Методы определения вязкости металлов

Обновлено: 21.09.2024

Ликвация (от лат. liquatio – разжижение, плавление) – неоднородность химического состава сплавов, возникающая при их кристаллизации. Особое значение имеет ликвация в стали, впервые обнаруженная русскими металлургами Н. В. Калакуцким и А. С. Лавровым в 1866 году.

Ликвация возникает в результате того, что сплавы, в отличие от чистых металлов, кристаллизуются не при одной температуре, а в интервале температур. При этом состав кристаллов, образующихся в начале затвердевания, может существенно отличаться от состава последних порций кристаллизующегося маточного раствора. Чем шире температурный интервал кристаллизации сплава, тем большее развитие получает ликвация, причём наибольшую склонность к ней проявляют те компоненты сплава, которые наиболее сильно влияют на ширину интервала кристаллизации (для стали, например, сера, кислород, фосфор, углерод). Ликвация оказывает, как правило, вредное влияние на качество металла, т. к. приводит к неравномерности его свойств.

Различают дендритную ликвацию, которая проявляется в микрообъёмах сплава, близких к размеру зёрен, и зональную ликвацию, наблюдаемую во всём объёме слитка. Дендритная ликвация выражается в том, что оси дендритных кристаллов отличаются по химическому составу от межосных пространств. Этот вид ликвации может быть в значительной степени устранён при длительном отжиге металла (так называемая гомогенизация) в результате диффузии примесей. Зональная ликвация выражается в наличии в слитке не-скольких зон с различным химическим составом, которые в зависимости от характера отклонений от среднего состава сплава называются зонами положительной или отрицательной ликвации. Различают осевую и внеосевую ликвацию. Для уменьшения зональной ликвации ограничивают размеры слитков, а также применяют специальные металлургические процессы: непрерывную разливку, переплав в водоохлаждаемом кристаллизаторе (электрошлаковый или вакуумный) и т. п.

Дайте определение ударной вязкости (KCV). Опишите методику измерения этой характеристики механических свойств металла.

Способность металла сопротивляться ударному воздействию нагрузки оценивают величиной ударной вязкости, под которой понимают работу удара, отнесенную к начальной площади поперечного сечения образца в месте концентратора напряжений. Методы определения ударной вязкости при комнатной, пониженной и повышенной температурах регламентированы ГОСТ 9454–78 и соответствуют СТ СЭВ 472–77 и СТ СЭВ 473–77. В соответствии с этими стандартами образец квадратного или прямоугольного сечения с концентраторами вида U, V и Т (рисунок 1) устанавливают на две опоры маятникового копра с максимальной энергией удара 0,5; 1,0; 5,0; 10; 15 или 30 кгс•м (ГОСТ 10708–76).


Рисунок 1 – Образцы для испытаний на ударную вязкость:
а-в – соответственно с концентраторами вида U, V и T (усталостная трещина)

Удар наносят посередине образца со стороны, противоположной надрезу. За окончательный результат испытания принимают работу удара или ударную вязкость для образцов с концентраторами видов U и V и ударную вязкость для образцов с концентратором вида Т (усталостная трещина, получаемая в вершине начального надреза при циклическом изгибе образца в одной плоскости). Работу (KU, KV или КТ) разрушения образца определяют обычно по специальной шкале маятникового копра. После определения работы разрушения образца вычисляют ударную вязкость KCU (KCV, КСТ): КС= = K/S0, где S0 – площадь поперечного сечения образца в месте надреза, см 2 .

Работу удара обозначают двумя буквами (KU, KV или КТ) и цифрами. Первая буква (К) – символ работы удара, вторая буква (U, V или Т) – вид концентратора. Последующие цифры обозначают максимальную энергию удара маятника, глубину концентратора и ширину образца. Цифры не указывают при определении работы удара на копре с максимальной энергией удара маятника 30 кгс•м, при глубине концентратора 2 мм для концентраторов видов U и V и 3 мм для концентратора типа Т и ширине образца 10 мм.

Ударную вязкость также обозначают сочетанием букв и цифр. Первые две буквы КС обозначают символ ударной вязкости, третья буква – вид концентратора; первая цифра – максимальную энергию удара маятника, вторая – глубину концентратора и третья – ширину образца. Цифры не указывают в тех же случаях, что и для работы удара. Применяют 10 типов образцов с надрезом вида U, А – с надрезом вида V и 6 – с надрезом вида Т.

Для определения ударной вязкости хрупких материалов (чугунов, сталей с твердостью HRC 55 и выше) допускается применение призматических образцов с размерами 10х10х55 мм без надреза. Ударную вязкость, полученную при испытании таких образцов, обозначают символом КС без индекса.

Для более точной оценки вязкости материалов иногда ударную вязкость как интегральную характеристику делят на две составляющие – удельную рабоду зарождения а3 и удельную работу развития ар трещины: aH = a3 + aр. При хрупком разрушении работа распространения трещины близка к нулю, а при полухрупком она снижается пропорционально проценту вязкой составляющей в изломе, поэтому целесообразно определять ар только при полностью вязком изломе. Существует несколько методов определения а3 и ар. Наиболее распространены метод Б.А. Дроздовского (предварительное нанесение на образец усталостной трещины) и метод А. П. Гуляева (испытание образцов с разными надрезами и построение зависимости ударной вязкости от радиуса надреза); экстраполяция прямой до нулевого значения радиуса надреза дает возможность получить величину ар.

3.Вычертите диаграмму состояния железо-карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 0,8% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?

Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).
При кристаллизации сплавов по линии АВ из жидкого раствора выделяются кристаллы твердого раствора углерода в α-железе (δ-раствор). Процесс кристаллизации сплавов с содержанием углерода до 0,1 % заканчивается по линии АН с образованием α (δ)-твердого раствора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в γ-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.
При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3 % до 6,67 % углерода, при температурах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристаллизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3 % образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3-> Л[А2,146,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.



Рисунок 2 – Диаграмма железо-цементит


Таким образом, структура чугунов ниже 1147°С будет: доэвтектических — аустенит+ледебурит, эвтектических — ледебурит и заэвтектических — цементит (первичный)+ледебурит.
Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении Υ-железа в α-железо и аустенита.Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.
Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.
В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8 -> П[Ф0,036,67].
Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.
Следовательно, сплавы, содержащие менее 0,008% углерода (точкаQ), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% – структуру феррит+цементит третичный и называются техническим железом.
Доэвтектоидные стали при температуре ниже 727°С имеют структуру феррит+перлит и заэвтектоидные – перлит+цементит вторичный в виде сетки по границам зерен.
В доэвтектических чугунах в интервале температур 1147–727°С при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода (линия ES). По достижении температуры 727°С (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращается в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит+цементит).
Структура эвтектических чугунов при температурах ниже 727°С состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727°С состоит из ледебурита превращенного и цементита первичного.

а) б)
Рисунок 3: а)-Диаграмма железо-цементит, б)-Кривая охлаждения для сплава, содержащего 0,8% углерода

Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:
C = K + 1 – Ф,
где С – число степеней свободы системы;
К – число компонентов, образующих систему;
1 – число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);
Ф – число фаз, находящихся в равновесии.
Сплав железа с углеродом, содержащий 0,8%С, называется эвтектоидной сталью. Его структура при комнатной температуре перлит.

4.Вычертите диаграмму изотермического превращения аустенита для стали У8, нанесите кривую режима изотермической обработки, обеспечивающей получение твердости 45…50 HRC. Укажите, как этот режим называется, опишите сущность превращения и какая структура получается в данном случае.


Рисунок 4. – Диаграмма изотермического превращения аустенита стали У8

Изотермической обработкой, необходимой для получения твердости 45…50 HRC, является изотермическая закалка. При изотермической закалке сталь У8 нагревают до температуры на 30-50°С выше точки Ас1с1 = 730°С) и после выдержки охлаждают до температуры 250-350°С, что несколько превышает температуру начала мартенситного превращения. Выдержка деталей в закалочной среде должна быть достаточной для полного превращения аустенита в нижний бейнит, имеющий твердость 45…50 HRC. Нижний бейнит представляет собой структуру, состоящая из α-твердого раствора, претерпевшего мартенситное превращение и несколько пересыщенного углеродом, и частиц карбидов. В качестве охлаждающей среды при изотермической закалке применяют расплавленные соли или расплавленные щелочи.

5.Как изменяется структура и свойства стали 40 и У12 в результате закалки от температуры 750 и 850˚С. Объясните с применением диаграммы состояния железо-цементит. Выберите оптимальный режим нагрева под закалку каждой стали.

Исходная структура среднеуглеродистой конструкционной стали 40 до нагрева под закалку – перлит + феррит.

Критические точки для стали 40: АС1=730ºС, АС3=790ºС.

При нагреве до 700ºС в стали 40 не происходят аллотропические превращения и мы имеем ту же структуру – перлит + феррит, быстро охлаждая (т.к. закалка), имеем также после охлаждения перлит + феррит с теми же механическими свойствами (примерно), что и в исходном состоянии до нагрева под закалку. Например, после нормализации: σТ=36 кгс/мм 2 , σВ=61 кгс/мм 2 , δ=16%, ψ=40%, НВ≈180.

Если доэвтектоидную сталь нагреть выше Ас1, но ниже Ас3, то в ее структуре после закалки наряду с мартенситом будут участки феррита. Присутствие феррита как мягкой составляющей снижает твердость стали после закалки. При нагреве до температуры 750°С (ниже точки Ас3) структура стали 40 – аустенит + феррит, после охлаждения со скоростью выше критической структура стали – мартенсит + феррит.

Доэвтектоидные стали для закалки следует нагревать до температуры на 30-50°С выше Ас3. Температура нагрева стали под закалку, таким образом, составляет 820-840°С. Структура стали 40 при температуре нагрева под закалку – аустенит, после охлаждения со скоростью выше критической – мартенсит.

Нагрев и выдержка стали 40 при температуре выше 850ºС приводит к росту зерна и ухудшению механических свойств стали после термической обработки. Крупнозернистая структура вызывает повышенную хрупкость стали.

Исходная структура высокоуглеродистой инструментальной стали У12 до нагрева под закалку – перлит + карбиды.

Критические точки для стали У12: АС1=730ºС, АС3=820ºС.

При нагреве до 700ºС в стали У12 не происходят аллотропические превращения и мы имеем ту же структуру – перлит + карбиды, быстро охлаждая (т.к. закалка), имеем также после охлаждения перлит + карбиды с теми же механическими свойствами (примерно), что и в исходном состоянии до нагрева под закалку.

Оптимальный режим нагрева под закалку для заэвтектоидных сталей (%С>0,8%) составляет АС1+(30÷50º), т.е. для У12 – 760–780ºС. При этом после закалки имеем мелкое зерно, обеспечивающее наилучшие механические свойства стали У12.

Нагрев и выдержка стали У12 при температуре 850ºС перед закалкой приводит к росту зерна и ухудшению механических свойств стали после термической обработки.

Ударная вязкость стали и металлов: что это такое, в чем измеряется и как обозначается

При создании высокопрочных деталей необходимо знать, как их ключевые свойства будут проявляться и изменяться на практике многолетней эксплуатации. Поэтому в фокусе нашего сегодняшнего внимания ударная вязкость материала, то есть его способность деформироваться пластически под воздействием динамических нагрузок.

Другими словами, это также эффективность сопротивления хрупкому типу разрушения – одному из самых опасных видов, при котором трещина очень быстро становится магистральной: мгновенно возникает, а разрастается за доли секунды. Если взять в качестве примера коммуникационную линию, то в ней при появлении такого повреждения меньше чем за минуту порвет сразу несколько труб.

Поэтому просто необходимо учитывать рассматриваемый параметр при проектировании каких-либо объектов из металлоконструкций, особенно сложных, предназначенных для использования в жестких климатических условиях: при низких температурах, при постоянно меняющемся микроклимате, при высоком механическом давлении, физических воздействиях и так далее.

Что называют ударной вязкостью – это

ударная вязкость

Начнем с определения: это показатель количества работы (энергии), необходимой для хрупкого разрушения материала. Вычисляется опытным путем, по результатам комплексных тестов, проводимых методом маятникового копра.

Все проверки выполняются на стандартизованных образцах – стержнях квадратного сечения с нанесенным на какой-то из его граней искусственным концентратором напряжения. Последний может быть выполнен:

  • в виде литеры V или U;
  • а также в форме усталостной трещины.

В итоге выявляют не только интересный нам параметр, но также качество и характер деформации поверхности, а затем и соотношение составляющих повреждения. Это может быть или исключительно визуальный анализ, или более глубокий, с оценкой текстуры и слоев при помощи цифровых и компьютерных технологий.

Естественно, данный показатель отличается в зависимости от материала. Потому помните, когда мы рассматриваем, что такое ударная вязкость стали, это эффективность сопротивления именно конкретно взятого металла или сплава и только его, а не всех вообще.

Критическая температура хрупкости

Окружающая среда напрямую влияет на сопротивление детали разрушению. Данная зависимость настолько очевидная, что была выделена в явление – под названием хладноломкость – и объясняется неизбежными деформациями при переходе в хрупкое состояние под воздействием мороза.

Температура, при которой наблюдается изменение и появляется повреждение, и считается критической. В технической литературе ее зачастую сокращают до аббревиатуры Тхр, а также записывают как «порог хладноломкости», который, помимо всего прочего, показывает, что составляющие в заготовке находятся в равных долях.

Данную величину находят опытным путем, проводя испытание материала на ударную вязкость – серию тестов с постепенным понижением терморежима, начиная от +20 градусов по Цельсию и заканчивая на -70 0С. По результатам выстраивают график, отражающий зависимость и показывающий точку перегиба – искомую Тхр. И чем этот показатель больше по своему значению, тем вероятнее, что под воздействием морозов в детали появится трещина (или другой сходный дефект).

Естественно, при прочих равных заготовки или целые функциональные узлы лучше делать из того сырья, порог хладноломкости которого сравнительно ниже, ведь тогда изделия можно будет эксплуатировать и в более жесткой климатической среде.


Почему у металлов различная хрупкость

При значительных нагрузках в условиях действия стабильно низких температур свое влияние оказывают следующие факторы:

  • Микроструктура – она может быть крупно- или мелкозернистой, высокой чистоты или достаточно сильнозагрязненной посторонними включениями, с твердыми фазами по границам или без них, с нежелательными примесями или без них.
  • Концентраторы критических воздействий – несплошные участки, трещины и разрывы, газовые пузыри и тому подобные дефекты. В одном сырье их больше, в другом – меньше.
  • Остаточные напряжения и тому подобные состояния, сохранившиеся после проведения всех необходимых операций на предыдущих стадиях технического процесса производства.

Вот от чего зависит ударная вязкость на практике, и следует помнить, что большинство из перечисленных выше факторов также меняются. Те же повреждения со временем развиваются, становясь серьезнее и нарушая структуру.

Относительная нестабильность свойств – именно та причина, по которой при выпуске деталей требуется выполнять проверки. По результатам тестов можно с высокой степенью точности установить, при какой температуре допустимо стабильно эксплуатировать заготовку. Поэтому необходимо подробно рассмотреть, как их проводить, какие образцы при этом использовать, что за предварительную подготовку осуществить и так далее.

Методы испытаний металлов на ударную вязкость

Сначала – немного классификации, чтобы вы понимали, по каким причинам стоит делать выбор в ту или иную пользу. Существующие сегодня варианты лабораторных изысканий разделяют на несколько групп по следующим критериям:

  • наличие/отсутствие концентратора напряжений, то есть надреза определенной формы на одной из граней в зоне нанесения удара;
  • вид закрепления – установка на опоры, погружение в холодильную емкость и тому подобное;
  • характер воздействия – нагрузка может передаваться за счет молота, гири, маятника или иного твердого тела.

ударная вязкость это

Также есть способы проверки, названные в честь тех, кто их ввел:

  • по Гарднеру;
  • по Шарпи;
  • по Изоду.

При этом любая из вышеперечисленных разновидностей испытаний стали на ударную вязкость (и каких-либо других металлов тоже) сводится к попытке разрушения стандартного образца падающим предметом. Отличие только в специфике тестов, проводимых без надреза или с ним. Первый случай актуален только для листовых прокатных изделий, толщина которых одинакова по всей их площади, и его итоговые значения в несколько раз (до 10) превышают результаты в обычной среде, это нужно учитывать и соответствующим путем коррелировать дальнейшие расчеты.

Поскольку разница в нюансах, а не в принципе, рассмотрим один популярнейший метод, чтобы вы получили понимание о том, как проверки осуществляются в лабораторных условиях и насколько они точны.

Маятниковый копер

Это прибор, созданный специально для проведения испытаний, и его разновидности классифицируют по следующим показателям:

  • характер деформации – на кручение, растяжение, изгиб, срез, сжатие;
  • число ударов – один-единственный или несколько, совершаемых с определенным интервалом;
  • величина нагрузки – обычный (стандартный) поддерживает до 7 м/с, скоростной – уже значительно больше, 100-300 м/с, а в категорию сверхскоростных относят модели, выходящие за пределы 300 м/с;
  • условия выполнения тестов – рабочая температура, уровень влажности и так далее.

При этом практически любой копер состоит из опорных стоек, на которых закрепляется проверяемый стержень, и неподвижной оси – на ней на определенной высоте размещается боек с маятниковым эффектом. Простота конструкции делает ее достаточно надежной, а также уменьшает погрешность результатов.

В списке основных рабочих характеристик каждого такого прибора: диапазон измерений, максимальная мощность и скорость движения в момент контакта, наибольший потенциал фиксируемой энергии, габариты (в частности, масса) и расстояние между опорами.

ударная вязкость стали

Отбор образцов

Межгосударственный стандарт, говорящий, что такое ударная вязкость металла, это ГОСТ 9454, и в соответствии с ним подходящими для проведения испытаний считаются следующие варианты:

  • по Шарпи – заготовки длиной 55 мм, квадратного сечения (10 на 10 мм), с U-образным вырезом посередине, радиус которого 1 мм, а глубина пропила – 2 мм;
  • по Менаже – геометрия и габариты аналогичны предыдущему, только канавка (концентратор напряжения) уже в форме перевернутого треугольника (буквы V);
  • Т-образные – их ДхШхВ составляет 55 на 10 на 11 мм, и у каждого есть искусственно сделанная усталостная трещина, то есть специальный надрез.

Второй вид является наиболее часто используемым: он применим при отбраковке металлопродукции, эксплуатируемой в составе важных конструкциях, то есть в высокоточных приборах, медицинском или промышленном оборудовании, воздушных и наземных транспортных средствах. Третий ориентирован на еще более ответственные случаи, которых сравнительно немного, поэтому в количественном отношении он не получает такого распространения. Первый предназначен для всех остальных ситуаций.

Подготовка к проверке и ее проведение

испытание на ударную вязкость

В общем случае схема испытания на ударную вязкость выглядит следующим образом:

  1. Стержень закрепляется на опорных стойках – так, чтобы место контакта было строго напротив концентратора напряжения (с другой его стороны).
  2. Маятник (масса которого G, а сила L) приводится в исходное положение (верхнее, 1), то есть поднимается на высоту H.
  3. Провоцируется падение, в результате которого боек слетает, ударяет по образцу и совершает возвратное движение на расстояние h, то есть в позицию 2.
  4. Для окончательной остановки используется тормоз.

Все занятые положения фиксируются, после чего по разности потенциалов и вычисляется работа, необходимая для хрупкого разрушения. Сейчас посмотрим, как это происходит.

Стандартное обозначение ударной вязкости в расчетах – КС, запаса энергии маятника – GH.

Базовая формула выглядит так:

  • К – работа, приведшая к деформации образца;
  • F – площадь поперечного сечения стержня на участке с концентратором напряжений (известная величина).

Энергия затрачивается при перемещении маятника из первой позиции во вторую в результате удара, поэтому:

K = G x H – G x h,

или, если преобразовать это соотношение:

также высоту бойка в двух положениях можно выразить через силу и углы, после чего наше уравнение будет выглядеть так:

K = G x L x (cos β – cos α), где:

Все показания и позиции в ходе теста фиксируются в обязательном порядке. Но прежде чем переходить к подстановке значений в формулу и к анализу полученных цифр, еще несколько слов о том, как обозначается ударная вязкость. Дело в том, что записывать ее можно еще и с третьим индексом, обозначающим тип использованного концентратора напряжений, – для большей информативности. В таком случае рассматриваемый нами показатель будет выглядеть в формулах как KCV (по Менаже), KCT или KCU (по Шарпи) соответственно.

Обработка результатов

Взглянем на итоговое уравнение. Какие величины известны? Это масса бойка (G) и длина маятника (L). Также постоянное значение у начального угла α, а конечный – β – находится в ходе теста.

Так что для подсчетов нет препятствий – есть (или появляются) все данные для определения энергии, затрачиваемой на хрупкое разрушение.

Теперь о том, в чем измеряется ударная вязкость, – в Дж/м2 – так как, по сути, она представляет собой работу, проведенную на определенной площади формы.

Также есть интересная особенность: начиная с определенной температуры, КС неуклонно снижается, поэтому, для точности и полноты оценки, ударные тесты необходимо осуществлять не только в нормальных условиях, но и со значительным охлаждением опытного образца – до -40…-80 градусов Цельсия.

С этой целью стержни помещаются в специальные морозильные камеры со спиртом или жидким азотом. Хотя можно отдать предпочтение более простому варианту – емкости, заполненной сухим льдом или керосином, она также позволяет добиться нужного терморежима.

Полезным будет и определение порога хладноломкости, то есть температуры, при которой наблюдается резкое падение КС. Для этого необходимо взять серию опытных образцов (обязательно из одной плавки), провести испытания, тщательно записывая результаты с малым шагом градусов, а потом сравнить цифры и выстроить на их основе диаграмму. По ней будет отчетливо видно, как на каком-то участке сравняется доля вязких и хрупких составляющий – эта точка и станет искомым показателем.

Другое распространенное название порога – «температура полухрупкости», которая, для сокращения, также часто записывается как Т50 – исходя из пропорции в 50 на 50%. Если вычесть ее из реальной эксплуатационной, получите запас вязкости. Чем он больше, тем надежнее считается материал (с оговоркой, что условия его использования останутся неизменными).

Наиболее наглядные результаты дадут литые сплавы магния и алюминия, а также чугун. Почему именно они? Потому что у них сопротивление отрыву характерно видно даже при статических нагрузках, не говоря уже о повышенных – есть на что ориентироваться.

Для достижения нужного уровня охлаждения можно использовать:

  • сухую углекислоту – обеспечит -70 0С;
  • жидкие газы – азот (даст -195 градусов по Цельсию), воздух (-183) или водород (-252).

Естественно, это довольно опасные вещества, поэтому работы с ними должны проходить только в лабораторных условиях и с соблюдением соответствующих положений техники безопасности.

Сравнение материалов по ударной вязкости

Можно проводить его опытным путем, самостоятельно выполняя тесты, записывая полученные результаты и так далее. Но гораздо быстрее и проще воспользоваться уже найденными в ходе проверок по методу Изода значениями, сведенными в специальную таблицу. Преимущественное место в ней занимают пластики, но и другие виды сырья тоже представлены.

В любом случае, вы сэкономите свое время, ведь останется только вычислить КС и порог хладноломкости для используемого сплава, а потом сравнить их с аналогичными и уже известными цифрами.

Мы постарались дать максимальное представление о способах испытаний, подсчетах, определении, особенностях. Подробно остановились даже на том, в каких единицах измеряется ударная вязкость (размерность ее – Дж/м2, напоминаем). Столько информации – чтобы вы точно понимали важность этого показателя и могли грамотно его учитывать при выборе материала для исполнения деталей.

Способ определения вязкости металла

Изобретение относится к механическим испытаниям, применяемым для оценки надежности металлов, в частности сталей различных классов, марок, структурного состояния. Техническим результатом заявленного изобретения является повышение точности количественной оценки вязкости металла. Способ определения вязкости металла включает: фиксирование до проведения испытания начальной длины и исходной площади поперечного сечения образца; регистрацию в процессе испытания диаграммы растяжения, абсолютного упругого и абсолютного пластического удлинения и максимальной нагрузки; фиксирование конечной длины образца и определение после испытания вязкости металла по формуле а=(Ауп)/(FΔLK), где Ay - работа для совершения абсолютного упругого удлинения; Aп - работа для совершения абсолютного пластического удлинения; F - исходная площадь поперечного сечения испытуемого образца; ΔLK - конечное абсолютное удлинение по диаграмме. 2 ил., 1 табл.

Изобретение относится к механическим испытаниям, применяемым для оценки надежности металлов, в частности стали различных классов, марок, структурного состояния.

Вязкость металла характеризует работу внешних сил, которую требуется произвести для того, чтобы совершить определенную деформацию (работу деформации). Вязкость в большей степени, чем другие распространенные механические показатели (прочность, пластичность), чувствительна к неблагоприятному проявлению таких факторов, как снижение температуры механического воздействия или дефектность структуры металла.

Поэтому определению вязкости как характеристики надежности уделяется все большее внимание в оценках служебных качеств металла.

Известен способ определения вязкости металла испытанием ударным изгибом призматических образцов, выполненных с надрезом - определение ударной вязкости [ГОСТ 9454].

Однако данный способ имеет недостатки, снижающие эффективность оценки металла.

1. Определение ударной вязкости предполагает использование образцов определенной конфигурации - с определенной площадью нагружаемого сечения (10×8 мм) и определенной формой надреза, располагаемого на одной из граней. При невозможности выполнения этого условия (например, в испытании плоских образцов, толщина которых менее 10 мм, круглых образцов, надрез которых выполняется по всему периметру, образцов стали с поверхностным упрочнением, выполняемых без надреза) сопоставление ударной вязкости в разных испытаниях может быть лишь условным и отнесено исключительно к используемой конфигурации образцов.

В связи с этим снижается универсальность ударной вязкости как характеристики, пригодной для ранжирования металла по вязкости в испытании образцов с различной конфигурацией.

2. Достаточно пластичный металл в испытании изгибом может быть не доведен до разрушения. Поэтому полная вязкость такого металла в данном испытании не определяется.

Известен способ (растяжение), в котором образец любого металла доводится до разрушения и определяются универсальные характеристики, пригодные для ранжирования металла по силовым показателям (предельным напряжениям) и показателям пластичности (удлинениям) [ГОСТ 1497].

Однако в данном способе не предусмотрено определение вязкости.

Известен способ, использующий для определения вязкости (работы деформации) величину площади под диаграммой растяжения [Золоторевский, B.C. Механические свойства металлов / B.C.Золоторевский. - М.: Металлургия, 1983, с.183].

Однако характеристики механических свойств, предлагаемые в нем для определения площади являются чисто теоретическими, не стандартизированными, пригодными лишь для узких исследований и неприемлемы в практических испытаниях металла.

По данному способу образец подвергают растяжению до разрыва с фиксированием до проведения испытания начальной длины lн и площади поперечного сечения F, регистрированием в процессе испытания диаграммы растяжения, нагрузки, завершающей упругое удлинение Ру, максимально достигаемой нагрузки Рм, регистрированием после испытания конечной длины lK. Используя эти величины, вязкость, как площадь под диаграммой растяжения, определяется по формуле

в которой предел текучести σт=Py/F, предел прочности σb=Pм/F, истинное предельное удлинение ε пред =ln(1+δ), относительное удлинение δ=Δl/lH=(lK-lH)/lH.

Фактически величина W выражает удельную работу деформации - полную работу A, характеризующуюся площадью под диаграммой, отнесенную к деформируемому в испытании объему образца V, т.е. величину

Тем самым получают характеристику механических свойств металла, не зависящую

от деформируемого объема испытуемого образца (при определенной начальной длине lH). Данный способ определения вязкости также имеет существенные недостатки, связанные с проявлением следующих факторов.

1. Фактически величина W является не только приближенным (уменьшенным) представлением площади под диаграммой, но и не включает площадь, которая характеризует работу, необходимую для совершения упругого растяжения. Такое представление площади под диаграммой не всегда может быть оправданным. Прежде всего, это относится к испытанию высокопрочного металла, для которого доля общей работы, относящейся к совершению упругого растяжения, является значительной.

2. Расчет относительного удлинения δ вызывает необходимость фиксирования начальной длины образца lH которая составляет лишь часть полной длины образца. На практике выбор lH определяется геометрическими параметрами испытуемого образца, связывается с площадью поперечного сечения F и регламентируется специальными стандартами по ГОСТ 1497, а также стандартами по качеству различных видов металлоизделий. Фактически величина lH может колебаться в широких пределах: в испытании цилиндрических образцов lH=15÷125 мм (в зависимости от рабочего диаметра); в испытании плоских образцов lH=90÷310 мм (в зависимости от рабочей толщины).

Поэтому величина а, определяемая в данном способе, кроме того, что не обладает точностью, не являться универсальной характеристикой механических свойств, так как не позволяет сопоставлять результаты при различных величинах (в различных испытаниях) начальной длины испытуемого образца.

Задачей настоящего изобретения является совершенствование способа определения вязкости металла.

Технический результат - более точная количественная оценка вязкости металла.

Технический результат достигается тем, что используется способ испытания, по которому образец подвергают растяжению до разрыва с фиксированием до проведения испытания начальной длины и исходной площади поперечного сечения, в процессе испытания регистрируют диаграмму растяжения и максимальную нагрузку, после испытания регистрируют конечную длину образца, в котором в процессе испытания дополнительно регистрируют абсолютное упругое и абсолютное пластическое удлинение, и после испытания определяют вязкость металла по формуле

в которой Ay - работа для совершения абсолютного упругого удлинения, которая может быть вычислена по формуле

где Ру - нагрузка, завершающая упругое абсолютное удлинение, ΔLy - абсолютное упругое удлинение;

Ап - работа для совершения абсолютного пластического удлинения, которая может быть вычислена по формуле

где ΔLп - абсолютное пластическое удлинение по диаграмме, а0, а1, а2 … an - коэффициенты, количество которых (n) должно обеспечивать достоверную аппроксимацию графика диаграммы растяжения в виде многочлена n-й степени;

F - исходная площадь поперечного сечения испытуемого образца;

ΔLk - конечное абсолютное удлинение по диаграмме.

Величина Ау соответствует площади поля диаграммы, располагающегося под ее прямолинейным отрезком.

Формула для определения Ап получается в результате вычисления интеграла

где РΔL - усилие, необходимое для совершения абсолютного удлинения ΔL, ΔLK - конечное абсолютное удлинение.

Данный интеграл является точным выражением площади под криволинейным участком диаграммы.

Использование при определении площади под диаграммой величины ΔLк, не зависящей от начальной длины образца, означает, что результат определения величины А также не зависит от начальной длины lН.

Используя в оценке вязкости величины а вместо А, получаем характеристику механических свойств металла, которая не зависит от деформируемого объема испытуемого образца и при этом не зависит также и от начальной длины lН.

Рассмотренная процедура аппроксимирования графика диаграммы позволяет эффективно использовать современные информационные технологии в проведении механических испытаний.

При этом величина А в предлагаемом способе может определяться и без использования данной математической процедуры. Например, составляющие работы Ау и Ап могут быть получены в результате геометрических измерений, производимых с помощью известного измерительного прибора - планиметра, и таким образом в целом (учитывая использование измерительных инструментов в определении начальной и конечной длины испытуемого образца) задача определения величины А будет решаться чисто техническим методом.

Определение величины А с применением аппроксимации диаграммы включает в себя также следующие процедуры.

1. Масштабирование осей первичной диаграммы удлинения образца: оси Р - в единицах усилия, прикладываемого к испытуемому образцу (по максимальной зафиксированной нагрузке Рмакс); оси ΔL - в единицах удлинения непосредственно образца (по конечному абсолютному удлинению Δl=lК-lH, зафиксированному на испытанном образце).

2. Отбор точек первичной диаграммы, координаты которых, выраженные в масштабе реального удлинения и усилия, должны обеспечивать достоверную аппроксимацию графика диаграммы в виде многочлена.

3. Компьютерное определение коэффициентов в аппроксимирующем многочлене и далее величин А и а.

Пример выполнения способа

Определялась вязкость стали марки 30 (ГОСТ 1050), находящейся в различных структурных состояниях: вариант первый - в состоянии поставки на волочение; вариант второй - после волочения с обжатием 50%. Определение вязкости производили в испытании растяжением по ГОСТ 1497 на цилиндрических образцах с рабочим диаметром 8 мм двумя способами - согласно прототипу и согласно изобретению.

Растяжение выполняли на универсальной испытательной машине УМЭ-10Т доведением образцов до разрыва с предварительным фиксированием начальной длины lH и площади поперечного сечения образцов F, регистрированием диаграмм растяжения с фиксированием на них нагрузок, завершающих упругое удлинение Ру, и максимальной Рм, абсолютных упругого и пластического и конечного удлинений, регистрированием конечной длины образца.

В определении вязкости согласно изобретению использовали формулу

где Ау=PyΔLy, в которой Ру - нагрузка, завершающая упругое удлинение; Ап=a0ΔLп+a1(ΔLп) 2 /2+a2(ΔLп) 3 /3+…+an(ΔLп) n+1 /(n+1), ΔLу и ΔLп - абсолютные упругое и пластическое удлинения, ΔLп - абсолютное пластическое удлинение (определяемые по диаграмме).

Диаграммы растяжения образцов стали представлены на фиг.1 и 2.

Расчеты по определению вязкости производили с использованием компьютера (таблица).

Как видно из таблицы, вязкость, определенная согласно прототипу, значительно меньше, чем по предлагаемому изобретению. Разница возрастает в испытании более прочной стали.

Выявленное противоречие находит естественное объяснение: фактически в определении вязкости по прототипу учитывается исключительно работа для совершения абсолютного пластического удлинения и не учитывается работа для совершения абсолютного упругого удлинения. Причем площадь, характеризующая эту работу пластического удлинения (представляемая как площадь прямоугольника), оказывается меньшей, чем фактическая площадь под участком диаграммы, относящаяся к абсолютному пластическому удлинению (фиг.1 и 2).

На фиг.1 и 2 приведены диаграммы растяжения образца в состояниях стали, которые соответствуют первому и второму вариантам. Заштрихованными прямоугольниками обозначена площадь, учитываемая в испытании по прототипу, тогда как по предлагаемому способу учитывается полная площадь под диаграммой.

Рассмотренный пример свидетельствует о повышении точности и достоверности определения вязкости металла при использовании заявляемого способа, и пригодности его для ранжирования металла по этому показателю.

Таблица
Вариант состояния металла Исходные данные в определении величины а а, Дж/мм 3 , согласно
F, мм 2 lH, мм lK, мм Рм, Н прототипу изобретению
первый 50,2 40 14 2905 110 194
второй 6 3670 94 225

Способ определения вязкости металла, по которому образец подвергают растяжению до разрыва, с фиксированием до проведения испытания начальной длины и исходной площади поперечного сечения, в процессе испытания регистрируют диаграмму растяжения и максимальную нагрузку, после испытания регистрируют конечную длину образца, отличающийся тем, что в процессе испытания дополнительно регистрируют абсолютное упругое и абсолютное пластическое удлинения, и после испытания определяют вязкость металла по формуле
а=(Ауп)/(FΔLк),
в которой Ay - работа для совершения абсолютного упругого удлинения;
Aп - работа для совершения абсолютного пластического удлинения;
F - исходная площадь поперечного сечения испытуемого образца;
ΔLк - конечное абсолютное удлинение по диаграмме.

К вопросу о методике определения ударной вязкости металлов и сплавов

В данной статье пойдет речь о методике определения ударной вязкости материалов, рассмотрены условия испытания, используемое оборудование, представлены расчеты, обозначения и единицы измерения ударной вязкости.

Ключевые слова

Текст научной работы

В процессе эксплуатации делали пожарной и аварийно-спасательной техники подвергаются действию не только статических, плавно возрастающих нагрузок, но и испытывают динамические (ударные), действующие резко и возрастающие от нуля до своего максимального значения с большой скоростью. Под влиянием ударных нагрузок может произойти разрушение детали. Поэтому необходимо знать, насколько хорошо конструкционный материал сопротивляется таким нагрузкам. Для оценки способности сопротивляться динамическим (ударным) нагрузкам производят механические испытания материалов на ударную вязкость в рабочем диапазоне температур детали. Ударная вязкость — это способность материала сопротивляться ударным нагрузкам. Она характеризует способность материала поглощать механическую энергию внешних сил за счёт пластической деформации без нарушения сплошности строения, т. е. является энергетической характеристикой материала и выражается в единицах работы (энергии), приходящейся на разрушение единицы объёма материала образца.

Вязкость металлов и сплавов определяется их химическим составом, термической обработкой и другими внутренними факторами. Вязкость также зависит от условий, в которых работает металл (окружающей температуры, скорости нагружения, наличия концентраторов напряжения).

Ударная вязкость характеризует надёжность материала при динамических нагрузках, его способность сопротивляться хрупкому разрушению. Основным динамическим испытанием является метод испытания на ударный изгиб с определением ударной вязкости материала. Эти испытания позволяют определять способность металла противодействовать динамическим нагрузкам и выявлять склонность металла к хрупкому разрушению при различных температурах. В настоящее время наиболее распространенными методами испытаний материалов на ударную вязкость являются метод испытания по Шарпи (см. рис.1) и метод испытания по Изоду (см. рис. 2)

Определение ударной вязкости материалов по методу Шарпи

Рисунок 1. Определение ударной вязкости материалов по методу Шарпи

Определение ударной вязкости материалов по методу Изода

Рисунок 2. Определение ударной вязкости материалов по методу Изода

Испытания на ударный изгиб проводят на приборе, называемом маятниковым копром. Простейший маятниковый копёр представлен на рис. 3.

Маятниковый копер: 1 — станина; 2 — маятник; 3 — шкала; 4 — образец; 5 — ремень ручного тормоза; 6 — рычаг ручного тормоза

Рисунок 3. Маятниковый копер: 1 — станина; 2 — маятник; 3 — шкала; 4 — образец; 5 — ремень ручного тормоза; 6 — рычаг ручного тормоза

Каждый копер имеет тяжёлый маятник 2, который свободно качается вокруг оси. При помощи специальной защёлки маятник может быть установлен на разной высоте. Если защёлку освободить, то маятник упадёт и взлетит по инерции на такую же высоту, на которую он был поднят. Если на пути падения маятника встретится препятствие в виде образца, то часть энергии падения затратится на преодоление этого препятствия, и маятник взлетит уже на меньшую высоту.

Метод испытания материалов на ударную вязкость основан на разрушении одним ударом маятникового копра стандартных образцов с надрезом определённой формы и размеров (см. рис. 4).

Образец для испытания на ударный изгиб

Рисунок 4. Образец для испытания на ударный изгиб

Схема испытаний на ударную вязкость представлена на рис. 5.

Схема испытаний на ударную вязкость

Рисунок 5. Схема испытаний на ударную вязкость

При испытаниях образец 4 устанавливают на пути падения маятника на две опоры станины 1 копра надрезом в сторону, противоположную удару ножа маятника (см. рис. 6).

Схема установки образца при испытании на ударную вязкость

Рисунок 6. Схема установки образца при испытании на ударную вязкость

Далее маятник 2 поднимают на определённую высоту, отклоняя под определённым углом α. Падая с высоты H, маятник изгибает образец и разрушает его. Затем по инерции поднимается на высоту h под углом β. Останавливают маятник ручкой тормоза.

Следовательно, общий запас энергии маятника будет расходоваться на изгиб и разрушение образца, а также на последующий взлёт (рис.5).

Если из общего запаса энергии маятника вычесть часть, затраченную на взлёт после разрушения образца, то получим энергию (работу) удара, затраченную на разрушение образца. Работа удара W, Дж (кгс·м), затраченная на разрушение образца, определится из разности энергий маятника в положении его до и после удара:

где Р — масса маятника, кг; g = 9,81 — ускорения свободного падения, м 2 /с; Н — высота подъёма маятника до удара, м; h — высота подъёма маятника после удара, м; L — длина маятника, м.

Высоту H и h можно определить, зная длину маятника L и его углы первоначального подъёма α и последующего взлёта β:

где α — угол подъёма маятника до удара; β — угол подъёма маятника после разрушения образца.

Для маятникового копра P и L — величины постоянные. Углы α и β определяют по шкале 3 прибора (см. рис. 7).

Копер маятниковый КМ-5

Рисунок 7. Копер маятниковый КМ-5

Для того чтобы не вычислять значение работы удара W по приведённой выше формуле, на практике пользуются специальными переводными таблицами, в которых для каждого угла подъёма маятника после разрушения образца β приведена величина работы удара W.

Основной характеристикой, получаемой в результате испытаний на ударный изгиб, служит ударная вязкость, которую принято обозначать KC.

Ударная вязкость КС определяется как работа W, затраченная на деформацию и разрушение ударным изгибом надрезанного образца, к его начальной площади поперечного сечения в месте надреза F0:

где F0 — первоначальная площадь поперечного сечения образца в месте надреза, см 2 .

При записи ударной вязкости в её обозначение вводится третья буква, указывающая вид надреза на испытанном образце: U, V, T. Так запись KCU означает ударную вязкость образца с U-образным надрезом; KCV — ударную вязкость образца с V-образным надрезом; KCT — ударную вязкость образца с T-образным надрезом. Размерность ударной вязкости Дж/см 2 .

Проведение испытаний на ударный изгиб образцов с T-образным надрезом является необходимым для того, чтобы определить сопротивление материала зарождению и распространению трещины (усталостной трещины) в условиях работы. Чем острее надрез, тем более жёстким испытаниям подвергается материал.

Преимуществом метода испытания на ударную вязкость является простота эксперимента, учёт влияния скорости нагружения и концентрации напряжений.

Детали машин, элементы конструкций инженерных сооружений могут работать не только при обычных температурах, но и при низких и повышенных. В связи с этим, для того, чтобы оценить поведение материала при таких температурах (в особых условиях эксплуатации), испытания на ударный изгиб проводят не только при комнатной температуре.

Для таких испытаний образцы нагревают или охлаждают до требуемой температуры, а затем быстро устанавливают на копёр и подвергают испытанию на ударный изгиб.

Испытания на ударную вязкость при различных температурах позволяют установить ряд следующих важных свойств материала:

  1. Способность материала выдерживать динамические (ударные) нагрузки;
  2. Склонность материалов к хрупкому разрушению при определённых температурах;
  3. Чувствительность материала к концентраторам напряжений (надрезам, выточкам и т. д.).

В связи с особенностью материалов изменять механические свойства при изменении температуры главными задачами испытаний на ударную вязкость являются:

  1. Выявление склонности материалов к хрупкому разрушению (хладноломкости);
  2. Определение критических порогов хладноломкости.

Порог хладноломкости — температурный интервал ТН — ТВ изменения характера разрушения материала с изменением температуры (см. рис. 8). Этот интервал является важным параметром конструкционной прочности материала, характеризующий его хладноломкость. Верхняя TВ и нижняя TН границы этого интервала соответствуют верхнему и нижнему порогам хладноломкости.

По данному температурному интервалу устанавливается склонность материалов к переходу из вязкого состояния в хрупкое.

Чем ниже порог хладноломкости, тем менее чувствителен материал к концентраторам напряжений (резкие переходы размеров и формы, отверстия, проточки, риски), а также к скорости деформации. Эксплуатировать материал при температурах ниже порога хладноломкости не следует.

Зависимость ударной вязкости от температуры

Рисунок 8. Зависимость ударной вязкости от температуры

Согласно ГОСТ 9454 для металлов и сплавов, работающих в условиях атмосферных колебаний температур, ударную вязкость определяют в интервале температур от 50°C до –60°C.

Для надёжной работы деталей при отрицательных температурах необходимо, чтобы температурный порог хладноломкости был ниже температуры эксплуатации материала; чем он ниже, тем меньше опасность хрупкого разрушения.

Читайте также: