Название соединений серы с металлами

Обновлено: 05.10.2024

Сера относится к семейству p-элементов. Электронная конфигурация серы [Ne]3s 2 3p 4 . Для серы характерно наличие трех степеней окисления «-2», «+4» и «+6».

Для получения серы используют реакцию Вакенродера (1) или получают ее неполным окислением сероводорода (2):

Из-за наличия нескольких степеней окисления сера способна проявлять и окислительные (в реакциях с металлами) и восстановительные (в реакциях с сильными окислителями) свойства:

Fe 0 -2e = Fe 2+ — процесс окисления (восстановитель)

S 0 +2e = S 2- — процесс восстановления (окислитель)

S 0 – 4e = S 4+ — процесс окисления (восстановитель)

O2 0 + 2e = 2O 2- — процесс восстановления (окислитель)

Сера взаимодействует с концентрированными растворами кислот (растворяется в них) и со щелочами (диспропорционирует):

Сероводород. Сероводородная кислота. Сульфиды

При нагревании серы с водородом происходит обратимая реакция в результате которой выделяется сероводород – бесцветный газ с запахом тухлых яиц, ядовитый и плохо растворимый в воде:

Однако, выход сероводорода в этой реакции невелик и для его получения чаще всего используют реакцию действия разбавленных кислот на сульфиды (соли сероводородной кислоты):

Водный раствор сероводорода – очень слабая кислота, диссоциация которой протекает в две ступени:

В связи с этим, для сероводородной кислоты характерна способность к образованию солей двух видов – средних – сульфидов (кислотный остаток — S 2- ) и кислых – гидросульфидов (кислотный остаток — HS — ).

Сероводородная кислота – сильный восстановитель, т.к. сера, входящая в состав этого вещества, находится в низшей степени окисления и способна повысить её до «+4» или «+6», поэтому состав продуктов реакции определяется силой и количеством окислителя:

Для сульфидов, как для солей образованных слабой кислотой, характерна способность к гидролизу. Сульфиды металлов, стоящих в ряду активности левее железа, растворимы в сильных кислотах:

Качественной реакцией на H2S и растворимые в воде сульфиды является:

S 2- + Pb 2+ = PbS↓ (осадок черного цвета)

Оксид серы (IV). Сернистая кислота

В степени окисления «+4» сера образует оксид, которому соответствует кислота. Оксид серы (IV) представляет собой газообразное вещество (сернистый газ) без цвета, но обладающее резким запахом, хорошо растворимое в воде.

Выделяют промышленные и лабораторные способы получения оксида серы (IV). Так, в промышленности (1), его получают при обжиге сульфидов, а в лаборатории (2) – при действии сильных кислот на сульфиты:

В водном растворе оксида серы (IV) возможно одновременное существование нескольких химических равновесий:

Образующаяся в результате сернистая кислота (H2SO3) является двухосновной, поэтому способна к образованию двух типов солей – средних — сульфитов (кислотный остаток SO3 2 ) и кислых — гидросульфитов (кислотный остаток HSO2 — ).

Для оксида серы (IV), сернистой кислоты и её солей характерны химические свойства, которые можно разделить на 3 группы: кислотно-основные реакции (1), реакции окисления (2) и реакции восстановления (2):

Качественная реакция на SO2 и сульфиты – обесцвечивание раствора перманганата калия:

Оксид серы (VI). Серная кислота

Оксид серы (VI) представляет собой бесцветную жидкость, которую получают окислением оксида серы (IV) кислородом в присутствии катализатора (V2O 5):

Оксид серы (VI) хорошо растворим в воде (образуется серная кислота) и в 100%-ной серной кислоте (образуется олеум):

Серная кислота представляет собой тяжелую вязкую жидкость, которая хорошо смешивается с водой в любых отношениях. Водный раствор серной кислоты – сильная кислота. Поскольку H2SO4 двухосновная кислота, она способна образовывать два типа солей – средние – сульфаты (кислотный остаток SO4 2- ) и кислые – гидросульфиты (кислотный остаток HSO4 — ).

При взаимодействии с металлами (как, стоящими в ряду активности до водорода, так и после него) серная кислота восстанавливается до оксида серы (IV):

Разбавленная серная кислота окисляет только металлы, стоящими в ряду активности до водорода:

Качественной реакцией на серную кислоту и растворимые сульфаты является образование осадка сульфата бария – осадка белого цвета, нерастворимого в щелочах и кислотах:

Примеры решения задач

Задание Осуществите ряд превращений S→H2S→SO2→SO3→H2SO4
Решение Получение сероводорода из серы осуществляют путем её восстановления водородом:

Оксид серы (IV) из сероводорода получают путем его окисления кислородом:

Чтобы получить оксид серы (VI) из оксида серы (IV) необходимо окислить оксид серы (IV) кислородом:

Оксид серы (VI) типичный кислотный оксид, который при взаимодействии с водой образует кислоту, поэтому, для того, чтобы получить серную кислоту из оксида серы (VI) необходимо пропустить его через воду:

Задание При взаимодействии серы с концентрированной азотной кислотой (массовая доля 60%, плотность раствора 1,27 г,мл) образовалась серная кислота и оксид азота (II) объемом 67,2 л (н.у.). Вычислите массу серы и объем раствора азотной кислоты, вступивших в реакцию.
Решение Запишем уравнение реакции:

Найдем количество вещества оксида азота:

моль.

Вычислим массу серы:

Для расчета объема азотной кислоты необходимо знать её количество. По уравнению реакции для образования 2 моль оксида азота (II) необходимо 2 моль азотной кислоты:

Определим массу азотной кислоты:

Вычислим массу раствора азотной кислоты, зная массовую долю HNO3 в растворе. По определению:

m_{(P-PA)}=\frac{m_{(HNO_3)}\cdot 100}{\omega}=\frac{189 \cdot 100}{60}=315

(г).

Определим объем раствора 60 %-ной азотной кислоты, необходимый для взаимодействия:

V=\frac{m_{(P-PA)}}{\rho}=\frac{315}{1,37}=229,9

(мл).

Серная кислота

Серная кислота H2SO4 – это сильная кислота, двухосновная, прочная и нелетучая. При обычных условиях серная кислота – тяжелая маслянистая жидкость, хорошо растворимая в воде.

Растворение серной кислоты в воде сопровождается выделением значительного количества кислоты. Поэтому по правилам безопасности в лаборатории при смешивании серной кислоты и воды мы добавляем серную кислоту в воду небольшими порциями при постоянном перемешивании.


Валентность серы в серной кислоте равна VI.

Способы получения

1. Серную кислоту в промышленности производят из серы, сульфидов металлов, сероводорода и др. Один из вариантов — производство серной кислоты из пирита FeS2.

Основные стадии получения серной кислоты :

  • Сжигание или обжиг серосодержащего сырья в кислороде с получением сернистого газа.
  • Очистка полученного газа от примесей.
  • Окисление сернистого газа в серный ангидрид.
  • Взаимодействие серного ангидрида с водой.



Рассмотрим основные аппараты, используемые при производстве серной кислоты из пирита (контактный метод):

В контактном аппарате производится окисление сернистого газа до серного ангидрида. Процесс является обратимым. Поэтому необходимо выбрать оптимальные условия протекания прямой реакции (получения SO3):

  • температура: оптимальной температурой для протекания прямой реакции с максимальным выходом SO3 является температура 400-500 о С. Для того чтобы увеличить скорость реакции при столь низкой температуре в реакцию вводят катализатор – оксид ванадия (V) V2O5.
  • давление: прямая реакция протекает с уменьшением объемов газов. Для смещения равновесия вправо процесс проводят при повышенном давлении.

Однако, если для поглощения оксида серы использовать воду, то образуется серная кислота в виде тумана, состоящего из мельчайших капелек серной кислоты. Для того, чтобы не образовывался сернокислотный туман, используют 98%-ную концентрированную серную кислоту. Оксид серы очень хорошо растворяется в такой кислоте, образуя олеум: H2SO4·nSO3.

Общие научные принципы химического производства:

  1. Непрерывность.
  2. Противоток
  3. Катализ
  4. Увеличение площади соприкосновения реагирующих веществ.
  5. Теплообмен
  6. Рациональное использование сырья

Химические свойства

Серная кислота – это сильная двухосновная кислота .

1. Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени:

По второй ступени серная кислота диссоциирует частично, ведет себя, как кислота средней силы:

HSO4 – ⇄ H + + SO4 2–

2. Серная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.

Например , серная кислота взаимодействует с оксидом магния:

Еще пример : при взаимодействии серной кислоты с гидроксидом калия образуются сульфаты или гидросульфаты:

Серная кислота взаимодействует с амфотерным гидроксидом алюминия:

3. Серная кислота вытесняет более слабые из солей в растворе (карбонаты, сульфиды и др.). Также серная кислота вытесняет летучие кислоты из их солей (кроме солей HBr и HI).

Например , серная кислота взаимодействует с гидрокарбонатом натрия:

Или с силикатом натрия:

Концентрированная серная кислота реагирует с твердым нитратом натрия. При этом менее летучая серная кислота вытесняет азотную кислоту:

Аналогично – концентрированная серная кислота вытесняет хлороводород из твердых хлоридов, например , хлорида натрия:

4. Т акже серная кислота вступает в обменные реакции с солями.

Например , серная кислота взаимодействует с хлоридом бария:

5. Разбавленная серная кислота взаимодействует с металлами, которые расположены в ряду активности металлов до водорода. При этом образуются соль и водород.

Например , серная кислота реагирует с железом. При этом образуется сульфат железа (II):

Серная кислота взаимодействует с аммиаком с образованием солей аммония:

Концентрированная серная кислота является сильным окислителем . При этом она обычно восстанавливается до сернистого газа SO2. С активными металлами может восстанавливаться до серы S, или сероводорода Н2S.

Железо Fe, алюминий Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании реакция возможна.

При взаимодействии с неактивными металлами концентрированная серная кислота восстанавливается до сернистого газа:

При взаимодействии с щелочноземельными металлами и магнием концентрированная серная кислота восстанавливается до серы:

При взаимодействии с щелочными металлами и цинком концентрированная серная кислота восстанавливается до сероводорода:

6. Качественная реакция на сульфат-ионы – взаимодействие с растворимыми солями бария. При этом образуется белый кристаллический осадок сульфата бария:

BaCl2 + Na2SO4 → BaSO4 ↓ + 2NaCl

Видеоопыт взаимодействия хлорида бария и сульфата натрия в растворе (качественная реакция на сульфат-ион) можно посмотреть здесь.

7. Окислительные свойства концентрированной серной кислоты проявляются и при взаимодействии с неметаллами.

Например , концентрированная серная кислота окисляет фосфор, углерод, серу. При этом серная кислота восстанавливается до оксида серы (IV):

Уже при комнатной температуре концентрированная серная кислота окисляет галогеноводороды и сероводород:

VI группа главная подгруппа периодической таблицы Менделеева (кислород, сера)

К элементам главной подгруппы VI группы периодической таблицы Менделеева относятся:

Общая характеристика элементов 6 группы главной подгруппы

От O к Po (сверху вниз в периодической таблице)

Увеличивается

  • атомного радиуса,
  • металлических, основных, восстановительных свойств,

Уменьшается

  • электроотрицательность,
  • энергия ионизация,
  • сродство к электрону.

Периодическая таблица_6 группа

Электронные конфигурации у данных элементов схожи, все они содержат 6 электронов на внешнем слое ns 2 np 4 :

Электронное строение кислорода и серы

Нахождение в природе кислорода и серы

Кислород занимает первое место среди элементов по распространенности в земной коре. Содержится он главным образом в силикатах и составляет около 47 % массы твёрдой земной коры. В больших количествах связанного кислорода содержится в воде — 85,82 % по массе. Также кислород содержится более, чем в 1500 соединений земной коры. В атмосфере доля свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе.

Сера встречается в виде самородной серы, сульфатов (CaSO4∙2H2O, CaSO4∙H2O, Na2SO4∙10H2O, MgSO4∙7H2O), сульфидов (FeS2, CuS, CuFeS2, PbS, ZnS, HgS) и в промышленных газах.

Самородная сера встречается в местах вулканической активности совместно с сернистыми фумаролами и сернистыми водами (с содержанием > 25 %).

Сера_нахождение в природе

Аллотропные модификации серы

Кислород

Способы получения кислорода

В природе

Кислород образуется в процессе фотосинтеза:

Промышленный способ

Лабораторный способ

  • термическое окислительно-восстановительное разложение солей:
  • Для автономного дыхания кислород получают в герметически замкнутых помещениях и в аппаратах при помощи реакции:

Физические свойства кислорода

При обычных условиях молекулярный кислород O2 – это малорастворимый в воде газ без цвета, запаха и вкуса.

При сильном охлаждении под давлением переходит в бледно — голубую жидкость с Ткип = — 183°С. При Т = -219°С образует сине — голубые кристаллы.

Химические свойства кислорода

Кислород — сильный окислитель, уступающий по химической активности только фтору.

Вступает во взаимодействия со всеми элементами, кроме инертных газов (Не, Ne и Аг). Со многими простыми веществами реагирует непосредственно при обычных условиях или при нагревании или в присутствии катализаторов (кроме Au, Pt, Hal2, благородные газы).

Большинство реакций с участием О2 экзотермичны, часто часто сопровождаются горением, иногда — взрывом.

Взаимодействие с простыми веществами

С металлами

  • Кислород взаимодействует с металлами, с образованием оксидов металлов:
  • Сщелочными металламив результате реакций образуются различные кислородсодержащие продукты:

4Li + О2 = 2Li2O оксид лития

К + О2 = КО2 супероксид калия

  • С железом образуется смесь оксидов:
  • С марганцем образуется диоксид марганца:

С неметаллами

При взаимодействии с неметаллами (кроме фтора и инертных газов) образуются оксиды, со степенью окисления кислорода – 2:

Окисление сложных веществ

Горение сульфидов

Горение водородных соединений

Окисление оксидов

Кислород окисляет входящие в оксид элементы до более высокой степени окисления:

Окисление гидроксидов и солей

Окисление гидроксидов и солей в водных растворах происходит, если исходное вещество неустойчиво на воздухе:

Окисление аммиака

В отсутствие катализатора при окислении аммиака кислородом образуется азот, а в присутствии катализатора — оксида азота(II):

Окисление фосфина

На воздухе самопроизвольно воспламеняется:

Окисление силана

На воздухе он самовоспламеняется (часто со взрывом) с образованием SiO2 и H2O:

Окисление органических веществ

  • Все органические соединения горят, окисляясь кислородом воздуха полностью:

Продукты окисления различных элементов, входящих в молекулы органических соединений:

Кроме горения возможны также реакции неполного окисления:

Способы получения серы

  • Извлечение самородной серы из ее месторождений или вулканов
  • Получение серы из серной руды с помощью пароводяного, фильтрационного, термического, центрифугального и экстракционного методов.
  • Переработка природных газов, содержащих H2S и их окисление при недостатке О2.

Физические свойства серы

Сера — твердое хрупкое вещество желтого цвета. Не смачивается водой и практически нерастворимо в ней. Имеет несколько аллотропных модификаций. См. аллотропные модификации серы.

Химические свойства серы

При обычных температуре и давлении химическая активность серы небольшая. При нагревании сера довольно активна, и проявляет свойства как окислителя, так и восстановителя.

Свойства окислителя сера проявляет при взаимодействии с элементами, расположенными ниже и левее в Периодической системе, а свойства восстановителя — с элементами, расположенными выше и правее в Периодической системе.

Непосредственно сера не взаимодействует с азотом и йодом.

Взаимодействие с простыми веществами

С кислородом

Горение серы на воздухе с образованием оксида серы (IV):

В присутствии катализаторов:

С водородом

С водородом сера вступает в реакцию при нагревании, образуя сероводород:

С галогенами

При взаимодействии со всеми галогенами, кроме йода образуются галогениды:

С фосфором

Взаимодействие серы с фосфором приводит к образованию сульфидов фосфора

С углеродом

В реакции серы с углеродом образуется сероуглерод:

С металлами

При взаимодействии с металлами сера выступает в качестве окислителя, образуя сульфиды.

Щелочные металлы реагируют с серой без нагревания, остальные металлы (кроме золота Au и платины Pt) –при нагревании:

Взаимодействие со сложными веществами

С водой

Сера вступает в реакцию диспропорционирования с перегретым паром:

С окислителями

В реакциях с окислителями сера окисляется до оксида серы (IV) SO2 или до серной кислоты H2SO4 при протекании реакции в растворе:

С щелочами

При взаимодействии с щелочами сера диспропорционирует до сульфита и сульфида:

Соединения серы

Сероводород H2S – это бинарное летучее водородное соединение соединение с серой. H2S — бесцветный ядовитый газ, с неприятным удушливым запахом тухлых яиц. При концентрации > 3 г/м 3 вызывает смертельное отравление.

Сероводород тяжелее воздуха и легко конденсируется в бесцветную жидкость. Растворимость в воде H2S при обычной температуре составляет 2,5.

В твердом состоянии имеет молекулярную кристаллическую решетку.

Геометрическая форма молекулы сероводорода представляет собой сцепленные между собой атомы H-S-H с валентным углом 92,1 о .

cтроение сероводорода

Качественная реакция для обнаружения сероводорода

Для обнаружения анионов S 2- и сероводорода используют реакцию газообразного H2S с Pb(NO3)2:

Влажная бумага, смоченная в растворе Pb(NO3)2 чернеет в присутствии H2S из-за получения черного осадка PbS.

Химические свойства серы

H2S является сильным восстановителем

При взаимодействии H2S с окислителями образуются различные вещества — S, SО2, H2SO4

  • Взаимодействие с кислотами-окислителями:
  • Взаимодействие со сложными окислителями:
  • Сероводородная кислота H2S двухосновная кислота и диссоциирует по двум ступеням:

1-я ступень: H2S → Н + + HS —

2-я ступень: HS — → Н + + S 2-

H2S очень слабая кислота, несмотря на это имеет характерные для кислот химические свойства. Взаимодействует:

  • с малоактивными металлами (Аg, Си, Нg) при совместном присутствии окислителей:
  • с некоторыми солями сильных кислот, если образующийся сульфид металла нерастворим в воде и в сильных кислотах:

Реакция с нитратом свинца в растворе – это качественная реакция на сероводород и сульфид-ионы.

Сульфиды

Получение сульфидов

  • Непосредственно из простых веществ:

S + Fe → FeS

  • Восстановление сульфатов при прокаливании с углем:

Физические свойства сульфидов

Сульфиды – это бинарные соединения серы с элементами с меньшей электроотрицательностью, в том числе с некоторыми неметаллами (С, Si, Р, As и др.).

По растворимости в воде и кислотах сульфиды классифицируют на:

  • растворимые в воде — сульфиды щелочных металлов и аммония;
  • нерастворимые в воде, но растворимые в минеральных кислотах — сульфиды металлов, расположенных до железа в ряду активности (белые и цветные сульфиды ZnS, MnS, FeS, CdS);
  • нерастворимые ни в воде, ни в минеральных кислотах — черные сульфиды (CuS, HgS, PbS, Ag2S, NiS, CoS)
  • гидролизуемые водой — сульфиды трехвалентных металлов (алюминия и хрома (III))

По цвету сульфиды можно разделить на:

Химические свойства сульфидов

Обратимый гидролиз сульфидов

  • Хорошо растворимыми в воде являются сульфиды щелочных металлов и аммония, но в водных растворах они в значительной степени подвергаются гидролизу. Реакция среды — сильнощелочная:

S 2- + H2O → HS — + ОН —

  • Сульфиды щелочно-земельных металлов и Mg, при взаимодействии с водой подвергаются полному гидролизу и переходят в растворимые кислые соли — гидросульфиды:

При нагревании растворов сульфидов гидролиз протекает и по 2-й ступени:

Необратимый гидролиз сульфидов

  • Сульфиды некоторых металлов (Cr2S3, Fe2S3, Al2S3) подвергаются необратимому гидролизу, полностью разлагаясь в водных растворах:

Нерастворимые сульфиды гидролизу не подвергаются

NiS + HСl ≠

  • Некоторые из сульфидов растворяются в сильных кислотах:
  • Сульфиды Ag2S, HgS, Hg2S, PbS, CuS не pacтворяются не только в воде, но и во многих кислотах.
  • Сульфиды обладают восстановительными свойствами и вступают в реакции с окислителями:
  • Окислительный обжиг сульфидов является важной стадией переработки сульфидного сырья в различных производствах

Взаимодействия сульфидов с растворимыми солями свинца, серебра, меди являются качественными на ион S 2− :

Оксид серы (IV), диоксид серы, сернистый газ, сернистый ангидрид (SO2)

Способы получения сернистого газа

  • Окисление серы, сероводорода и сульфидов кислородом воздуха:
  • Действие высокой температуры на сульфиты (термическое разложение):
  • Действие сильных кислот на сульфиты:
  • Взаимодействие концентрированной H2SO4 с восстановителями, например с неактивными металлами:

Физические свойства сернистого газа

При обычной температуре SO2 — газ с резким запахом без цвета. В воде растворим хорошо — при 20°С в 1 л воды растворяется 40 л SO2.

Химические свойства сернистого газа

SO2 – типичный кислотный оксид. За счет того, что сера находится в промежуточной степени окисления (+4) SO2 может проявлять свойства как окислителя так и восстановителя.

  • При растворении в воде SO2 частично соединяется с молекулами воды с образованием слабой сернистой кислоты.
  • Как кислотный оксид, SO2 вступает в реакции с щелочами и оксидами щелочных и щелочноземельных металлов:
  • При взаимодействии с окислителями SO2проявляет восстановительные свойства. При этом степень окисления серы повышается:

Обесцвечивание раствора перманганата калия KMnO4 является качественной реакцией для обнаружения сернистого газа и сульфит-иона

  • SO2 проявляет окислительные свойства при взаимодействии с сильными восстановителями, восстанавливаясь чаще всего до свободной серы:

Оксид серы (VI), триоксид серы, серный ангидрид (SO3)

Способы получения серного ангидрида

  • SO3 можно получить из SO2путем каталитического окисления последнего кислородом:
  • Разложением сульфата железа (III):

Физические свойства серного ангидрида

При обычных условиях SO3 представляет собой бесцветную жидкость с характерным резким запахом. На воздухе SO3 «дымит» и сильно поглощает влагу.

SO3 – тяжелее воздуха, хорошо растворим в воде.

Химические свойства серного ангидрида

Оксид серы (VI) – это кислотный оксид.

  • Хорошо поглощает влагу и реагирует с водой образуя серную кислоту:
  • Как кислотный оксид, SO3взаимодействует с щелочами и основными оксидами, образуются средние или кислые соли:

SO3 + MgO → MgSO4 (при сплавлении):

SO3 + ZnO = ZnSO4

  • SO3проявляет сильные окислительные свойства, так как сера в находится в максимальной степени окисления (+6).

Вступает в реакции с восстановителями:

  • При растворении в концентрированной серной кислоте образует олеум (раствор SO3 в H2SO4).

Сернистая кислота (H2SO3)

Способы получения сернистой кислоты

При растворении в воде SO2 образует слабую сернистую кислоту, которая сразу частично разлагается:

Физические свойства сернистой кислоты

Сернистая кислота H2SO3 – двухосновная кислородсодержащая кислота. При обычных условиях неустойчива.

Валентность серы в сернистой кислоте равна IV, а степень окисления +4.

строение сернистой кислоты

Химические свойства сернистой кислоты

Общие свойства кислот

  • Сернистая кислота – слабая кислота, диссоциирует в две стадии. Образует два типа солей:
  • кислые – гидросульфиты

Соли сернистой кислоты, сульфиты и гидросульфиты

Способы получения сульфитов

Соли сернистой кислоты получаются при взаимодействии SO2 с щелочами и оксидами щелочных и щелочноземельных металлов:

Физические свойства сульфитов

Сульфиты щелочных металлов и аммония растворимы в воде, сульфиты остальных металлов — нерастворимы или не существуют.

Гидросульфиты металлов хорошо растворимы в Н2O, а некоторые из них, такие как Ca(HSO3)2 существуют только в растворе.

Химические свойства сульфитов

Cернистая кислота – двухосновная, образует нормальные (средние) соли — сульфиты Mex(SO3)y и кислые соли — гидросульфиты Me(HSO3)x.

  • Водные растворы сульфитов подвергаются гидролизу. Реакция среды – щелочная(окрашивают лакмус в синий цвет):

Реакции, протекающие без изменения степени окисления:

  • Нормальные сульфиты в водных растворах, при избытке SO2, переходят в гидросульфиты:
  • Ионно-обменные реакции с другими солями, протекающие с образованием нерастворимых сульфитов:

Сульфиты, также как и SO2, могут быть как восстановителями, так и окислителями, т.к. атомы серы в анионах находятся в промежуточной степени окисления +4

  • Окисление водных растворов сульфитов, и гидросульфитов до сульфатов:
  • Твердые сульфиты при хранении на воздухе также медленно окисляются до сульфатов:
  • При нагревании сухих сульфитов с активными восстановителями (С, Mg, Al, Zn) сульфиты превращаются в сульфиды:
  • При нагревании сухих сульфитов до высоких температур сульфиты диспропорционируют, превращаются в смесь сульфатов и сульфидов:

Серная кислота (H2SO4)

Способы получения серной кислоты

В промышленности серную кислоту производят из серы, сульфидов металлов, сероводорода и др.

Наиболее часто серную кислоту получают из пирита FeS2.

Основные стадии получения серной кислоты включают:

1.Обжиг пирита в кислороде в печи для обжига с получением сернистого газа:

2. Очистка полученного сернистого газа от примесей в циклоне, электрофильтре.

3. Осушка сернистого газа в сушильной башне

4. Нагрев очищенного газа в теплообменнике.

5. Окисление сернистого газа в серный ангидрид в контактном аппарате:

6. Поглощение серного ангидрида серной кислотой в поглотительной башне – получение олеума.

производство серной кислоты

Физические свойства, строение серной кислоты

При обычных условиях серная кислота – тяжелая бесцветная маслянистая жидкость, хорошо растворимая в воде. Максимальная плотность равна 1,84 г/мл

При растворении серной кислоты в воде выделяется большое количество теплоты. Поэтому, по правилам безопасности в лаборатории при приготовлении разбавленного раствора серной кислоты во избежание разбрызгивания необходимо наливать серную кислоту в воду тонкой струйкой по стеклянной палочке при постоянном перемешивании. Но не наоборот!

Качественные реакции для обнаружения серной кислоты и сульфат ионов

Для обнаружения сульфат-ионов используют реакцию с растворимыми солями бария. В результате взаимодействия, образуется белый кристаллический осадок сульфата бария:

Химические свойства серной кислоты

Серная кислота — сильная двухосновная кислота, образует два типа солей: средние – сульфаты, кислые – гидросульфаты.

  • Серная кислота практически полностью диссоциирует в разбавленном в растворе по первой ступени и достаточно по второй ступени:

Характерны все свойства кислот:

  • Реагирует с основными оксидами, основаниями, амфотерными оксидами, амфотерными гидроксидами и аммиаком:
  • Вытесняетболее слабые кислоты из их солей в растворе (карбонаты, сульфиды и др.) и летучие кислоты из их солей (кроме солей HBr и HI):
  • Концентрированная серная кислота реагирует с твердыми солями, например нитратом натрия, хлорида натрия.

Разбавленная серная кислота взаимодействует с металлами, расположенными в ряду напряжения металлов до водорода. В результате реакции образуются соль и водород:

Концентрированная серная кислота — сильный окислитель. Реакция с металлами протекает без вытеснения водорода из кислоты. В зависимости от активности металла образуются различные продукты реакции:

  • Активные металлы и цинк при обычной температуре с концентрированной серной кислотой образуют соль, сероводород (или серу) и воду:
  • Металлы средней активности с концентрированной H2SO4 образуют соль, серу и воду:
  • Такие металлы, как железо Fe, алюминий Al, хром Cr пассивируются концентрированной серной кислотой на холоде. При нагревании, при удалении оксидной пленки реакция возможна.
  • Неактивные металлы восстанавливают концентрированную серную кислоту до сернистого газа:
  • В реакциях с неметаллами концентрированная серная кислота также проявляет окислительные свойства:
  • Концентрированная серная кислота широко используется в химических процессах как водоотнимающий агент, т.к. проявляет сильное водоотнимающее действие. В органической химии ее используют при получении спиртов, простых и сложных эфиров, альдегидов и т.д.

Соли серной кислоты, сульфаты, гидросульфаты

Способы получения солей серной кислоты

Сульфаты можно получить при взаимодействии серной кислоты с металлами, оксидами, гидроксидами (см. Химические свойства серной кислоты). А также при взаимодействии с другими солями, если продуктом реакции является нерастворимое соединение.

Физические свойства солей серной кислоты

Кристаллы разного цвета. Многие средние и кислые сульфаты растворимы в воде. Плохо растворяются или не растворяются в воде сульфаты многозарядных щёлочноземельных металлов (BaSO4, RaSO4), сульфаты лёгких щёлочноземельных металлов (CaSO4, SrSO4) и сульфат свинца.

Средние сульфаты щелочных металлов термически устойчивы. Кислые сульфаты щелочных металлов при нагревании разлагаются.

Многие средние сульфаты образуют устойчивые кристаллогидраты:

CuSO4 ∙ 5H2O − медный купорос

FeSO4 ∙ 7H2O − железный купорос

ZnSO4 ∙ 7H2O − цинковый купорос

KАl(SO4)2 x 12H2O – алюмокалиевые квасцы.

Химические свойства солей серной кислоты

Разложение сульфатов на различные классы соединений в зависимости от металла, входящего в состав соли.

Физические и химические свойства серы

Электронная конфигурация 1s 2 2s 2 2p 6 3s 2 3p 4 . Символ – S . Относительная атомная масса – 32 а.е.м. Температура кипения – 444,67 С, плавления – 112,85 С. Неметалл.

Химические свойства серы

Сера взаимодействует с простыми веществами – неметаллами, проявляя при этом свойства восстановителя. Непосредственно сера взаимодействует только с фтором. Реакции взаимодействия с другими металлами происходят при нагревании:

В реакциях взаимодействия с простыми веществами – металлами сера проявляет свойства окислителя. Эти реакции протекают при нагревании и очень бурно:

Сера вступает в реакции взаимодействия со сложными веществами. Она способна растворяться в концентрированных кислотах и расплавах щелочей, причем в последнем случае сера диспропорционирует. Эти реакции происходят при кипении реакционной смеси:

При взаимодействии серы с сульфидами металлов происходит образование полисульфидов:

Физические свойства серы

Сера – кристаллическое вещество желтого цвета. Существует в виде двух аллотропных модификаций – α-серы (ромбическая кристаллическая решетка) и β-серы (моноклинная кристаллическая решетка), а также аморфной формы – пластическая сера (рис. 1). В кристаллическом состоянии сера построена из неплоских циклических молекул S8. Сера плохо растворяется в этаноле, хорошо в сероуглероде и жидком аммиаке. Не реагирует с жидкой водой и йодом.

Рис. 1. Формы существования серы.

Получение и применение серы

В промышленных масштабах серу получают из природных месторождений самородной серы. Сера является сырьем для производства серной кислоты. Е1 используют в бумажной промышленности, в сельском хозяйстве, в производстве резины, красителей, пороха и т.д. Широкое применение сера нашла в медицине, например, сера входит в состав различных мазей и присыпок, применяемых при кожных заболеваниях и т.д.

Задание Какое количество вещества атомарной серы содержится в сульфиде железа (II) массой 22 г.
Решение Молярная масса сульфида железа (II), рассчитанная с использованием таблицы химических элементов Д.И. Менделеева – 88 г/моль. Тогда, количество вещества сульфида железа (II) будет равно:

n(FeS) = m(FeS) / M(FeS);

n(FeS) = 22 / 88 = 0,25 моль.

Т.к. в состав молекулы сульфида железа (II) входит один атом серы, то количество вещества атомарной серы будет также равно 0,25 моль.

Задание При взаимодействии серы с концентрированной азотной кислотой (ω = 60%, ρ = 1,27 г/мл) образовалась серная кислота и выделился оксид азота (II), объемом 67,2 л. Какая масса серы и какой объем раствора азотной кислоты потребовались для этого?
Решение Запишем уравнение реакции:

Рассчитаем количество вещества оксида азота (II):

n(NO) = 67,2 / 22,4 = 3 моль.

Согласно уравнению n(NO):n(S) = 2:1, следовательно n(S) = 1/2×n(NO) = 1,5 моль. Молярная масса серы, рассчитанная с использованием таблицы химических элементов Д.И. Менделеева – 32 г/моль. Тогда масса серы, вступившей в реакцию будет равна:

m(S) = n(S) × M(S) = 1,5 × 32 = 48 г.

Согласно уравнению n(NO):n(HNO3) = 2:2, следовательно n(HNO3) = n(NO) = 3 моль. Молярная масса азотной кислоты, рассчитанная с использованием таблицы химических элементов Д.И. Менделеева – 63 г/моль. Тогда масса азотной кислоты, вступившей в реакцию будет равна:

Масса раствора азотной кислоты:

Тогда объем раствора азотной кислоты, вступившей в реакцию:

V(HNO3) = m(HNO3)solution / ρ = 315 / 1,27 = 229,9 мл.

Читайте также: