металлургическим дисциплинам. С металлургией тесно связаны коксохимия, производство огнеупорных материалов, и химия (когда речь идёт о металлургии редкоземельных металлов, например).

Распространение и сферы применения

Из наиболее ценных и важных для современной техники металлов лишь немногие содержатся в земной коре в больших количествах: алюминий (8,9 %), железо (4,65 %), магний (2,1 %), титан (0,63 %). Природные ресурсы некоторых весьма важных металлов измеряются сотыми и даже тысячными долями процента. Особенно бедна природа благородными и редкими металлами.

Производство и потребление металлов в мире постоянно растёт. За последние 20 лет ежегодное мировое потребление металлов и мировой металлофонд удвоились и составляют, соответственно, около 800 млн тонн и около 8 млрд тонн. Изготовленная с использованием черных и цветных металлов доля продукции в настоящее время составляет 72—74 % валового национального продукта государств. Металлы в XXI веке остаются основными конструкционными материалами, так как по своим свойствам, экономичности производства и потребления не имеют себе равных в большинстве сфер применения.

Из 800 млн т ежегодно потребляемых металлов более 90 % (750 млн т) приходится на сталь, около 3 % (20—22 млн т) на алюминий, 1,5 % (8—10 млн т) — медь, 5—6 млн т — цинк, 4—5 млн т — свинец (остальные — менее 1 млн т).

Масштабы производства таких цветных металлов, как алюминий, медь, цинк, свинец, измеряются в млн т/год; таких как магний, титан, никель, кобальт, молибден, вольфрам- в тыс. т, таких как селен,

теллур, золото, платина — в тоннах, таких как иридий, осмий и т. п. — в килограммах.

Благодаря своим физическим свойствам (твёрдость, высокая плотность, температура плавления, электропроводность, звукопроводность, внешний вид и другим) они находят применение в различных областях. Применение металлов зависит от их индивидуальных свойств:

Сплавы и их применение

В чистом виде металлы применяются незначительно. Гораздо большее применение находят сплавы металлов, так как они обладают особыми индивидуальными свойствами. Наиболее часто используются сплавы алюминия, хрома, меди, железа, магния, никеля, титана и цинка. Много усилий было уделено изучению сплавов железа и углерода. Обычная углеродистая сталь используется для создания дешёвых, высокопрочных изделий, когда вес и коррозия не критичны.

Нержавеющая или оцинкованная сталь используется, когда важно сопротивление коррозии. Алюминиевые и магниевые сплавы используются, когда требуются прочность и легкость.

Медно-никелевые сплавы (такие, как монель-металл) используются в коррозионно-агрессивных средах и для изготовления ненамагничиваемых изделий. Суперсплавы на основе никеля (например, инконель) используются при высоких температурах (турбонагнетатели, теплообменники и т. п.). При очень высоких температурах используются монокристаллические сплавы.

Взаимодействие металлов с простыми веществами

На внешнем электронном уровне у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители (то есть «отдают» свои электроны)

Реакции с простыми веществами

С кислородом реагируют все металлы, кроме золота и платиновых металлов. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды:


Чтобы получить из пероксида оксид, пероксид восстанавливают металлом: Со средними и малоактивными металлами реакция происходит при нагревании: С азотом реагируют только самые активные металлы, при комнатной температуре взаимодействует только литий, образуя нитриды: С серой реагируют все металлы, кроме золота и платины.
Железо взаимодействует с серой при нагревании, образуя сульфид:

С водородом реагируют металлы IA и IIA групп, кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1:

С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодействии с водой дают ацетилен, метаниды — метан.


Взаимодействие кислот с металлами

С кислотами металлы реагируют по-разному. Металлы, стоящие в электрохимическом ряду активности металлов (ЭРАМ) до водорода, взаимодействуют практически со всеми кислотами.

Взаимодействие неокисляющих кислот с металлами, стоящими в электрическом ряду активности металлов до водорода
Происходит реакция замещения, которая также является окислительно-восстановительной:


Взаимодействие концентрированной серной кислоты H2SO4 с металлами.
Окисляющие кислоты могут взаимодействовать и с металлами, стоящими в ЭРАМ после водорода: Очень разбавленная кислота реагирует с металлом по классической схеме:


При увеличении концентрации кислоты образуются различные продукты:

Реакции для азотной кислоты (HNO3)


При взаимодействии с активными металлами вариантов реакций ещё больше:


Библиография

Герасимов Я. И. Химическая термодинамика в цветной металлургии. Т. 1-7. / Я.И.Герасимов, А.Н.Крестовников, А.С.Шахов и др.— М.: Металлургиздат, 1960—1973.— 2108 с.

Павленко Н. И. История металлургии в России XVIII века. Заводы и заводовладельцы. М.: Издательство АН СССР, 1962.— 566 с.

Юсфин Ю. С., Пашков Н. Ф. Металлургия железа: Учебник для вузов.— Москва: Академкнига, 2007.— 464с.

Воскобойников В.Г., Кудрин В.А., Якушев А.М. Общая металлургия / Под ред..— Учебник для вузов. - 6-изд., перераб. и доп..— М.: Академкнига, 2005.— 768с.

Металловеды / Составитель С.С.Черняк— Иркутск: Изд-во ИрГУ, 2000.— 532 с.

Презентация "Металлы в природе. Способы получения металлов"

В самородном виде
и в виде соединений находятся в
природе серебро, медь,
ртуть и олово.

Металлы, которые находятся в
ряду напряжений до олова,
встречаются в природе только
в виде соединений - минералов

Металлы низкой активности
Активные металлы
Менее активные металлы
?
?
?

Золото в природе чрезвычайно рассеяно.
По распространенности в земной коре оно занимает 74 место. Но оно содержится везде: в земле, воде, в организмах растений и животных. И всё это составляет около 100 млрд. тонн.

Крупнейшие в мире золотые самородки были найдены в Австралии, они весили 86 и 112 кг.
Я солнцу подобно, и ярче огня,
Монеты и слитки куют из меня

Платина относится к наименее распространенным в природе элементам. Земная кора содержит 5×10−7% платины. В самородном состоянии встречается в основном в виде сплавов с другими металлами, например, золотом и железом.

Самым крупным существующим в настоящий момент платиновым самородком является «Уральский гигант» весом 7 кг 860,5 г.
Был обнаружен в 1904 г.
На букву «П» моё названье,
Я с золотом дружу,
И в корону для красавиц
Вместе с золотом вхожу.

По распространенности в земной коре занимает 67 место, но запасы его в 20 раз больше, чем золота. Самый крупный самородок серебра весил 13,5 тонн.

Известно я давным-давно.
Чтоб не испортилась вода,
Меня в походы брали.
И мной героев награждали.

Иду на мелкую монету,
В колоколах люблю звенеть,
Мне ставят памятник за это
И знают: имя мое -
По распространенности в земной коре занимает 26 место.
Самый большой самородок меди весил 420 тонн. Был найден в 1857 г. в США.
Выступающие части этого самородка были отбиты каменными топорами

По распространенности занимает 66 место.
В самородном виде встречается редко, причем чаще её находят в виде сплавов (амальгам) с золотом, серебром и палладием.
Когда случайно я прольюсь
– блестящим шариком качусь

Руды – содержащие минералы природные образования, в которых металлы находятся в количествах, пригодных в технологическом и экономическом отношении для получения металлов в промышленности. В основном металлы получают из оксидных и сульфидных руд.
Сульфидные руды
Медный колчедан - CuFeS2
Цинковая обманка - ZnS
Свинцовый блеск (галенит) - PbS
Сульфид ртути (киноварь) - HgS

Бурый железняк (лимонит) – 2Fe2O3·3H2O
Среди металлов самый славный,
важнейший в мире элемент.
Железо
Магнитный железняк
(магнетит) –Fe3O4
Красный железняк
(гематит) – Fe2O3

Подумайте:
1. Чем различаются руды железа?
2. Какую руду лучше использовать для получения железа?

Исследование свойств руд железа
?

Подумайте:
Какой основной химический процесс лежит в основе получения металлов?
Процесс восстановления
Mn+ + nē = M0

Связаны с промышленным получением металлов из природного сырья
?

Основателем науки о металлах в России считается великий русский ученый М. В. Ломоносов.
Ему принадлежит первый в России учебник по горному делу и металлургии.
Несколько поколений русских инженеров воспитывалось на этом замечательном труде. Среди них П. П. Аносов.
1711 - 1765
Михаил Васильевич Ломоносов

Разработал способ получения булатной стали.
Он впервые использовал микроскоп для исследования внутреннего строения металлов.
Труды Аносова были продолжены Д. К. Черновым
1799 - 1851
Павел Петрович Аносов

Является основоположником
современного металловедения и металлографии – науки о строении металлов и сплавов.
Его научные открытия легли в основу производства высококачественных чугуна и стали.
1839 -1921
Дмитрий Константинович Чернов

Открыл процесс вытеснения металлов из растворов солей под действием других металлов и металлотермический метод.
Показал, что алюминий при высокой температуре восстанавливает оксиды до металлов.
1827 - 1911
Николай Николаевич Бекетов

«Металлург»,
Л. Татьяничева
Я в космос не летал.
Но эта сталь
— Моя.
А это значит,
Помогал и я
Достичь тебе
Загадочной звезды,
Которую держал
В своих ладонях ты.
Я в космос не летал.
В грохочущей ночи
С любовью я ковал
Путей твоих лучи.
Я отдых отвергал
И годы напролет
Сто тысяч сил впрягал
В твой чудо-звездолет.
Сильна моя ладонь.
Сильнее, чем металл,
Чем стужа и огонь.
А в космос — не летал!
«Россия, богатая железными рудами различного свойства, не бедна и искусными руками», - писал Аносов П.П. Этими искусными руками являются руки металлургов.
Профессию металлурга по значимости можно сравнить с профессией хлебороба. Хлебороб создает пищу для людей, а металлург – то, без чего не невозможно представить машины, дома технику.
Поэтому людям этой профессии поэты посвящают стихи:

Указом Президиума Верховного Совета СССР в 1957 году был утвержден День металлурга , с тех пор третье воскресенье июля стало праздничным днем для всех работников отрасли.
Россия занимает первое место по производству и экспорту никеля
Второе место по производству алюминия и титана

Третье место по экспорту металлопродукции

Четвертое место по производству стали

методы переработки руд, основанные на химических реакциях, происходящих при высоких температурах (греч. пирос – огонь).
Стадии получения и уравнения реакций:
медь, цинк, хром и др.
Получаемые металлы:
Алюминотермия –
восстановление металлов из оксидов с помощью алюминия
Способы получения металлов
1. Обжиг руды
2. Плавка - восстановление металлов из оксидов с помощью
угля, водорода, оксида углерода (II), более активных
металлов
ZnO + C = Zn + CO ↑
2ZnS + 3O2 = 2ZnO + 2SO2 ↑

Природное соединение растворяют в подходящем реагенте с целью получения раствора соли этого металла CuO + 2HCl = CuCl2 + H2O
Гидрометаллургия
методы получения металлов, основанные на химических реакциях, происходящих в растворах.
Стадии получения и уравнения реакций:
Получаемые металлы:
серебро, цинк молибден, золото, уран, медь и др.
Способы получения металлов
Из полученного раствора данный металл вытесняют более активным или восстанавливают электролизом
CuCl2 (раствор) + Fe = FeCl2 + Cu

методы получения металлов, основанные на электролизе, т.е. выделение металлов из растворов или расплавов их соединений с помощью электрического тока.
Электрометаллургия –
CuCl2
расплав
Уравнение реакции электролиза:
электролиз
Cu + Cl2
Получаемые металлы:
щелочные, щелочноземельные и алюминий

Негативное воздействие на окружающую среду:
1.Загрязнение почвы по причине массового складирования отходов.
Для выработки 1 т стали необходимо 3 т сырья. Поэтому образующиеся после выплавки стали шлаки также складируют в отвалы, что крайне пагубно влияет на почву.
Например, в уральском регионе скопилось 6 млрд. тонн отходов.

Предприятия черной металлургии выбрасывают в атмосферу 25% металлосодержащей пыли и оксида углерода (II) от общего количества этих веществ, попадающих в атмосферу.
На металлургию приходится 50 % выброса сернистого газа.
Также выбрасываются токсичные для человека вещества: бензопирен, фториды, соединения марганца, вольфрама, хрома и других металлов.

Металлургия использует 25% от всей потребляемой российской промышленностью воды. Например, для получения 1 т. алюминия используется 1150 т. воды, 1 т. никеля – 4000 т. В водоемы возвращается 60-70 % чистой воды и 30-40 % загрязненной различными примесями и вредными соединениями

Переработка и
использование отходов

Строительство очистных
сооружений и
замкнутых систем
водоснабжения

Разработка
новых технологий

Будущее за новыми чистыми технологиями
Существуют проекты добычи руды не нарушая ландшафт, с помощью биотехнологий. Используют рудные растворы с тионовыми и железо-бактериями, способными переводить нерастворимые сульфиды в растворимые сульфаты, которые подаются на гидрометаллургическую переработку.
Преимущества метода:
Используется на месте залегания руд.
Не загрязняется окружающая среда.

ТЕСТ на тему: «Металлы в природе. Общие способы их получения.»
1
2
3
4
5
Вариант 1
Современные очистные сооружения на предприятиях достаточно эффективны, но имеют высокую стоимость. Будучи директором крупного завода и имея в своем распоряжении значительную сумму денег, как вы поступите:
а)положите в банк для уплаты штрафов за загрязнение природной среды;
б) вложите в строительство очистных сооружений;
в)часть вложите в расширение производства, часть – для повышение зарплаты рабочих.

Из природных веществ можно назвать рудой:
а) мел; б) гранит; в) бурый железняк; г) песок

Кому принадлежал первый в России учебник по горному делу и металлургии:
а) Н.К. Чернову; ) П.П. Аносову; в) Н.Н. Бекетову; г) М.В. Ломоносову

Гидрометаллургия представляет собой получение металлов:
а) обжигом сульфидов;
б) переводом их соединений в раствор с последующим восстановлением;
в) обработку руды водяным паром

С помощью электролиза впервые был получен металл:
а) медь; б) железо; в) свинец; г) натрий

ТЕСТ на тему: «Металлы в природе. Общие способы их получения.»
Вариант 2
Вы работаете на металлургическом заводе и случайно узнаете о неисправности в системе очистных сооружений. Как вы поступите:
а) сообщите директору завода, чтобы он принял решение;
б) сделаете вид, что вам ничего неизвестно о неисправности;
в) скажете директору и, если он не примет меры, будете активно действовать сами

К рудам не относится:
а) мрамор; б) магнитит; в) галенит; г) лимонит.

Среди минералов не встречаются:
а) оксиды металлов; б) сульфиды металлов; в) гидриды металлов; г) силикаты металлов

Металлический марганец получают алюминотермией из оксида марганца (IV)/ Составьте уравнение реакции. Сумма коэффициентов в правой части уравнения равна:
а) 4; б) 5; в) 6; г) 7.

В настоящее время для получения хрома в качестве восстановителя чаще всего используется:
а) медь; б) натрий; в) хлор; г) алюминий

Проверь себя
Из записанных уравнений выберите те, которые относятся к пирометаллургическому способу:
2ZnS + 3O2 = 2 ZnO + 2SO2
ZnSO4 +Mg = MgSO4 + Zn

ZnO + CO = Zn + CO2
ZnO + H2SO4 = ZnSO4 + H2
ZnSO4 +Mg = MgSO4 + Zn
ZnO + H2SO4 = ZnSO4 + H2
ZnSO4 +Mg = MgSO4 + Zn
ZnO + H2SO4 = ZnSO4 + H2
2ZnS + 3O2 = 2 ZnO + 2SO2
ZnO + CO = Zn + CO2
2ZnS + 3O2 = 2 ZnO + 2SO2
ZnO + CO = Zn + CO2
2ZnS + 3O2 = 2 ZnO + 2SO2
ZnO + CO = Zn + CO2
2ZnS + 3O2 = 2 ZnO + 2SO2
ZnO + CO = Zn + CO2

Читайте также: