Наклеп металла при холодной прокатке

Обновлено: 16.05.2024

Как следует из диаграмм растяжения, при деформации сталей при комнатной температуре предел текучести увеличивается с ростом деформации, то есть материал в этих условиях упрочняется.

Упрочнение – изменение структуры и свойств металлического материала, вызванное пластической деформацией.

Наибольшую сопротивляемость пластическому деформированию должен оказывать металл с очень малой плотностью дислокаций r. По мере увеличения плотности дислокаций r сопротивление пластическому деформированию уменьшается (рис. 3.8).

Рис. 3.8. Зависимость сопротивления деформированию от плотности дислокаций

Это происходит до достижения некоторого критического значения плотности дислокаций rкр, когда начинается взаимодействие силовых полей, окружающих дислокации, что и вызывает увеличение сопротивления пластическому деформированию.

Следовательно, увеличение сопротивления пластическому деформированию можно получить двумя путями: наклепом металла, т. е. прямым повышением плотности дислокаций или доведением плотности дислокаций до очень малого значения.

Наклепом называется упрочнение металла при холодной пластической деформации. В результате наклепа прочность (σВ, σ0,2, твердость и др.) повышается, а пластичность и ударная вязкость (δ, ψ, КСU) уменьшаются. Упрочнение возникает вследствие увеличения числа дефектов кристаллической структуры, которые затрудняют движение дислокаций, а следовательно, повышают сопротивление деформации и уменьшают пластичность.

Наклеп является одним из важнейших способов изменения свойств, особенно для сплавов, не упрочняющихся термической обработкой, и для металлов, обладающих пластичностью. Методы упрочняющего воздействия можно разделить на поверхностные (обкатка роликами, дробеструйная обработка) и сквозные (прокатка листов, волочение проволоки). Обработка металлов резанием также приводит к наклепу и изменению структуры в тонком поверхностном слое, что необходимо учитывать при последующей эксплуатации изделий.

Таким образом, пластические деформации вызывают повышение плотности дислокаций, искажение кристаллической решетки и приводят к увеличению напряжения, при котором возможны дальнейшие деформации.

Второй способ – создание металлов и сплавов с бездефектной структурой – является более прогрессивным. В настоящее время получают кристаллы небольших размеров (длиной 2–10 мм и толщиной 0,5–2,0 мкм), так называемые «усы», практически без дислокаций, с прочностью близкой к теоретической. Такие кристаллы нашли свое применение для армирования волокнистых композиционных материалов, в микроэлектронике и т. д.

Рис. 3.9. Текстура, возникающая при пластической деформации: а) исходная структура, б) текстура при растяжении, в) текстура при сжатии, г) текстура при сдвиге

При деформировании округлые зерна заменяются вытянутыми в направлении деформации, образуется так называемая текстура (textura – ткань, связь, строение) – анизотропная поликристаллическая или аморфная среда, состоящая из кристаллов или молекул с преимущественной ориентировкой. Текстуры могут быть осевыми – с предпочтительной ориентировкой элементов текстуры относительно одного особого направления, плоскими – с ориентировкой относительно особой плоскости и полными – при наличии особой плоскости и особого в ней направления (рис. 3.9). Текстура создает анизотропию свойств.

Упрочненный металл обладает повышенным запасом внутренней энергии, т. е. находится в неравновесном состоянии. Для приведения металла в равновесное состояние его необходимо нагреть. При нагреве наклепанного металла в нем протекают следующие процессы:

· частичное восстановление структурного совершенства в результате уменьшения точечных дефектов за счет увеличения подвижности атомов (избыточные вакансии и межузельные атомы взаимодействуют между собой, а также поглощаются дислокациями при перераспределении последних при нагреве) и снижение внутренних напряжений (процесс возврата);

· уменьшение плотности дислокаций за счет аннигиляция противоположных по знаку дислокаций и образование субзерен (полигонов), свободных от линейных несовершенств за счет выстраивания дислокационных стенок (процесс полигонизации);

· зарождение и рост новых равноосных зерен вместо ориентированной волокнистой структуры деформированного металла (процесс рекристаллизации).

Процесс рекристаллизации начинается с образования зародышей новых зерен и заканчивается полным замещением деформированного зерна мелкими равноосными зернами (первичная рекристаллизация), в результате чего полностью снимается наклеп, созданный при пластическом деформировании (снижаются прочность и твердость металла и увеличивается его пластичность), металл приобретает равновесную структуру с минимальным количеством дефектов кристаллического строения (рис. 3.10). Плотность дислокаций после рекристаллизации снижается с 10 10 –10 12 до
10 6 –10 8 см -2 .

Рис. 3.10. Изменение прочности, пластичности и зернистого строения
в процессе нагрева деформированного металла

При дальнейшем повышении температуры происходит увеличение размеров наиболее крупных зерен за счет присоединения мелких. С повышением температуры число крупных зерен постепенно растет, пока все мелкие зерна не окажутся присоединенными к крупным – процесс вторичной (собирательной) рекристаллизации.

Температуру начала рекристаллизации, при которой протекает рекристаллизация, происходит разупрочнение холоднодеформированного металла и восстановление его пластичности, называют температурным порогом рекристаллизации ТПР.

Эта температура не является постоянной физической величиной, как, например, температура плавления. Для данного металла (сплава) она зависит от длительности нагрева, степени предварительной деформации, величины зерна до деформации и т. д. Температурный порог рекристаллизации снижается с повышением степени деформации, увеличением длительности нагрева или уменьшением величины зерна до деформации.

Температура начала рекристаллизации ТПР для технически чистых металлов составляет примерно 0,4ТПЛ, для чистых металлов снижается до (0,1–0,2)ТПЛ, а для сплавов возрастает до (0,5–0,6)ТПЛ.

5 способов нагартовки (пластической деформации металлов)

Услышав слово «нагартовка», большинство пожмёт плечами. Бывшие студенты металлургических и машиностроительных учебных заведений наморщат лоб, пытаясь что-то вспомнить. Лишь единицы смогут объяснить суть явления. Расскажем об этом сложном термине, пришедшем к нам из материаловедения металлов.

полезная наклепка

Нагартовка или наклёп?

Часто нагартовку путают с наклёпом. Наклёп — более широкое понятие. Это все виды пластической деформации металлов, возникающие при наружном механическом воздействии. Наклёп может быть полезным и вредным. Полезный наклёп создаётся специально и называется «нагартовка» (от немецкого слова hart — твёрдый). Вредный наклёп образуется не специально и требует последующей термической обработки металла.

Что такое пластическая деформация?

Деформация — это изменение формы и размеров предмета. Она бывает упругой и неупругой. При упругой деформации размеры тела не меняются или восстанавливаются, при неупругой меняются. Неупругая деформация возникает, например, в алюминиевой заклёпке при ударах по ней металлическим молотком для формирования второй шляпки. Под ударом молотка алюминий на мгновение становится пластичным в месте удара и меняет свою форму. Поэтому неупругую деформацию металлов ещё называют пластической.

Что происходит внутри металла при пластической деформации?

Любой металл имеет кристаллическую пространственную решётку, в узлах которой находятся атомы. Чистые металлы без примесей имеют правильную прямоугольную решётку, в которой расстояния между атомами равны. Освободить металл от примесей при плавке сложно и на 100% невозможно. После плавки металл начинает остывать. Внутри него происходят сложные физико-химические процессы и формируется монолитный кристалл.

Примеси в виде атомов чужих металлов и неметаллов вклиниваются в структуру кристалла и мешают его правильному росту. Вот поэтому в любом металле после расплава при остывании образуются зёрна разной величины и формы. Внутри каждого зерна находится чистый металл с правильной решёткой. Примеси располагаются на границах зёрен. Связи между атомами металла в кристалле очень сильны. Но при пластичной деформации строгая прямоугольная решётка кристалла меняет свою форму, она сминается.

нагартовка стали

Пример из жизни

Если взять кусочек пластилина и немного покатать его между ладоней, можно получить некое подобие металлического зерна. Ударив несильно ладонью по окатышу, получим овальный блинчик. Приблизительно такую форму принимают зёрна металла после пластической деформации. Но не все зёрна становятся «блинчиками». Пластическая деформация сминает зёрна только в верхних слоях металла, упрочняя его.

Почему упрочняются верхние слои?

Для наглядности нужно опять обратиться к пластилину. Сделаем много окатышей и положим их ненадолго в морозилку. Из несильно замороженных кусочков слепим кучу. Ударим ладонью по этой куче. Что произошло? В месте удара образовались знакомые нам «блинчики». В глубине кучи окатыши тоже немного помялись. Чем глубже, тем меньше было сминания.

А теперь попробуем отрывать окатыши пластилина от кучи. С обратной от удара стороны это получается легко. Но чем ближе к месту удара, тем тяжелее это делать. Почему? Зёрна в глубине металла имеют определённую площадь соприкосновения друг с другом. В месте удара площадь соприкосновения увеличивается из-за увеличения внешней поверхности смятого зерна. При увеличении площади соприкосновения «родные» атомы металла соседних зёрен образуют между собой дополнительные связи. «Блинчики» крепче связаны между собой, чем простые «окатыши». Вот и весь секрет уплотнения и упрочнения верхних слоёв металла после пластической деформации!

Виды нагартовки металла

Нагартовка — это полезный процесс, при котором уплотняются верхние слои металла. Такой уровень упрочнения не приводит к появлению трещин и разрушению верхних слоёв. Снаружи металла появляется «корка», которая защищает деталь при эксплуатации. После нагартовки не нужна последующая механическая обработка металла.

В отличие от нагартовки вредный наклёп требует снятия возникших в верхних слоях напряжений. Металлу устраивают «баню», нагревая поверхность до величины в 40–60% от температуры плавления. При остывании происходит рекристаллизация, восстанавливается обычная структура зёрен, напряжений больше нет и можно проводить дальнейшую механическую обработку деталей, не ломая инструмент.

укрепление металлов нагартовкой

Полезный наклёп (нагартовка) и вредный наклёп возникают в результате пластической деформации верхних слоёв металла только в результате холодной обработки давлением. «Холодный» – подразумевает температуру окружающего воздуха. Справочники говорят нам о допустимой верхней температуре — не больше температуры «рекристаллизации».

Важной особенностью пластической деформации является отсутствие разрушения. Пластичность оценивается величиной относительного удлинения стандартного образца при разрыве. Эта величина составляет 10–50%. К сплавам, обладающим высокой пластичностью, относятся низкоуглеродистые стали (содержание углерода 0,25%), сплавы алюминия, меди (латуни), многие легированные стали.

Какими же бывают виды холодной обработки металла давлением, запускающие процесс нагартовки в металле?

  1. Ковка.
  2. Прокатка.
  3. Прессование или штамповка.
  4. Волочение.
  5. Редуцирование.

Холодная ковка

Оборудованием служат пневматические молоты при весе заготовок от 0,3 до 20 кг, паровоздушные молоты для заготовок 20–350 кг, гидравлические прессы для обработки деталей весом до 200 тонн.

Холодную ковку включают в технологию обработки, если нужно:

  • расплющить деталь — уменьшить высоту, увеличив поперечное сечение (осадка);
  • увеличить длину поковки за счёт уменьшения поперечного сечения (протяжка);
  • получить глухое или сквозное отверстие (прошивка);
  • изогнуть ось заготовки, при этом радиус изгиба не должен вызывать складки на внутренней и трещины на внешней стороне изделия (гибка);
  • увеличить ширину заготовки за счёт уменьшения её толщины (разгонка).

Холодная прокатка

Это самый распространённый способ нагартовки. Так получают длинные заготовки — трубы, рельсы, профили строительных конструкций. Прокаткой получают листовой металл, используемый в машиностроении. Примером холодной прокатки может служить алюминиевая фольга толщиной до 0,001 мм, получаемая из чистого алюминия.

Холодное прессование или штамповка

Есть два вида — объёмная и листовая штамповка.

  • выдавливание заготовки;
  • высадку;
  • формовку.

Выдавливание производят на прессах в штампах, имеющих пуансон и матрицу. Исходной заготовкой служит пруток или лист. Если делают прямое выдавливание, то получают болты и клапаны. Обратным выдавливанием изготавливают полые детали. При боковом выдавливании производят различные тройники и крестовины. В сложном изделии, выдавливание делают комбинированным.

нагартованная проволока

Только этот вид штамповки позволяет получить максимальную деформацию поверхности без её разрушения.

Холодная высадка — самый высокопроизводительный способ изготовления продукции. Процесс поддаётся автоматизации, поэтому в минуту можно получить от 20 до 400 деталей. Исходным материалом здесь служит пруток или проволока диаметром 0,5–40 мм. В высадке есть потребность при выработке деталей с местным утолщением: заклёпок, болтов и винтов, гвоздей, шариков, звёздочек и накидных гаек. Коэффициент использования металла достигает 95%.

Процесс холодной формовки аналогичен горячей штамповке. Однако здесь нужны более высокие усилия, потому что материал имеет низкую формуемость из-за упрочнения и действия сил трения. Обычно так получают детали из цветных металлов.

При холодной листовой штамповке заготовками служат листы, полосы или ленты толщиной не более 10 мм.

  • получение деталей с малой массой;
  • высокая точность и качество поверхностей;
  • производительность — до 40 тысяч деталей в смену на одном станке;
  • возможность автоматизации процесса.

При листовой штамповке деформации можно подвергать всю заготовку (отрезка и вырубка) или её часть (гибка, вытяжка и формовка).

Холодное волочение

Если нужно уменьшить диаметр и уплотнить поверхность проволоки для повышения её прочностных характеристик, применяют волочение. Это единственный способ нагартовки больших объёмов проволоки. В отличие от прокатки, где инструментом служат вращающиеся валки, в волочении для обжатия используют неподвижную матрицу с фильерами. За один цикл нельзя значительно сократить диаметр изделия, потому что тянущее усилие приложено к его тонкому концу.

Волочильные станы позволяют получать проволоку диаметром от 1 микрона до 6 мм.

нагартованная лента

Редуцирование

При этом способе нагартовки заготовка помещается между вращающимися обжимными валами или вращающаяся заготовка формуется под действием пуансона. В процессе вращения и обжима происходит изменение формы поверхности детали и её уплотнение.

  • накатка наружной и внутренней резьбы;
  • редуцирование труб;
  • правка заготовок;
  • гибка заготовок.

На резьбонакатных станках получают заготовки с наружной и внутренней резьбой М3 — М68, используя для этого накатные ролики или оправки. При редуцировании труб происходит в основном закатка или раскатка концов на длину до 200 мм. Правка заготовок нужна для выправления геометрической оси изделия. Гибку заготовок используют для получения пружин разного диаметра.

Как оказалось, нагартовка очень интересный, полезный и распространённый способ деформации металлов, который позволяет значительно увеличить эффективность металлообработки.

Наклеп и нагартовка металлов

Нагартовка или деформационное упрочнение – это важный технологический процесс, которые применяют для увеличения прочности и/или твердости металлов и сплавов, которые не могут быть упрочнены термической обработкой. Эта технологическая обработка включает изменение формы изделия методами холодной пластической деформации, то есть ввода в металл механической энергии [1]. В результате этой обработки металл становится прочнее тверже, но теряет пластичность, как показано на рисунке 1.


Рисунок 1 – Влияние степени нагартовки на прочность, твердость и пластичность металлов [1]

Наклеп и нагартовка

В русскоязычной технической литературе наблюдается определенная путаница в определении и применении терминов «наклеп» и «нагартовка». Чаще всего эти термины отождествляются, применяются один вместо другого или оба сразу. Обычно наклепом (нагартовкой) называют как сам физический процесс изменения кристаллической структуры металла при его пластическом деформировании, так и результат этого процесса, то есть повышение прочности и твердости металла.

Предел текучести и наклеп

Одной из характеристик любого металла, в том числе, алюминия, является его предел текучести. Предел текучести металла – это напряжение, при котором этот металл начинает деформироваться пластически.

При напряжениях ниже этого предела текучести материал деформируется упруго. Если напряжения снимаются, то металл возвращается к своему первоначальному состоянию до приложения этих напряжений.

Обычно нагружение металла выше предела текучести является для него вредным. Недопущение напряжений выше предела текучести является главным требованием при проектировании деталей, изделий и сооружений.

Однако изучение изменения микроструктуры металла после деформации показывают, что механические свойства этого металла также изменяются. В частности, испытание на растяжение показывает, что металлический образец, который нагружался выше предела текучести обычно получает деформационное упрочнение или наклеп (рисунок 2).


Рисунок 2.1 – Увеличение предела текучести металла после его нагружения выше предела текучести

Что такое наклеп металла

Атомы, решетка, дислокации

Металлы и их сплавы, в том числе, алюминий и его сплавы, имеют кристаллическую структуру и состоят из большого количества зерен. Эти зерна имеют неправильную форму и различные размеры. В каждом зерне атомы упорядочены, но смежные зерна по-разному ориентированы относительно друг друга. В процессе холодной деформации структура зерен меняется за счет их фрагментации зерен, движения атомов и искажения атомной решетки.

Когда материал подвергается механическому нагружению, в его кристаллической структуре образуются микроскопические дефекты, которые известны как дислокации. Если нагрузки продолжают увеличиваться, эти дислокации начинают продвигаться и взаимодействовать между собой. Таким образом они образуют новую внутреннюю структуру, которая сопротивляется дальнейшей пластической деформации. Эта структура повышает предел текучести материала, то есть его способность сопротивляться прилагаемым усилиям. При этом пластические свойства материала снижаются. Одним из наиболее известных путей намеренного создания наклепа является холодная пластическая формовка деталей и изделий – холодная обработка металлов давлением.


Рисунок 2.2 – Нагартовка алюминия [6]

Типичными процессами холодной обработки металлов давлением являются:

  • холодная ковка (рисунок 2)
  • холодная прокатка (рисунок 3)
  • холодное прессование (экструзия) (рисунок 4)
  • волочение (рисунок 5)


Рисунок 3 – Ковка металла


Рисунок 4 – Прокатка металла


Рисунок 5 – Прессование металла


Рисунок 6 – Волочение металла

Уменьшение плотности металла

При наклепе металла его плотность уменьшается. Это происходит потому, что пластическая деформация приводит к нарушению порядка в размещении атомов, увеличение плотности дефектов и образование микропор. Уменьшение плотности означает увеличение удельного объема – объема единицы массы.

Остаточные напряжения

Наружный наклёпанный слой стремится расшириться, а внутренние слои его «не пускают» – в нем возникают сжимающие остаточные напряжения. Эти напряжения бывают очень полезными, так как способны замедлять зарождение и рост поверхностных усталостных трещин.

Полезный наклеп

Наклеп может быть желательным и нежелательным, полезным и вредным. Если наклеп металла является полезным, то при его изготовлении стремятся применять операции холодного пластического деформирования: холодную прокатку, волочение, обработку дробью, галтовку, накатку и тому подобное. Это особенно важно для металлов и сплавов, которые не способны упрочнятся термически. К этим материалам относятся низкоуглеродистые стали, некоторые алюминиевые сплавы, а также чистая медь. Когда эти материалы подвергаются сжатию, волочению, гибке или ковке, то напряжения, которые при этом возникают, приводят к возникновению в кристаллической структуре дислокаций, которые упрочняют металл. В этом случае применяют оба термина: и наклеп, и нагартовка.

Стандарты о наклепе и нагартовке

Отечественные, еще советские, стандарты – ГОСТы – применяют к полезно «наклепанным» металлическим изделиям, например, листам алюминиевых сплавов только термин «нагартованные» и совершенно не употребляют слова «наклеп» или «наклепанные». Можно видеть это, например, в ГОСТ 21631 на листы из алюминия и алюминиевых сплавов: «листы нагартованные», «листы полунагартованные».

Вредный наклеп

Нежелательный, вредный наклеп возникает, например, когда пластичные и мягкие металлы и сплавы подвергаются механической обработке резанием. Чрезмерно глубокие резы за один проход приводят с большой скоростью могут приводить к возникновению интенсивного наклепа с нежелательным увеличением прочности металла и его охрупчиванию. Это препятствует дальнейшей механической обработке детали, а может привести и к повреждению режущих инструментов. Другим примером вредного наклепа может служить повторяющееся нагружение детали с превышением предела текучести материала. При таком нагружении материал в критических сечениях может быстро наклепываться, терять свою пластичность и разрушаться. В подобных случаях явление деформационного упрочнения называют наклепом, но никогда не называют нагартовкой.

Когда «наклеп», а когда «нагартовка»?

Учитывая выше изложенное, делаем два «смелых», но естественных вывода.

Наклепом называется любое проявление деформационного упрочнения кристаллических материалов – полезное и вредное, умышленное и неумышленное.

Нагартовкой называется только полезное деформационное упрочнение изделий, которое умышленно применяют к изделиям с целью повышения их прочностных свойств. Иногда, может быть, и не умышленно, но всегда осознанно.

Что такое холодная деформация

Холодной пластической деформацией металлов считают пластическую деформацию при определенной температуре, после которой в металле возникает наклеп и он сохраняется неизменным неограниченно длительное время. По-научному это звучит так: температура холодной деформации для достижения эффекта нагартовки (наклепа) металла должна быть ниже температуры его рекристаллизации, то есть температуры, при которой на месте старых, деформированных и вытянутых, зерен металла начинают возникать и расти новые, недеформированные и округлые зерна. Обычно эта температура составляет половину от абсолютной температуры плавления этого металла или сплава. Однако на практике нагартовка металлов производится при комнатной температуре или при температуре не выше трети температуры плавления.

Что такое горячая деформация

В отличие от холодной деформации горячая деформация металлов и сплавов происходит при температуре, величина которой достаточна для того, чтобы рекристаллизация деформированной структуры металла происходила одновременно с пластическим деформированием. Обычно горячую деформационную обработку (обработку давлением) производят при температуре выше температуры рекристаллизации металла (обычно от 70 до 90 % абсолютной температуры плавления). После такой горячей обработки получают металл с благоприятной мелкозернистой рекристаллизованной структурой.

Деформируемые алюминиевых сплавов

С металлургической точки зрения все серии деформируемых алюминиевых сплавов разбиваются на две большие группы:

  • деформационно-упрочняемые сплавы
  • сплавы, упрочняемые термической обработки (старением).

Строго говоря, все металлы и сплавы могут деформационно упрочняться. Однако, в области металлургии алюминия, это наименование относится к сплавам только тех серий, которые не могут упрочняться термической обработкой, то есть старением.

Нагартовка деформационно-упрочняемых сплавов

Модификация структуры

К этим сплавам относятся все сплавы серий 1ххх, 3ххх и 5ххх, а также часть сплавов серии 8ххх. Их технологическая цепочка состоит из этапов горячей обработки давлением, за которыми, возможно, следуют этапы холодной обработки давлением с промежуточным или завершающим отжигом.

Деформационное упрочнение – нагартовка – включает модификацию структуры под воздействием пластической деформации. Это происходит не только в ходе производства полуфабрикатов при прокатке, правке растяжением, волочении и т, п., но также в ходе последующих производственных этапах, таких как формовка, гибка и других производственных операциях.



Рисунок 6.1 – Кривые нагартовки алюминиевого сплава 5083 [4]

Механические свойства

Деформационное упрочнение повышает механические прочностные свойства и твердость, но снижает пластичность (рисунок 6).



Рисунок 6.2 – Влияние деформационного упрочнения на механические свойства:
предел прочности при растяжении, предел текучести (0,2%) и относительное удлинение [3]

Уровень механических свойств, который может достигаться, зависит от легирующих элементов. Например, сплавы серии 5ххх, которые содержат большое количество магния, имеют более высокий потенциальный уровень механических свойств, чем у сплавов других серий: 1ххх, 3ххх и 8ххх. В результате всегда происходит постепенное повышение механических свойств, вплоть до той точки, за которой дальнейшая обработка становится трудной, если вообще возможной. В этом случае, если требуется дальнейшая пластическая деформация, не обходимо производить термическую обработку отжигом.

Cмягчающий отжиг

Упрочнение, которое возникло в результате холодной пластической обработки может быть устранено или смягчено путем отжига. В зависимости от комбинации длительность-температура, это умягчение может быть (рисунок 7):

  • частичным: это – cмягчающий или неполный отжиг;
  • полным: это – рекристаллизационный отжиг, в ходе которого образуется новая зеренная структура (рисунок (8).


Рисунок 7 – Изотермические кривые отжига сплава 5754 [3]


Рисунок 8 – Изменение твердости и структуры при отжиге [3]

Временные и температурные параметры являются специфическими для каждого сплава и зависят от степени деформационного упрочнения, которому материал подвергался перед отжигом.

Как и у других металлов и сплавов, существует критическая зона деформационного упрочнения (рисунок 9.1). Если отжиг применяется к материалу в состоянии, которое находится в этой критической зоне, то может происходить бесконтрольный рост зерна. Это делает последующие операции формовки, такие как волочение и гибки более трудными. После деформации поверхность металла может иметь вид, который называют «апельсиновая корка».


Рисунок 9.1 – Изменение размера зерна при отжиге в зависимости от степени нагартовки [3]

Уровень механических свойств полуфабриката и, в частности, компромисс между пределом прочности и пластичностью (относительным удлинением), контролируются параметрами деформационной обработки и последующими операциями отжига (промежуточными или заключительным).

Необходимо отметить, что при одинаковом уровне предела прочности уровень пластичности будет выше в нагартованном и частично отожженном металле (H2X), чем в «чисто» нагартованном металле (H1X) (рисунок 9.2). Поэтому состояния с частичным (смягчающим) отжигом являются более предпочтительными, когда максимальная способность к формовке является главным фактором, например, при глубокой вытяжке [3].



Рисунок 9.2- Различие нагартованных состояний H14 и H24 [5]

Нагартовка термически упрочняемых сплавов

Для термически упрочняемых сплавов нагартовка может быть дополнением к уровню прочности, которое достигается путем упрочнения за счет выделения упрочняющей фазы при их термической обработке.

В случае полностью полностью упрочненных термической обработкой сплавов увеличение их прочности путем дополнительно холодной деформации после старения сравнительно невелико, кроме очень высоких степеней нагартовки. Часто эта возможность ограничена низкой способностью. сплавов в этом состоянии к пластической деформации. Основное применение этой технологии относится к некоторым прессованным и холоднотянутым изделиям, таким как проволока, прутки и трубы, которые подвергаются холодному волочению после термической обработки для увеличения прочности и повышения качества поверхности [2].

Влияние температуры нагартовки

Характеристики нагартовки алюминиевых сплавов сильно зависят от температуры. Деформационное упрочнение значительно сильнее происходит при криогенных температурах, чем при комнатной температуре. При повышенных температурах характеристики нагартовки зависят как температуры, так и от скорости деформации. Деформационное упрочнение снижается с повышением температуры обработки до тех пор, пока температура не достигнет величины, выше которой не происходит нагартовки из-за динамического возврата и рекристаллизации. Динамический возврат приводит к формированию зубзеренной структуры, которая аналогична той, которая возникает при нагреве предварительно наклепанного металла. Субзеренная структура также до некоторой степени повышает прочность алюминиевых сплавов [2].

3. Corrosion of Aluminium / Christian Vargel – ELSEVIER, 2004.

4. Aluminium in Commercial Vehicle – European Aluminium Association – 2011

Наклёп и нагартовка: отличия и особенности технологий

Термины «наклёп» и «нагартовка» часто путают между собой, отождествляют, применяют один вместо другого, (так как считают их взаимозаменяемыми), или оба одновременно. По сути, наклёп и нагартовка выполняют одну и ту же функцию - упрочнение поверхностного слоя металлического изделия. Оба эти термина означают процесс изменения структуры материала, для повышения его твёрдости и прочности. Тем не менее между этими понятиями существуют определённые различия.

Нагартовка – это

Нагартовка - осознанный технологический процесс, который проводится специально в целях улучшения прочностных характеристик металла. Если упрочнение верхнего слоя пластическим деформированием выполняется именно умышленно для повышения устойчивости к растрескиванию и с целью предотвращения усталости металла, то это и есть нагартовка. Также нагартовку называют деформационным упрочнением.


Деформационное уплотнение произошло в результате эксплуатации - это наклеп

Что такое наклёп металла?

В отличие от нагартовки, наклёп более ёмкое понятие. Процесс наклёпа может предполагать, как положительный, так и отрицательный эффект. Это любое проявление деформационного упрочнения кристаллических материалов - полезное и вредное, осознанное или неумышленное. Если возникает нежелательный вредный наклёп, например, при резке пластичных мягких металлов и сплавов, то детали из этих материалов подлежат дальнейшей термической обработке. В результате рекристаллизации, под воздействием высокой температуры, происходит восстановление недеформированной структуры зерна. Полезный наклёп создаётся специально под воздействием холодного пластического деформирования. В этом случае уместны оба термина: наклёп и нагартовка.

В чем разница, когда использовать?

В технической документации, включая ГОСТы, американские и международные стандарты (ANSI и ISO), термин наклёп отсутствует. «Полезно наклёпанные» металлические изделия принято называть – «нагартованные». Например, ГОСТ 18907-73 – нагартованные прутки. Весь деформационно-упрочнённый алюминий называют нагартованным. Нагартованное состояние алюминия обозначают буквой Н. ГОСТ 21631 на листы алюминия и алюминиевых сплавов: нагартованные листы (Н); полунагартованные (Н2).

Наклёп - это явление, которое направлено на изменение свойств за счёт пластической деформации. Наклёп металла происходит при температуре, значение которой недостаточно для рекристаллизации заготовки. При этом происходит изменение внутренней структуры и фазового состава материала. В кристаллической решётке образуются микроскопические дефекты (дислокации), которые выходят на поверхность деформируемого изделия.

Нагартовку применяют, когда нет возможности упрочнения поверхности материала путём закалки и термической обработки. Это касается некоторых алюминиевых сплавов, чистой меди и стали с содержанием углерода менее 0,25%. Нагартовка имеет значение для листового материала. Вследствие операции холодного деформирования (холодная прокатка, волочение, накатка, дробеструйная обработка и пр.) происходит восстановление в кристаллической структуре дислокаций, которые упрочняют металл.

Методы достижения нагартовки и полезного наклёпа

В промышленных масштабах нагартовка выполняется с помощью специальных целенаправленных операций по достижению упрочнения металла. Также благоприятный наклёп материала достигается в результате пластической деформации при холодной обработке металла давлением. К первому методу относятся такие виды наклёпа, как центробежно-шариковый и дробеметный. К последнему относится:

  • Холодная ковка. Для неё используется специальное оборудование: пневматические молоты, паровоздушные молоты, гидравлические прессы;
  • Холодная прокатка. Это самый распространённый способ нагартовки, который рассчитан на различные длинные заготовки (рельсы, трубы, профили для металлоконструкций). При помощи прокатки можно получить листовой металл;
  • Холодное прессование. Такой вид позволяет получать максимальную деформацию поверхности без разрушений;
  • Холодное волочение. Данный вариант предназначен для нагартовки больших объёмов проволоки;
  • Редуцирование. Этот способ нагартовки заслуживает особого внимания. Про него мы подробно расскажем в одной из следующих статей раздела «советы мастера».

Механические свойства

В процессе наклёпа (нагартовки):

  • Увеличивается твёрдость металлического изделия;
  • Повышается стойкость к механическим воздействиям;
  • Снижается сопротивление к динамическим нагрузкам и устойчивость к пластическим деформациям с противоположенным знаком (эффект Баушингера);
  • Теряются показатели пластичности, такие как относительное остаточное удлинение и сужение.

В силу этого снижается предел текучести металла – предельное напряжение на изделие, при котором оно начинает пластически деформироваться. Если степень нагрузки не превышает допустимый предел, то металл возвращается к своему первоначальному состоянию после прекращения воздействия сторонних сил. Напряжение выше предела тягучести недопустимо для нагартованной стали, которая используется при возведении несущих конструкций различных зданий и сооружений.

Деформируемые алюминиевые сплавы

В зависимости от химического состава, деформируемые алюминиевые сплавы делятся на несколько групп, а исходя из методов повышения механических свойств - на две категории:

  • Деформационно-упрочняемые сплавы. Очень много деформируемых алюминиевых сплавов получают повышение своих свойств путём нагартовки ( полезного наклёпа). К ним относятся сплавы алюминия с марганцем, и алюминия с марганцем и магнием. Упрочнение достигается вследствие пластического деформирования изделия. Пластическое деформирование (наклёп) происходит вместе с различными вариантами отжига для достижения необходимых характеристик. Такие сплавы называют деформационно-упрочняемыми, а также термически неупрочняемыми. Они обладают хорошей прочностью, свариваемостью, пластичностью, сопротивляемостью коррозии.
  • Термически упрочняемые сплавы. Они изменяют свой состав, приобретают высокие механические свойства, только после термической обработки, которая включает в себя: интенсивный нагрев под закалку, быстрое охлаждение до комнатной температуры, уплотнение старением. Сплавы, упрочняемые термически, могут быть как деформируемые, так и литейные.

Где применяются нагартованные изделия?

Металлические детали с деформационным наклёпом, обладают отличными эксплуатационными характеристиками. Они незаменимы в конструкциях, которые подвержены значительным механическим нагрузкам, неблагоприятным воздействиям (резким перепадам температуры, колебаниям давления и пр.) Нагартоваванная сталь используется в различных отраслях производства: машиностроении, строительстве, судостроении, в автопроме и пр. Нагартованные алюминиевые листы (АМцН) и (АМцН2) применяются для обшивки судов, при создании строительных конструкций, в пищевом производстве, в автомобилестроении для изготовления радиаторов, рам, заклёпок. На сегодняшний день, благодаря своим прочностным свойствам и способности значительно увеличить эффективность металлообработки, нагартовка имеет обширную область применения. Наклёп металла – это эффективный способ его упрочнения.

Деформационное упрочнение металлов.Наклеп и нагартовка металла.

grafik-nagartovka-prochnost-plastichnost

Наклеп и нагартовка

Предел текучести и наклеп

naklep-sxema.jpg

Рисунок 2 – Увеличение предела текучести металла после его нагружения выше предела текучести

Что такое наклеп металла Атомы, решетка, дислокации

Когда материал подвергается механическому нагружению, в его кристаллической структуре образуются микроскопические дефекты, которые известны как дислокации. Если нагрузки продолжают увеличиваться, эти дислокации начинают продвигаться и взаимодействовать между собой. Таким образом они образуют новую внутреннюю структуру, которая сопротивляется дальнейшей пластической деформации. Эта структура повышает предел текучести материала, то есть его способность сопротивляться прилагаемым усилиям. При этом пластические свойства материала снижаются. Одним из наиболее известных путей намеренного создания наклепа является холодная пластическая формовка деталей и изделий – холодная обработка металлов давлением. Типичными процессами холодной обработки металлов давлением являются:

kovka-metalla.jpg

Рисунок 3 – Ковка металла

prokatka-metalla.jpg

Рисунок 4 – Прокатка металла

pressovanie-metallov.jpg

Рисунок 5 – Прессование металла

volochenie-metallov.jpg

Рисунок 6 – Волочение металла

Уменьшение плотности металла

Стандарты о наклепе и нагартовке

Когда «наклеп», а когда «нагартовка»?

Что такое холодная деформация

Что такое горячая деформация

Деформируемые алюминиевых сплавов

Нагартовка деформационно-упрочняемых сплавов Модификация структуры

5083-nagartovka.jpg


Рисунок 6.1 – Кривые нагартовки алюминиевого сплава 5083 [4]

nagartovka-mexsvoystva.jpg


Рисунок 6.2 – Влияние деформационного упрочнения на механические свойства:
предел прочности при растяжении, предел текучести (0,2%) и относительное удлинение [3]

otzhig-izotermicheski.jpg

otzhig-mikrostruktura-tverdost.jpg

Как и у других металлов и сплавов, существует критическая зона деформационного упрочнения (рисунок а35). Если отжиг применяется к материалу в состоянии, которое находится в этой критической зоне, то может происходить бесконтрольный рост зерна. Это делает последующие операции формовки, такие как волочение и гибки более трудными. После деформации поверхность металла может иметь вид, который называют «апельсиновая корка».

razmer-zerna-nagartovka.jpg

nagartovka-otzhig-alyuminiy.jpg


Рисунок 9.2- Различие нагартованных состояний H14 и H24 [5]

Нагартовка термически упрочняемых сплавов

Влияние температуры нагартовки

1. The welding of aluminium and its alloys / Gene Mathers – Woodhead Publishing Ltd, 2002

2. Designing with Aluminum Alloys / Nack J. Kim – Handbook of Mechanical Alloy Design // ed. E. Totten & others, 2004 – pp. 441-486.

Читайте также: