Объясните строение металлического проводника

Обновлено: 19.09.2024

В начале XX века была создана классическая электронная теория проводимости металлов (П. Друде, 1900 г., Х.Лоренц, 1904 г.), которая дала простое и наглядное объяснение большинства электрических и тепловых свойств металлов.

Рассмотрим некоторые положения этой теории.

Свободные электроны

Металлический проводник состоит из:

1) положительно заряженных ионов, колеблющихся около положения равновесия, и

2) свободных электронов, способных перемещаться по всему объему проводника.

Таким образом, электрические свойства металлов обусловлены наличием в них свободных электронов с концентрацией порядка 10 28 м –3 , что примерно соответствует концентрации атомов. Эти электроны называются электронами проводимости. Они образуются путем отрыва от атомов металлов их валентных электронов. Такие электроны не принадлежат какому-то определенному атому и способны перемещаться по всему объему тела.

В металле в отсутствие электрического поля электроны проводимости хаотически движутся и сталкиваются, чаще всего с ионами кристаллической решетки (рис. 1). Совокупность этих электронов можно приближенно рассматривать как некий электронный газ, подчиняющийся законам идеального газа. Средняя скорость теплового движения электронов при комнатной температуре составляет примерно 10 5 м/с.

Электрический ток в металлах

Ионы кристаллической решетки металла не принимают участие в создании тока. Их перемещение при прохождении тока означало бы перенос вещества вдоль проводника, что не наблюдается. Например, в опытах Э. Рикке (1901 г.) масса и химический состав проводника не изменялся при прохождении тока в течении года.

Экспериментальное доказательство того, что ток в металлах создается свободными электронами, было дано в опытах Л.И. Мандельштама и Н. Д. Папалекси (1912 г., результаты не были опубликованы), а также Т. Стюарта и Р. Толмена (1916 г.). Они обнаружили, что при резкой остановке быстро вращающейся катушки в проводнике катушки возникает электрический ток, создаваемый отрицательно заряженными частицами — электронами.

  • электрический ток в металлах — это направленное движением свободных электронов.

Так как электрический ток в металлах образуют свободные электроны, то проводимость металлических проводников называется электронной проводимостью.

Электрический ток в металлах возникает под действием внешнего электрического поля. На электроны проводимости, находящиеся в этом поле, действует электрическая сила, сообщающая им ускорение, направленное в сторону, противоположную вектору напряженности поля. В результате электроны приобретают некоторую добавочную скорость (ее называют дрейфовой). Эта скорость возрастает до тех пор, пока электрон не столкнется с атомом кристаллической решетки металла. При таких столкновениях электроны теряют свою избыточную кинетическую энергию, передавая ее ионам. Затем электроны снова разгоняются электрическим полем, снова тормозятся ионами и т.д. Средняя скорость дрейфа электронов очень мала, около 10 –4 м/с.

  • Скорость распространения тока и скорость дрейфа не одно и то же. Скорость распространения тока равна скорости распространения электрического поля в пространстве, т.е. 3⋅10 8 м/с.
  • При столкновении с ионами электроны проводимости передают часть кинетической энергии ионам, что приводит к увеличению энергии движения ионов кристаллической решетки, а, следовательно, и к нагреванию проводника.

Сопротивление металлов

Сопротивление металлов объясняется столкновениями электронов проводимости с ионами кристаллической решетки. При этом, очевидно, чем чаще происходят такие столкновения, т. е. чем меньше среднее время свободного пробега электрона между столкновениями τ, тем больше удельное сопротивление металла.

В свою очередь, время τ зависит от расстояния между ионами решетки, амплитуды их колебаний, характера взаимодействия электронов с ионами и скорости теплового движения электронов. С ростом температуры металла амплитуда колебаний ионов и скорость теплового движения электронов увеличиваются. Возрастает и число дефектов кристаллической решетки. Все это приводит к тому, что при увеличении температуры металла столкновения электронов с ионами будут происходить чаще, т.е. время τ уменьшается, а удельное сопротивление металла увеличивается.

См. так же

Зависимость сопротивления от температуры

Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления от температуры выражается линейной функцией:

\(~\rho = \rho_0 \cdot (1 + \alpha \cdot \Delta t),\)

где Δt = t - t0, t0 = 0 °C, ρ0, ρ — удельные сопротивления вещества проводника соответственно при 0 °С и t °C, α — температурный коэффициент сопротивления, измеряемый в СИ в Кельвинах в минус первой степени (К -1 ) (или °C -1 ).

  • Температурный коэффициент сопротивления вещества — это величина, численно равная относительному изменению удельного сопротивления проводника при его нагревании на 1 К:

Для всех металлических проводников α > 0 и слабо изменяется с изменением температуры. Для большинства металлов в интервале температур от 0 ° до 100 °С коэффициент α изменяется от 3,3⋅10 –3 до 6,2⋅10 –3 К –1 (таблица 1). У химически чистых металлов α = 1/273 К -1 .

  • Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например, манганин и константан. Их температурные коэффициенты сопротивления очень малы и равны соответственно 1⋅10 –5 К –1 и 5⋅10 –5 К –1 .

Температурный коэффициент сопротивления (при t от 0 °С до 100 °C)

Вещество α, 10 –3 °К –1 Вещество α, 10 –3 °К –1
Алюминий 4,2 Нихром 0,1
Вольфрам 4,8 Олово 4,4
Железо 6,0 Платина 3,9
Золото 4,0 Ртуть 1,0
Латунь 0,1 Свинец 3,7
Магний 3,9 Серебро 4,1
Медь 4,3 Сталь 4,0
Никель 6,5 Цинк 4,2

Если пренебречь изменением размеров металлического проводника при нагревании, то такую же линейную зависимость от температуры будет иметь и его сопротивление

\(~R_t = R_0 \cdot (1 + \alpha \cdot \Delta t) ,\)

где R0, Rt — сопротивления проводника при 0 °С и t °С.

Зависимость удельного сопротивления металлических проводников ρ от температуры t изображена на рисунке 2.


Зависимость сопротивления металлов от температуры используют в термометрах сопротивления. Обычно в качестве термометрического тела такого термометра берут платиновую проволоку, зависимость сопротивления которой от температуры достаточно изучена. Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить. Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.

Сверхпроводимость

В 1911 г. голландский физик Г. Камерлинг-Оннес, изучая изменение электрического сопротивления ртути при низких температурах, обнаружил, что при температуре около 4 К (т.е. при –269 °С) удельное сопротивление скачком уменьшается (рис. 3) до нуля. Это явление Г. Камерлинг-Оннес назвал сверхпроводимостью.


Г. Камерлинг-Оннес был удостоен Нобелевской премии по физике 1913 г. «за исследования свойств вещества при низких температурах».

В дальнейшем было выяснено, что более 25 химических элементов — металлов при очень низких температурах становятся сверхпроводниками. У каждого из них своя критическая температура перехода в состояние с нулевым сопротивлением. Самое низкое значение ее у вольфрама — 0,012 К, самое высокое у ниобия — 9 К.

Сверхпроводимость наблюдается не только у чистых металлов, но и у многих химических соединений и сплавов. При этом сами элементы, входящие в состав сверхпроводящего соединения, могут и не являться сверхпроводниками. Например, NiBi, Au2Bi, PdTe, PtSb и другие.

До 1986 г. были известны сверхпроводники, обладающие этим свойством при очень низких температурах — ниже –259 °С. В 1986-1987 годах были обнаружены материалы с температурой перехода в сверхпроводящее состояние около –173 °С. Это явление получило название высокотемпературной сверхпроводимости, и для его наблюдения можно использовать вместо жидкого гелия жидкий азот.

Широкому применению сверхпроводимости до недавнего времени препятствовали трудности, связанные с необходимостью охлаждения до сверхнизких температур, для чего использовался жидкий гелий. Тем не менее, несмотря на сложность оборудования, дефицитность и дороговизну гелия, с 60-х годов XX века создаются сверхпроводящие магниты без тепловых потерь в их обмотках, что сделало практически возможным получение сильных магнитных полей в сравнительно больших объемах. Именно такие магниты требуются для создания установок управляемого термоядерного синтеза с магнитным удержанием плазмы, для мощных ускорителей заряженных частиц. Сверхпроводники используются в различных измерительных приборах, прежде всего в приборах для измерения очень слабых магнитных полей с высочайшей точностью.

На основе сверхпроводящих пленок создан ряд быстродействующих логических и запоминающих элементов для счетно-решающих устройств. При космических исследованиях перспективно использование сверхпроводящих соленоидов для радиационной защиты космонавтов, стыковки кораблей, их торможения и ориентации, для плазменных ракетных двигателей.

В настоящее время созданы керамические материалы, обладающие сверхпроводимостью при более высокой температуре — свыше 100 К, то есть при температуре выше температуры кипения азота. Возможность охлаждать сверхпроводники жидким азотом, который имеет на порядок более высокую теплоту парообразования, существенно упрощает и удешевляет все криогенное оборудование, обещает огромный экономический эффект.

  1. Wikipedia Сверхпроводимость
  2. Буздин А., Варламов А. Страсти по сверхпроводимости в конце тысячелетия //Квант. — 2000. — № 1. — С. 2-8.
  3. Мякишев Г.Я. Физика: Электродинамика //§2.6. Сверхпроводимость

Недостатки электронной теории проводимости

Несмотря на то, что электронной теории проводимости металлов объяснила ряд явлений, она имеет и свои недостатки.

  1. Из теории следовало, что удельное сопротивление должно быть пропорционально корню квадратному из температуры (\(~\rho \sim \sqrt T\)), между тем, согласно опыту, ρ ~ Т.
  2. Для того чтобы получить значения удельной электрической проводимости металла, полученных из опыта, приходится принимать среднюю длину свободного пробега электронов в сотни раз большей, чем период решетки металла. Иными словами, электрон должен проходит без соударений с ионами решетки сотни атомов.
  3. Данная теория не смогла объяснить причину сверхпроводимости.

Приведенные выше недостатки указывают на то, что классическая электронная теория, представляя электрон как материальную точку, подчиняющуюся законам классической механики, не учитывала некоторых специфических свойств самого электрона, которые еще не были известны к началу XX века. Эти свойства были установлены позднее при изучении строения атома, и в 1924 г. была создана новая, так называемая квантовая или волновая механика движения электронов.

Проводники в электрическом поле - формулы и определение с примерами

Действие электрического поля распространяется на все без исключения природные объекты — от макроскопических тел до микроскопических частиц, входящих в состав вещества: электроны, протоны, позитроны и т. д. Именно эти частицы определяют электрические свойства различных тел.

Рассмотрим взаимодействие электрического поля с наиболее распространенным классом проводников металлами.

Электрические свойства вещества определяются наличием в них электронов, протонов, ионов.

Возьмем два металлических цилиндра и соединим каждый со стержнем заземленного электрометра. Расположим цилиндры между двумя параллельными металлическими пластинами так, чтобы они, касаясь друг друга, составляли единое целое (рис. 1.10). Если зарядим пластины разноименными зарядами, то увидим, что стрелки электрометров отклонятся от положения равновесия и засвидетельствуют наличие заряда на цилиндре (рис. 1.11).

Проводники в электрическом поле - формулы и определение с примерами

Рис. 1.11. Металлические цилиндры в
электрическом поле
пластин зарядились разноименно

Явление возникновения зарядов на проводниках в электрическом поле называется электростатической индукцией.

Если с пластин убрать заряды, то заряды исчезнут и на цилиндрах. Это подтверждает, что на проводнике заряды возникли под действием электрического поля пластин.

Явление возникновения зарядов на проводниках в электрическом поле называется электростатической индукцией.

Проведем предыдущий опыт повторно. Но после того как электрометры отметят наличие зарядов на концах проводника, разведем цилиндры и разрядим пластины. Электрометры и после этого будут отмечать наличие зарядов на цилиндрах (рис. 1.11).

Исследовав с помощью эбонитовой палочки знак заряда цилиндра, увидим, что цилиндры имеют разноименные заряды.

Подобное явление наблюдается при электризации всех металлических тел в электрическом поле. Если к металлическому шарику, не заряженному изначально, поднести наэлектризованную эбонитовую или стеклянную палочку, то шарик будет притягиваться к ним. Это можно объяснить тем, что под действием электрического поля заряженной палочки в шарике происходит перераспределение заряженных частиц (рис. 1.12). Поэтому внутри металлических проводников отсутствует электрическое поле. Это явление применяют для изготовления металлических экранов, защищающих различные приборы от действия электрического поля (рис. 1.13).

Металлические экраны устраняют также нежелательное электрическое взаимодействие в различных электронных устройствах.

Проводники и диэлектрики в электрическом поле

Проводя аналогии между гравитационным и электростатическим взаимодействиями, мы находили общие для них свойства. Однако между ними есть и существенные отличия. Одно из них — всепроникаемость гравитационного поля. Действительно, убежище от силы притяжения построить невозможно. А вот от действия сил электростатического поля можно спрятаться достаточно надежно, построив защиту из проводника. Выясним, почему это возможно.

Каковы особенности внутреннего строения проводников

Любое вещество состоит из молекул, атомов или ионов, которые, в свою очередь, содержат заряженные частицы. Поэтому, если вещество поместить в электрическое поле, это вызовет в веществе определенные изменения, зависящие от свойств самого вещества. В зависимости от электрических свойств вещества делят на проводники, диэлектрики, полупроводники.

Проводники — это вещества, способные проводить электрический ток. Любой проводник содержит заряженные частицы, которые могут свободно перемещаться внутри проводника. Типичные представители проводников — металлы. Внутренняя структура металлов представляет собой кристаллическую решетку, образованную положительно заряженными ионами и находящуюся в «газе» свободных электронов. Проводниками также являются электролиты, а при некоторых условиях — и газы. В электролитах свободные заряженные частицы — это положительные и отрицательные ионы, а в газах еще и электроны.

Электростатические свойства проводников

Свойство 1. Напряженность электростатического поля внутри проводника равна нулю.

Поместим металлический проводник в электростатическое поле (рис. 43.1). Под действием поля движение свободных электронов станет направленным. Если поле не слишком велико, то электроны не могут оставить провод ник и накапливаются в определенной области его поверхности — эта область приобретает отрицательный заряд, а противоположная область — положительный (его создают оставшиеся там положительные ионы).

Проводники в электрическом поле - формулы и определение с примерами

Таким образом, на поверхности проводника появляются наведенные (индуцированные) электрические заряды, при этом суммарный заряд проводника остается неизменным (рис. 43.2).

Проводники в электрическом поле - формулы и определение с примерами

Явление перераспределения электрических зарядов в проводнике, помещенном в электростатическое поле, называют явлением электростатической индукции.

Заряды, индуцированные на поверхности проводника, создают собственное электрическое поле, направленное противоположно внешнему полю (рис. 43.3). Процесс перераспределения зарядов будет продолжаться до момента, когда поле внутри проводника, создаваемое индуцированными зарядами, полностью компенсирует внешнее поле. За очень малый интервал времени напряженность

Проводники в электрическом поле - формулы и определение с примерами

Рис. 43.3. Перераспределение зарядов в проводнике происходит до тех пор, пока модуль напряженности внешнего поля

Свойство 2. Поверхность проводника эквипотенциальна. Это утверждение является прямым следствием связи между напряженностью поля и разностью потенциалов:

Свойство 3. Весь статический заряд проводника сосредоточен на его поверхности. Данное свойство является следствием закона Кулона и свойства одноименных зарядов отталкиваться.

Свойство 4. Вектор напряженности электростатического поля перпендикулярен поверхности проводника (рис. 43.4). Докажем свойство 4 методом от противного.

Проводники в электрическом поле - формулы и определение с примерами

Предположим, что в определенной точке поверхности проводника вектор , перпендикулярную поверхности, и тангенциальную электроны будут направленно двигаться по поверхности проводника, но это означает, что по данной поверхности течет электрический ток, а это, в свою очередь, противоречит закону сохранения энергии, следовательно: .

Свойство 5. Электрические заряды распределяются по поверхности проводника так, что напряженность электростатического поля проводника оказывается больше на выступах проводника и меньше в его впадинах (рис. 43.5).

Проводники в электрическом поле - формулы и определение с примерами

Как применяют электростатические свойства проводников

Приведем примеры использования рассмотренных электростатических свойств проводников.

Электростатическая защита. Иногда возникает необходимость изолировать приборы от влияния внешних электрических полей. Очевидно, что для этого их необходимо поместить внутрь металлического корпуса, поскольку внешнее электрическое поле вызывает появление индуцированных зарядов только на поверхности проводника, а поле внутри проводника отсутствует (рис. 43.6). Аналогичный эффект достигается, если сплошную проводящую оболочку заменить металлической сеткой с мелкими ячейками.

Проводники в электрическом поле - формулы и определение с примерами

Рис. 43.6. Электростатическая защита. Под действием внешнего поля на поверхности металлического корпуса возникают индуцированные заряды, поле которых экранирует внешнее электрическое поле: напряженность поля внутри корпуса становится равной нулю

Заземление. Чтобы разрядить небольшое заряженное тело, его необходимо соединить проводником с телом больших размеров: на теле больших размеров накапливается больший электрический заряд. Чтобы обосновать это утверждение, рассмотрим два соединенных проводником проводящих шара радиусами

Проводники в электрическом поле - формулы и определение с примерами

Рис. 43.7. Заряд Q, переданный системе из двух шаров, соединенных проводником, распределится между шарами так, что их потенциалы

Электрический заряд Q, переданный системе, распределится между шарами таким образом, что их потенциалы будут равными ( шаров, взаимным влиянием их полей можно пренебречь и воспользоваться формулой для определения потенциала шара:

Поскольку

Обратите внимание! Если один из заряженных шаров значительно больше другого, после их соединения практически весь заряд окажется на большем шаре. Этот вывод справедлив и для проводящих тел произвольной формы. Так, если коснуться рукой кондуктора заряженного электроскопа, заряд перераспределится между кондуктором и телом человека, а поскольку человек значительно больше кондуктора, почти весь заряд перейдет на человека.

Часто в качестве тела больших размеров используют весь земной шар: приборы, на которых не должен скапливаться электрический заряд, «заземляют» — присоединяют к массивному проводнику, закопанному в землю.

Каковы особенности внутреннего строения диэлектриков

Диэлектрики — это вещества, плохо проводящие электрический ток: при обычных условиях в них практически нет зарядов, которые могут свободно передвигаться. Обычно выделяют следующие три группы диэлектриков.

Вещества, молекулы (атомы) которых неполярные: при отсутствии внешнего электростатического поля центры распределения положительных и отрицательных зарядов, из которых состоит молекула (атом), совпадают.

Проводники в электрическом поле - формулы и определение с примерами

Типичными примерами таких веществ являются одноатомные газы; газы, состоящие из симметричных двухатомных молекул; некоторые органические жидкости; пластмассы.

Вещества, молекулы которых полярные: при отсутствии внешнего электростатического поля центры распределения положительных и отрицательных зарядов в молекуле не совпадают, то есть электронные облака смещены к одному из атомов.

Проводники в электрическом поле - формулы и определение с примерами

Примером полярного диэлектрика является вода (

Вещества, имеющие ионную структуру. Среди них — соли и щелочи, например хлорид натрия (NaCl). Кристаллические решетки многих ионных диэлектриков можно рассматривать как состо ящие из двух вставленных друг в друга подрешеток, каждая из которых образована ионами одного знака.

Проводники в электрическом поле - формулы и определение с примерами

При отсутствии внешнего поля каждая ячейка кристалла в целом электронейтральна.

Как электростатическое поле влияет на диэлектрик

Внесение диэлектрика во внешнее электростатическое поле вызывает поляризацию диэлектрика. В процессе поляризации неполярных диэлектриков проявляется электронный (деформационный) механизм. Под действием внешнего электрического поля молекулы неполярных диэлектриков поляризуются: положительные заряды смещаются в направлении вектора напряженности

Проводники в электрическом поле - формулы и определение с примерами

В результате молекулы превращаются в электрические диполи, расположенные вдоль силовых линий внешнего поля. В итоге на поверхностях AB и CD появляются нескомпенсированные связанные заряды противоположных знаков, образующие свое поле, напряженность внешнего поля (рис. 43.8, б). В процессе поляризации полярных диэлектриков возникает ориентационная поляризация. Под действием внешнего электрического поля дипольные молекулы диэлектрика пытаются повернуться так, чтобы их оси были расположены вдоль силовых линий поля. Однако этому процессу препятствует тепловое движение молекул, и возникает лишь частичное упорядочение дипольных молекул (рис. 43.9).

Проводники в электрическом поле - формулы и определение с примерами

Упорядоченность в расположении молекул вызывает появление на поверхностях AB и CD нескомпенсированных связанных зарядов противоположных знаков. Эти заряды образуют свое поле напряженностью внешнего поля.

Заметим, что в полярных диэлектриках имеется и электронный механизм поляризации, то есть в результате действия электрического поля происходит смещение зарядов в молекулах. Однако эффект ориентации на несколько порядков превосходит электронный эффект, поэтому последним часто пренебрегают.

При поляризации ионных диэлектриков наблюдается ионная поляризация. Под действием внешнего поля ионы разных знаков, составляющие две подрешетки, смещаются в противоположных направлениях, и в результате на гранях кристалла появляются нескомпенсированные связанные заряды, то есть кристалл поляризуется.

Следует подчеркнуть, что ионная поляризация в чистом виде не наблюдается, — ее всегда сопровождает электронная поляризация.

Как диэлектрик влияет на электростатическое поле

Рассматривая механизмы поляризации диэлектриков, вы узнали, что внесение диэлектрика во внешнее электростатическое поле вызывает появление на его поверхности связанных зарядов. Связанные заряды создают электрическое поле напряженностью внешнего поля. В результате напряженность электростатического поля в веществе по сравнению с модулем напряженности диэлектрическая проницаемость ε вещества:

Диэлектрические проницаемости различных веществ могут отличаться в десятки раз. Так, диэлектрическая проницаемость газов близка к единице, жидких и твердых неполярных диэлектриков — к нескольким единицам, полярных диэлектриков — к нескольким десяткам единиц (для воды ε = 81 ). Есть вещества (их называют сегнетоэлектриками), диэлектрическая проницаемость которых составляет значение порядка десятков и сотен тысяч.

Уменьшение напряженности электрического поля в диэлектрике в ε раз по сравнению с напряженностью поля в вакууме приводит к уменьшению силы электростатического взаимодействия. Поэтому закон Кулона для случая взаимодействия двух зарядов

Так же изменяются формулы для определения потенциала ϕ и модуля напряженности E поля, созданного точечным зарядом Q, расположенным в диэлектрике:

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Telegram и логотип telegram являются товарными знаками корпорации Telegram FZ-LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Электроматериаловедение - Строение металлических проводниковых материков


РАЗДЕЛ ПЕРВЫЙ
ПРОВОДНИКОВЫЕ МАТЕРИАЛЫ И ИЗДЕЛИЯ
ГЛАВА Г.
ОСНОВНЫЕ СВОЙСТВА ПРОВОДНИКОВЫХ МАТЕРИАЛОВ
§ 1. Строение металлических проводниковых материалов

Рис. 1. Кубическая пространственная кристаллическая решетка
Металлические материалы (металлы) относятся к веществам, имеющим кристаллическое строение. Атомы кристаллических материалов располагаются друг относительно друга в строго определенном порядке по прямым линиям. Эти прямые линии, пересекаясь друг с другом, образуют пространственную решетку (рис. 1). В ней атомы занимают места пересечений прямых линий, называемых
Рис. 2. Грань кубического кристалла
узлами кристаллической решетки. По каждому из трех направлений ox, оу, oz атомы располагаются на одинаковом расстоянии. Эти расстояния обозначаются буквами а, b, с и называются параметрами кристаллической решетки. Направления ох, су, oz называются кристаллографическими осями. Углы между кристалло-графическими осями у многих кристаллов прямые, но могут быть и непрямые.
Каждый кристалл представляет собой геометрическую фигуру, ограниченную плоскостями или гранями кристалла. Грани по расположению на них атомов подобны плоским сеткам.
На рис. 2 приведено изображение грани кубического кристалла.
Геометрическую форму кристаллической решетки, а следовательно, и вид кристалла определяют параметры а, b, с (см. рис. 1) и величины углов между кристаллографическими осями.
Рис. 3. Элементарная кристаллическая ячейка объемно-центрированного куба
Рис. 4. Элементарная кристаллическая ячейка гранецентрированного куба

Если параметры а, b, с равны между собой, а углы между ними прямые, то кристаллическая решетка имеет форму куба и называется кубической. Если же параметры а, b, с не равны между собой, а углы между ними остались прямыми, то такую кристаллическую решетку называют призматической. Грани такого кристалла имеют форму прямоугольников.
Кроме кубической и призматической пространственных решеток для кристаллов возможны и другие геометрические фигуры. Основные металлические проводниковые, материалы, применяемые в электротехнических устройствах: медь Cu, железо Fe, алюминий Al, молибден Мо, вольфрам W и др. состоят из кристаллов, имеющих разные кубические решетки. Различают кубическую решетку, в центре которой располагается еще один атом А, и кубическую решетку, в центре каждой из шести граней которой находится еще по атому В. Первую называют объемно-центрированной кубической решеткой (рис. 3), а вторую — гранецентрированной кубической решеткой (рис. 4). Кристаллическую решетку объемно-центрированного куба имеют железо, вольфрам, хром, молибден и некоторые другие металлы, а гранецентрированный куб — медь, алюминий, никель, серебро и другие металлы. Следовательно, металл можно представить как вещество, состоящее из бесконечно большого количества атомов, расположенных в элементарных пространственных решетках. Во всех металлах наблюдаются небольшие отклонения от идеальных решеток — имеются незанятые узлы и некоторые смещения атомов.
Проводниковые материалы могут быть изготовлены из какого- либо одного чистого металла или из сплавов разных металлов. Если сплавляют два металла, то сплав называется двойным, если три — тройным и т. д. При изготовлении сплавов атомы одного металла могут входить в решетку другого, т. е. образовывать совместно с ним одну общую кристаллическую решетку. Такие сплавы называются твердыми растворами. При определенном количественном соотношении и резко отличающихся температурах плавления металлы могут не образовать твердого раствора, а микрокристаллизоваться каждый отдельно в виде самостоятельных зерен. И этом случае сплав будет механической смесью кристаллов исходных металлов. При сплавлении металла с металлом может образоваться и химическое соединение, кристаллическое строение которого будет отличным от строения исходных металлов.



Рис. 7. Распределение атомов в решетке твердого раствора внедрения
Рис. 6. Распределение атомов в решетке твердого раствора неупорядоченного замещения
Рис. 5. Распределение атомов в решетке твердого раствора упорядоченного замещения


Сплавы в виде твердого раствора различаются между собой по тому, как располагаются в кристаллической решетке атомы сплавляемых металлов. Если атомы в общей решетке сплава располагаются с атомами другого, то такой сплав называют твердым раствором упорядоченного замещения. На рис. 5 показана плоская решетка такого сплава двух металлов. Если же атомы двух металлов в общей решетке сплава распределяются в ее узлах беспорядочно, то сплав называют твердым раствором неупорядоченного замещения (рис. 6). Твердый раствор, в котором кристаллическая решетка образуется из атомов одного какого-либо металла, а атомы второго внедряются в промежутки между ними, т. е. между узлами, получил название твердого раствора внедрения. Плоская решетка такого сплава изображена на рис. 7.
Итак, при сплавлении двух разных металлов или металла с неметаллом, например железа с углеродом, образуется новый материал в виде сплава. Сплавы имеют иную, чем исходные металлы, кристаллическую структуру, а следовательно, и иные механические и электрические свойства.
В сплавах при их образовании протекают сложные процессы кристаллизации. Каждый чистый металл имеет определенную температуру плавления, которая при охлаждении этого расплавленного металла является и температурой его кристаллизации. Если температура двух сплавляемых металлов превышает температуры плавления каждого из них, то они растворяются друг в друге. При охлаждении данного расплава кристаллизация начнется при одной температуре, а закончится при другой, более низкой.
t c

Рис. 8. Диаграмма состояния системы свинец — сурьма
Кристаллизация сплавов имеет температуру начала кристаллизации и температуру ее окончания. Для сплавов, имеющих различное содержание одних и тех же исходных металлов, эти температуры различны. Поэтому на диаграммах, в которых по вертикали наносятся величины температур, а по горизонтали — процентное содержание сплавляемых металлов (рис. 8), получаются две кривые. Линия АСВ, соответствующая температурам начала кристаллизации, получила название линии ликвидуса *, так как она является границей жидкого состояния всего сплава. Выше этой линии сплав находится в жидком состоянии. Линия DCE, соответствующая температурам окончания кристаллизации, называется линией солидуса**, так как она является начальной границей твердого состояния. Ниже этой линии сплав находится в твердом состоянии.

* Ликвидус (лат.) — жидкий, текущий.

**Солидус (лат.) — прочный.

Области диаграммы между двумя линиями (ACD и ВСЕ) содержат как твердый, так и жидкий растворы, т. е. в этих областях температур наблюдается два состояния сплава. Ниже линии солидуса сплав может представлять собой твердый раствор, химическое соединение сплавляемых металлов или их механическую смесь в зависимости от состава сплава и от других факторов. Рассмотренная диаграмма (рис. 8) называется диаграммой состояния сплавов системы свинец — сурьма (Pb — Sb). Эта диаграмма показывает, что начало затвердевания различных по составу сплавов свинца и сурьмы происходит при различных температурах, а окончание затвердевания — при одной определенной температуре (246°С). При содержании в сплаве 13% сурьмы (Sb) и 87% свинца (РЬ) кристаллизация сурьмы и свинца происходит одновременно при 246° С. При этом образуется механическая смесь металлов, называемая эвтектикой *, а сплав этого состава называется эвтектическим. Эвтектический сплав обладает самой низкой температурой плавления, что очень важно для практики.
Диаграммы состояния сплавов других металлов могут иметь другой вид, но и там имеются линии ликвидуса и солидуса.

Электронная проводимость металлов


В 10 классе известно, что вещество, являющееся проводником, должно содержать много высокоподвижных носителей электрического заряда. Наилучшими проводниками в нормальных условиях являются металлы. Кратко рассмотрим механизм электронной проводимости металлов.

Структура кристаллической решетки металла

Вещества, обладающие металлической проводимостью, как правило, имеют во внешней электронной оболочке малое количество электронов, которые относительно слабо связаны ядром и внутренними электронными оболочками. Это и определяет особенности металлической кристаллической решетки.

В кристалле металла ионы с внутренними электронными оболочками образуют узлы решетки, как и в любом другом кристалле. А электронные облака внешних валентных электронов перекрывают друг друга так, что они оказываются общими не только для двух ионов (как это бывает в ковалентной связи), а сразу для нескольких ионов. В результате электроны могут свободно перемещаться между всеми этими ионами, попадая в поле действия более далеких ионов, и перемещаясь уже между ними.

То есть, электроны в кристаллической решетке металла движутся не строго по орбитам между соседними атомами (как в ковалентном кристалле), а образуют своего рода «электронный газ», распределенный по всему кристаллу.

строение металлической кристаллической решетки

Рис. 1. строение металлической кристаллической решетки.

Проводимость металлов

Такое строение кристаллической решетки приводит к тому, что электроны очень легко способны перемещаться под действием внешнего электрического поля. То есть, металлы, имеют много свободных легких электронов и обладают большой проводимостью.

Доказательством существования свободных электронов явились опыты, проведенные в 1916г Т. Стюартом и Р.Толменом (позже выяснилось, что такие же опыты ставились и ранее Л. Мандельштамом и Н.Папалекси, но результат их не был опубликован).

Идея этих опытов состоит в том, что если внутри металла существуют свободные электроны, то при движении кристаллической решетки с ускорением электроны должны «отставать» от ионов. В результате на разных концах кристалла концентрация электронов должна быть разной, и порождать разность потенциалов. Для опыта использовалась катушка, к которой был подключен чувствительный телефонный капсюль. Когда катушка колебалась вокруг продольной оси, в ней возникала электроинерционная разность потенциалов, и капсюль издавал звук.

Опыт Мандельштама и Папалекси

Рис. 2. Опыт Мандельштама и Папалекси.

Теории проводимости

В 1900г П.Друде, основываясь на положениях молекулярно-кинетической теории, и рассматривая электроны в металле, как идеальный газ, создал классическую электронную теорию проводимости металлов. Первоначально эта теория не учитывала распределение скоростей электронов, учет этого распределения был выполнен в 1904г Х.Лоренцем.

Теория Друде-Лоренца смогла объяснить законы Ома, Джоуля-Ленца, механизм проводимости и зависимости сопротивления от температуры. Однако, со временем стало появляться все больше данных, необъяснимых в рамках классичепской теории. В частности, имелись расхождения по температурному коэффициенту сопротивления, по значениям теплоемкости. И уж совсем необъяснимым было явление сверхпродоимости, открытое в 1911г.

Все эти расхождения имеют квантовый характер, и поэтому объясняются в рамках более совершенной квантовой теории проводимости твердых тел (зонной теории проводимости).

Зонная теория проводимости

Рис. 3. Зонная теория проводимости.

Что мы узнали?

Высокая проводимость металлов обуславливается особенностями кристаллической решетки, в которой электронные облака соседних атомов сильно перекрываются друг с другом, поэтому электроны могут легко перемещаться между атомами, обеспечивая низкое электрическое сопротивление. Первоначально была разработана классическая теория проводимости Друде-Лоренца. В настоящее время она сменилась зонной теорией проводимости.

Электрический ток в металлах


Электрическим током в физике называется согласованное (упорядоченное, однонаправленное) перемещение электрически заряженных элементарных частиц (электронов, протонов, ионов) или заряженных макроскопических частиц (например, капель дождя во время грозы). В веществах, находящихся в различных агрегатных состояниях (твердое тело, жидкость, газ) ток может формироваться из разного набора заряженных частиц. Рассмотрим механизм образования электрического тока в металлах.

Свободные электроны в металлах

Вещества, относящиеся к металлам, могут находиться как в твердом, так и в жидком состоянии (ртуть, галлий, цезий и др.). При этом все они являются проводниками электрического тока. Твердые вещества имеют структуру жесткой кристаллической решетки, в узлах которых “сидят” положительно заряженные ионы, совершающие небольшие колебания относительно точки равновесия. В объеме кристалла всегда присутствует большое количество свободных электронов, которые вырвались с орбит атомов в результате механических соударений или воздействия излучений.

Механизм электрического тока в металлах

Рис. 1. Механизм электрического тока в металлах.

Это электронное “облако” движется беспорядочно, хаотично до тех пор, пока к металлу не будет приложено электрическое поле. Электрическое поле E, созданное внешним источником (батареей, аккумулятором), действует на заряд q с силой F:

Под действием этой силы электроны приобретают ускорение в одном направлении и, таким образом, появляется электрический ток в цепи.

Многочисленные наблюдения показали, что при прохождении электрического тока масса проводников и их химический состав не изменяются. Отсюда следует вывод, что ионы металлов, которые составляют основную массу вещества, не принимают участия в переносе электрического заряда.

Опыт Мандельштама и Папалекси

Электронную природу тока в металле первыми экспериментально доказали российские физики Мандельштам и Папалекси в 1913 г. Для того, чтобы выяснить, какие частицы создают электрический ток в металлах, они — без подключения внешнего источника — регистрировали ток в катушке из металлического провода, которую сначала сильно раскручивали вокруг собственной оси, а затем резко останавливали. Поскольку у электрона есть масса, то он должен подчиняться закону инерции. Поэтому в момент остановки атомы решетки останутся на месте, а свободные электроны по инерции, какое-то время, продолжат движение в прежнем направлении. То есть в цепи должен появиться электрический ток. Эксперименты подтвердил это предположение — после остановки катушки исследователи регистрировали бросок тока в цепи.

Опыт Мандельштама и Папалекси

Этот эксперимент в 1916 г. повторили американцы Стюарт и Толмен. Им удалось повысить точность измерений и получить отношение заряда электрона eэ к значению массы электрона mэ:

Этот фундаментальный результат совпал с полученными данными из других экспериментов, поставленных на основе измерения других параметров. Впервые эту величину в 1897 г. измерил англичанин Джозеф Томсон по отклонению пучка электронов в зависимости от напряженности электрического поля.

Скорость распространения электрического тока

Скорость распространения электрического поля в металле близка к скорости света в вакууме, которая равна 300000 км/с. Но это не значит, что электроны внутри вещества двигаются с такой же скоростью. Для проводника с площадью поперечного сечения S = 1 мм 2 при силе тока I = 1 A скорость упорядоченного движения электронов равна v = 6*10 -5 м/с. То есть за одну секунду электроны в проводнике за счет упорядоченного движения проходят всего 0,06 мм.

Такие малые значения скоростей движения электронов в проводниках не приводят к запаздыванию включения электрических ламп, включения бытовых приборов и т.д., так как при подаче напряжения вдоль проводов со скоростью света распространяется электрическое поле. Эта скорость настолько велика, что позволяет приводить в движение свободные электроны практически мгновенно во всех проводниках электрической цепи.

Применение свойств электрического тока в металлах

Физические свойства электрического тока используются в различных областях жизнедеятельности:

  • Способность электрического тока нагревать проводники используется для изготовления нагревательных бытовых и промышленных приборов;
  • Вокруг провода с электрическим током возникает магнитное поле, что позволило создать электродвигатели, без которых сегодня невозможно обойтись;
  • Передача электроэнергии на различные расстояния осуществляется по проводам линий электропередачи (ЛЭП), по которым течет электрический ток.

Итак, мы узнали, что электрический ток в металлах создается упорядоченным движением свободных электронов. Экспериментальное доказательство того, что электрический ток в металлах создают электроны, впервые получили российские физики Мандельштам и Папалекси. Физические свойства электрического тока в металлах позволили создать большое количество бытовых и промышленных устройств.

Читайте также: