Основные особенности горения металлов

Обновлено: 05.10.2024

Общей закономерностью для всех металлов является то, что пожарная опасность их в чистом виде возрастает с уменьшением номера группы и увеличением номера периода.

Характерные признаки горения металлов приведены в табл.11.7. Самыми пожароопасными являются щелочные металлы первой группы

Щелочноземельные металлы (II группа, главная подгруппа) плавятся при нагревании до 600-800 0 С и в присутствии воздуха легко загораются.

Металлы III группы главной подгруппы (B, Al и их аналоги) плавятся при нагревании до 150-700 0 С и энергично окисляются, т.е. медленно горят, легко воспламеняются и быстро горят в порошкообразном состоянии.

Мышьяк, сурьма и висмут (V группа, главная подгруппа) легко сгорают в расплавленном состоянии при 250-700 0 С.

Остальные металлы более тугоплавки, температура их плавления выше

В монолитном виде (слитки, массивные изделия) они не горят а к-

даже при нагревании, за исключением титана и циркония, однако

многие из них пирофорны в порошкообразном и губчатом состоянии (Fе, Аl, Zn, Cо и др.).

В принципе все металлы, за исключением благородных (VIII группа), должны хорошо гореть на воздухе при нагревании. Однако в действительности это не так. Способность металлов к горению на воздухе определ яется свойствами образующихся продуктов - оксидов.

Многие оксиды металлов тугоплавки, температура их плавления выше 1000 0 С, а некоторые плавятся даже при 2000-3000 0 С и выше. Такие оксиды покрывают поверхность горящего металла, изолируя его от воздуха.

Сопротивление оксидной пленки зависит от объемного отношения

ϕ - это отношение объема оксида к объему сгоревшего металла . Если

Воспламенение металлов наблюдается, как уже отмечалось, при относительно низкой температуре. Однако процессы их горения сильно экзотермичны, и поэтому многие из них, покрываясь оксидной пленкой, быстро разогреваются, плавятся, а многие начинают даже испаряться (температуры могут достичь 3000 0 С и выше). То есть металлы горят с поверхности расплава и в виде паров. Парообразование часто приводит к резкому разрушению оксидных пленок с разбрызгиванием капель расплава металла и его оксида и интенсифицирует горение.

Отличительной от органических материалов особенностью многих металлов является способность их при нагревании окислятся в среде азота с образованием нитридов - соединений формулы Ме n Н m . То есть азот - флег-

матизатор горения органических веществ - является окислителем ме-

Способность металлов к горению на воздухе

Характерные признаки горения на воздухе

Rb и Cs воспламеняются при контакте с

воздухом. Остальные легко воспламеняют-

ся при незначительном нагревании

При простом контакте с воздухом не вос-

пламеняются. Довольно легко загораются

при нагревании до 600-800 0 С. Горят с об-

разованием оксидов и отчасти нитридов

Hg пожаробезопасна. Zn и Cd при нагрева-

нии до 200-250 ° С воспламеняются и горят

В холодном состоянии пожаробезопасны.

При нагревании выше температуры

плавления (150-700 ° С) энергично окисля-

ются, в виде стружки или порошка - быстро

Холодные пожаробезопасны. Самовозго-

раются при локальном нагреве в тонких

сечениях. Особенно опасны в виде стружки

и порошка. Горят не только в кислороде,

Холодные пожаробезопасны. Легко

сгорают в расплавленном состоянии

Se загорается легко при нагревании,

Те и Po пожаробезопасны

Холодные пожаробезопасны. Оs при

нагревании сгорает. Fе и Cо не горят при

нагревании, свежеприготовленные в виде

порошка и губки пирофорны

(*) ϕ - отношение объема окисла к объему сгоревшего металла.

Нитриды щелочных металлов при 300-350 ° С разлагаются на элементы, поэтому в продуктах горения не накапливаются. Нитриды щелочноземельных металлов стабильны до 1500-2000 ° С, поэтому в реакции горения этих металлов заметно участвует и азот. Более тугоплавкие металлы (B, Аl, Тi, Zr и др.) в порошкообразном виде могут при нагревании воспламеняться и гореть в среде азота с образованием тугоплавких нитридов.

Обобщая рассмотренные данные, можно выделить следующие основ-

ные особенности пожарной опасности и горения металлов:

1. Некоторые металлы пирофорны, т.е. способны воспламеняться при контакте с кислородом воздуха, в слитках и массивных изделиях (щелочные), а так же в измельченном, порошкообразном состоянии (железо, никель, кобальт, титан, цирконий и др.).

2. Многие металлы опасно хранить совместно с горючими органическим веществами и материалами. Последние, как правило, легко воспламеняются даже от малокалорийных источников зажигания и могут зажечь металлы, при горении которых развиваются очень высокие температуры (до 3000 ° С и выше). Достигаемые значения опасных факторов пожара при горении металлов в 1,5-2,0 раза выше, чем при горении других горючих материалов.

3. Следует также отметить большую пожарную опасность многих металлов, способных бурно реагировать с водой со взрывами, интенсивным горением.

11.6. Особенности горения пылевидных веществ

Пыли - это твердые вещества и материалы, диспергированные до частиц размером 850 мкм (0,85 мм) и менее.

Горючая пыль представляет собой дисперсную систему, которая в процессе горения во взвешенном состоянии ( аэрозоль ) ведет себя как газы и пары, и как твердое вещество - в осевшем состоянии ( аэрогель ). Поэтому

горючие пыли сочетают в себе пожароопасные свойства горючих газов,

паров и твердых веществ. Пожарная опасность горючих пылей характеризуется показателями, применяемыми для тех и других.

Наиболее важными из них являются 6 показателей:

• минимальное взрывоопасное содержание кислорода в горючей смеси (МВСК),

• способность взрываться и гореть при взаимодействии с водой, кислородом воздуха и другими веществами.

Наибольшую пожарную опасность представляют пыли, взвешенные в воздухе (аэрозоли, аэровзвеси, пылевоздушные смеси). Они способны к распространению пламени на неограниченное расстояние от источника зажигания.

Пожарная статистика показывает, что ежегодно происходит большое количество взрывов пылей на предприятиях угледобывающей, мукомольной, химической и других отраслей промышленности, на зерновых элеваторах и многих других объектах, где обращаются или образуются пылевидные горючие материалы.

Распространение пламени по пылевоздушной смеси - очень сложный процесс, не поддающиийся точному математическому описанию. Механизм распространения пламени по аэрозолю пытались объяснить с позиций классической тепловой теории Я.Б.Зельдовича и Н.Н.Семенова, радиационной теории (О.М.Тодес), "эстафетной" теории (Л.А.Клячко) и многих других. Но ни одна из них не может объяснить все происходящие в пылевидном облаке явления. В действительности распространение фронта пламени по аэрозолю происходит в результате протекающих одновременно и последовательно многих процессов: передаче теплоты из зоны горения в свежую смесь конвекцией, кондукцией и радиацией, факельном зажигании свежих пылинок от горящих и т.д.

Принципиальным отличием от механизма горения парогазовоздушных смесей является турбулентный режим распространения пламени по аэрозолям, т.е. искривление его фронта, образование "языков" пламени, непостоянство нормальной скорости горения, а отсюда часто и повышенные значения скорости распространения пламени.

Взрыв пыли - это быстрое сгорание аэрозоля с мгновенным выделением теплоты и газообразных продуктов. При таком взрыве быстро возникает давление, и волны сжатия распространяются в окружающей среде со ск о-

ростью до нескольких сотен м/с. Ударная волна очень часто взвихривает, поднимает в воздух осевшую пыль (аэрогель), после чего следует новая серия взрывов. Особенно страдают от пылевых взрывов зерновые элеваторы, предприятия мукомольной и комбикормовой промышленности.

Взрыв может возникнуть только в том случае, если концентрация пыли находится в концентрационной области распространения пламени. НКПР для пылей колеблется в очень широких пределах – от нескольких граммов до килограммов в одном кубическом метре. ВКПР по величине огромен (от нескольких до десятков кг/м 3 ), в реальных условиях никогда и нигде не достигается, поэтому для пылей его не определяют.

НКПР пылей сильно зависит от их дисперсности, влажности и зольности (рис.11.7). Промышленные пыли все без исключения переменного состава, поэтому при решении ов пожарной профилактики на разных предприятиях необходимо каждый раз определять НКПР пыли и ее концентрацию в конкретных производственных условиях.

Горение металлов

По характеру горения металлы делятся на две группы: летучие и нелетучие. Летучие металлы обладают относительно низкимитемпературами фазового перехода, температура их плавления менее1000 К, температура кипения < 1500 К. К этой группе относятся щелочные металлы (литий, натрий, калий) и ще­лочноземельные (магний, кальций). Температуры фазового перехода нелетучих металлов значительно выше Тплав > 1000 К, а Ткип > 2500 К. Механизм горения металлов во мно­гом определяется состоянием их оксидов. Температура плавления летучих металлов зна­чительно ниже температуры плавления их оксидов. При этом оксиды представ­ляют собой достаточно пористые соединения.

При воздействии ИЗ на поверхность металла проис­ходит его испарение и окисление. При достижении НКПРП происходит их воспламенение. Зона диффузион­ного горения устанавливается у поверхности. Образующиеся пары, свободно диффундируют через пористую оксидную пленку и поступают в зону горения. Кипение металла вызы­вает периодическое разрушения оксидной пленки, что ин­тенсифицирует горние. Продукты горения, окислы металлов диффундируют не только к поверхности металла, способст­вуя образованию корки окисла (оксида), но и в окружающее про­странство, где, конденсируясь, образуются твердые частички в виде белого дыма. Белый плотный дым – признак горения летучих металлов.

У нелетучих металлов при горении на поверхности образуется более плотная окисная пленка, она хорошо сцепляется с поверхностью металла. В результате этого скорость диффузии паров металла через пленку затруднена и поэтому крупные частицы алюминия, бериллия гореть не способны. Как правило, нелетучие металлы горят в виде стружки, порошка аэрозолей. Их горение проходит без об­разования плотного дыма. При горении металлических пылей следует знать особенности, отличающие их от горения органических пылей:

1) при приближении состава горючей смеси (металл-
воздух) к стехиометрической (a = 1) скорость распространения
пламени возрастает;

2) скорость горения металлических пылей одного порядка с горением смесей предельных углеводородов;

3) горение металлов возможно не только в окислительной среде, но и в продуктах горения органических веществ, в этом случае горение протекает за счет экзотермической реакции воспламенения воды до водорода.

4) аэрогель металлов повышает свои пожароопасные свойства при увлажнении. Склонен к самовозгоранию. И при воспламенении развивает температуру, в десятки раз превышающую горение сухой аэровзвеси. Так, испытания, проведенные ФГУ ВНИИПО МЧС России, показали следующиерезультаты:

· для испытаний были приготовлены две 40-литровые фляги с порошком циркония. Порошок в одном случае был сухой, в другом увлажненный. При воспламенении сухого циркония горение продолжалось 30 мин, Тпл = 1200 0 С, температура воздуха на расстоянии 40 м от фляги составила 300 0 С;

· при воспламенении увлажненного порошка циркония процесс горения не превысил 5 минут, столб пламени имел высоту около 30 м, температура воздуха на расстоянии 40 м от очага горения составила 1300 0 С.

Вопросы для самоконтроля

1. Как классифицируются органические, неорганические ТГМ?

2. Какие соединения относятся к комплексным ТГМ?

3. Как ведут себя при нагревании каучуки, термопласты?

4. Как ведут себя при нагревании древесина, реактопласты?

5. Какие ТГМ горят по гетерогенному механизму?

6. В чем состоит принцип действия огнезащиты ТГМ?

7. Какие способы теплопередачи участвуют в распространении горения по ТГМ?

8. От каких факторов зависит скорость горения ТГМ?

9. В чем сходство в горении жидкостей и ТГМ?

10. Что происходит при воспламенении древесины?

11. Как протекает процесс термического разложения (пиролиза) древесины?

12. При какой температуре происходит прекращение выхода летучих соединений и начало горения углеродистого остатка древесины?

Особенности горения и тушения металлов и гидридов металлов

Производства, связанные с получением и переработкой металлов, их сплавов, гидридов металлов и металлоорганических соединений характеризуются повышенной пожарной и взрывопожарной опасностью. При выборе безопасных условий проведения технологических процессов, в которых обращаются указанные выше вещества и материалы, необходимо учитывать особенности их воспламенения, горения и тушения.

Результаты и обсуждение

Горение металлов, их сплавов, металлосодержащих веществ, в т.ч. металлоорганических веществ согласно ГОСТ 27331-87 подразделяются на 3 класса:

  1. класс Д1 – горение легких металлов (алюминий, магний и их сплавы, кальций, титан), условно «тяжелых» металлов (цирконий, ниобий, уран и др.);
  2. класс Д2 – горение щелочных металлов (литий, натрий, калий и др.);
  3. класс Д3 – (металлоорганические соединения: алюмо-, литий-, цинк- органика, гидриды алюминия, лития и др.).

Каждый из перечисленных металлов и их гидридов в обычном состоянии представляет собой твердое вещество, кроме металлоорганических соединений (МОС), представляющих собой жидкости.

Из особенностей металлов, которые имеют прямое отношение к их пожаро-, взрывоопасности и горению необходимо отметить следующие:

  • склонность к самовозгоранию при обычных условиях (т.е. пирофорность);
  • способность взрываться в состоянии аэровзвеси;
  • взаимодействие горящих металлов с водой, некоторыми газовыми огнетушащими составами: хладонами (хлорфторуглеводороды), азотом (например, магний) и др.

Способностью самовоспламеняться обладают щелочные металлы, стружка, металлические порошки, имеющие неокисленную активную поверхность, гидриды металлов, МОС (классы пожаров Д2, Д3).

Наиболее пожаро-, взрывоопасными металлами, горение которых происходит по классу Д1, являются легкие металлы в виде продуктов их переработки: порошков разной дисперсности, стружки. Металлы в виде изделий различной конфигурации (листы, профили и т.п.) поджечь практически невозможно, если обеспечиваются условия преобладания теплоотвода над теплоприходом.

Гидриды металлов занимают промежуточное положение между металлами и органическими соединениями. Связано это с тем, что при их разложении выделяется водород, что можно рассматривать как аналогию процесса выделения горючих газов при пиролизе органических материалов, сгорающих в газовой фазе [1].

При этом гидриды металлов значительно различаются между собой по своим физико-химическим свойствам, по механизму горения и воспламенения. Так, гидриды титана, ниобия, тантала и т. д. являются по существу растворами водорода в металле и имеют переменный состав с металлическим типом связи. Они горят в основном в тлеющем режиме, пламенное горение водорода практически отсутствует.

В то же время литий-алюминий гидрид (ЛАГ), гидриды алюминия (ГА) и лития (ГЛ) – ярко выраженные индивидуальные соединения с ионной (для ГЛ – частично ковалентной) связью, характеризующиеся наличием режимов пламенного и гетерогенного горения [2].

ГА и гидриды щелочных металлов проявляют пирофорные свойства, активно взаимодействуют с влагой воздуха, при небольшом нагреве активно выделяют водород и вследствие этого в состоянии аэровзвеси образуют гибридные взрывоопасные смеси с воздухом.

При повышенных температурах и при горении возможно взаимодействие азота с наиболее активными гидридами, например, ГА.

Небольшое разбавление азота воздухом может привести к очень «жесткому» взрыву аэровзвеси ГА, поэтому не для всех гидридов металлов можно использовать азот в качестве защитной атмосферы. Иногда для этого приходится использовать аргон.

Таким образом, характер горения металлов и металлосодержащих веществ исключает применение воды, водопенных средств тушения и ряда газовых огнетушащих составов, т. к. при контакте этих средств с горящими металлами происходит их взаимодействие, приводящее к разгоранию.

В России и мировой практике для тушения пожаров классов Д1, Д2, Д3 применяются огнетушащие порошковые составы специального назначения (ОПСН). При создании рецептуры таких составов учитываются следующие факторы:

  • основное вещество, определяющее этот состав (от 80 до 95% об.), не должно содержать в молекуле атом кислорода (не поддерживать горение) и не вступать с металлом в химическую реакцию;
  • ОПСН должны иметь определенный фракционный состав (как правило, в диапазоне 50-75 мкм);
  • ОПСН не должны слеживаться в процессе хранения, что достигается включением в их состав антислеживающих гидрофобизирующих добавок, а также обладать рядом других эксплуатационных свойств в соответствии с общепринятыми техническими требованиями;

В настоящее время наиболее распространены для тушения пожаров классов Д1, Д2, Д3 ОПСН на основе хлоридов щелочных металлов (KCl – Россия и NaCl – Европа, США). В качестве огнетушащих составов для металлов существует ряд жидкостных составов (например, на основе борных эфиров), но они не нашли широкого применения в практике пожаротушения.

Основным принципом достижения положительного результата при тушении металлосодержащих веществ (по классам Д1, Д2, Д3) является создание с помощью ОПСН защитного полного покрытия очага горения, препятствующего доступу кислорода воздуха в зону горения. Такое покрытие должно быть достаточно плотным, иметь необходимую толщину слоя порошка по всей поверхности очага горения, что достигается при определенном удельном расходе порошка (кг/м 2 ).

Тушение металлов и металлосодержащих веществ имеет ряд особенностей, присущих каждой группе веществ по классам Д1, Д2, Д3 в т.ч.:

  1. для тушения металлов по классу Д1 ОПСН должен отвечать критериям, приведенным выше, при этом основу порошка составляет, например, хлорид калия с плотностью около 1 г/см 3 ).;
  2. для тушения гидридов металлов (Д3) применяется ОПСН с характеристиками, аналогичными для ОПСН, применяемого для тушения по классу Д1;
  3. для металлорганических веществ, являющихся жидкостями при обычных условиях, ОПСН должен иметь плотность, близкую к плотности этих веществ (~ 0,7-0,8 г/см 3 ), что обеспечивается введением в состав порошка негорючей добавки с низкой плотностью (перлит, вермикулит), что также способствует адсорбции МОС и улучшает надежность тушения.

При тушении натрия [3] возникает так называемый «капиллярный» или фитильный эффект горения за счет роста оксидных образований, прорастающих через слой порошка, по которым жидкий натрий проникает и горит в виде фитиля. Для предотвращения роста оксидов обычно используют специальные добавки.

Тушение металлов и металлосодержащих соединений ОПСН коренным образом отличается от тушения, например, углеводородных ЛВЖ, ГЖ (классы пожаров A, B, C) порошками общего назначения. В случае тушения пожаров класса Д (Д1, Д2, Д3) основная задача при подаче ОПСН заключается в создании на поверхности очага горения слоя порошкового покрытия, желательно равной высоты, что достигается путем использования так называемых успокоителей, присоединяемых к подающему устройству (на выходе подающего ствола) огнетушителей, порошковых автомобилей. Использование насадки-успокоителя при подаче ОПСН необходимо при тушении порошков металлов и их гидридов, при этом практически предотвращается образование аэровзвеси огнетушащего порошка. Для тушения пожаров классов A, B, C применяется распылительное устройство типа «пистолет», при этом создается порошковое облако над очагом горения, которое способствует достижению тушения.

ОПСН можно применять для тушения радиоактивных металлов. При использовании, например, огнетушащего состава на основе хлорида калия, значительно снижается выделение радиоактивных аэрозолей.

Однако использование порошкового пожаротушения тоже имеет свои недостатки:

По характеру горения металлов их делят на две группы: ле­тучие и нелетучие. Летучие металлы обладают относительно низкими температурами фазового перехода — температура плав­ления менее 1000 К, температура кипения не превышает 1500 К. К этой группе относятся щелочные металлы (литии, натрий, ка­лий и др.) и щелочноземельные (магний, кальций). Температуры фазового перехода нелетучих металлов значительно выше. Тем­пература плавления, как правило, выше 1000 К. а температура кипения — больше 2500 К (табл. 1).
Механизм горения металлов во многом определяется состоянием их окисла. Температура плавления летучих металлов зна­чительно ниже температуры плавления их окислов. При этом по­следние представляют собой достаточно пористые образования.

При поднесении источника зажигания к поверхности металла происходит его испарение и окисление. При достижении концентрации паров, равной нижнему концентрационному пределу, про­исходит их воспламенение. Зона диффузионного горения устанав­ливается у поверхности, большая доля тепла перелается металлу, и он нагревается до температуры кипения. Образующиеся пары, свободно диффундируя через пористую окисную пленку, посту­пают в зону горения. Кипение металла вызывает периодическое разрушение окисной пленки, что интенсифицирует горение. Про­дукты горения (окислы металлов) диффундируют не только к по­верхности металла, способствуя образованию корки окисла, но и в окружающее пространство, где, конденсируясь, образуют твер­дые частички в виде белого дыма. Образование белого плотного дыма является визуальным признаком горения летучих металлов.

У нелетучих металлов, обладающих высокими температурами фазового перехода, при горении на поверхности образуется весь­ма плотная окисная пленка, которая хорошо сцепляется с по­верхностью металла. В результате этого скорость диффузии паров металла через пленку резко снижается и крупные частицы, на­пример, алюминия и бериллия, гореть не способны. Как правило, пожары таких металлов имеют место в том случае, когда они находятся в виде стружки, порошков и аэрозолей. Их горение происходит без образования плотного дыма. Образование плот­ной окисной пленки на поверхности металла приводит к взрыву частицы. Это явление особенно часто наблюдается при движении частицы в высокотемпературной окислительной среде, связывают с накоплением паров металлов под окисной пленкой с последую­щим внезапным ее разрывом. Это, естественно, приводит к рез­кой интенсификации горения.

Основными параметрами их горения являются время воспламе­нения и сгорания. Из теории диффузионного горения следует, что время сгорания частицы металла tг пропорционально квадрату ее диаметра do. Экспериментальные данные показывают, что фактическая зависимость несколько отличается от теоретической. Так, для алюминия tг

Повышение концентрации кислорода в атмосфере интенсифицирует горение металла. Частички алюминия диаметром (53 ÷ 66) 10 -3 мм в атмосфере, содержащей 23% кис­лорода, сгорают за 12,7·10 -3 с, а при повышении концентрации окислителя до 60% — за 4,5·10 -3 с.

Однако для пожарно-технических расчетов большой интерес представляет не время сгорания частицы металла, а скорость рас­пространения пламени по потоку взвеси частиц металла в окис­лителе. В табл.2 приведены экспериментальные данные по скорости распространения пламени и массовой скорости выгора­ния взвеси частиц диаметрами менее 10 -2 мм и 3·10 -2 мм алю­миния в воздухе при различном коэффициенте избытка воздуха.

Особенности резки

К каждой металлической заготовке нужен свой подход. Остановимся на особенностях резки листов, поковок и труб.

Резка листов

Ручная техника применяется для обработки листов. В качестве горючего газа в этом случае часто используют ацетилен, пропан-бутан и природный газ. Первый вариант предпочтительнее, поскольку при его применении время разогрева заготовки минимально.

Листы толщиной 3–300 мм рассекаются резаками Р2А-01 или РЗП-01. Для материала толщиной до 800 мм необходимы специализированные инструменты типа РЗР-2.

При резке стали малой толщины возможны перегревы, коробление металла и оплавление кромок. Чтобы не допустить этого, лучше применять резку с последовательным расположением пламени и кислорода. Мощность пламени должна быть минимальная, а скорость работы — максимальная.

При использовании ручной кислородной резки актуальны следующие технологические приемы:

  • безгратовая резка (позволяет получить срезы без грата (заусенцев, избыточного выдавленного металла) на кромках, подразумевает использование сопла с расширением на выходе и кислорода чистотой более 99,5 %);
  • пакетная резка (позволяет получать качественные срезы тонких листов, подразумевает стягивание в одну пачку заготовок толщиной 1,5–2 мм).

Рисунок 3 — Резка листового металла

Горение – алюминий

Массовая скорость испарения пггф материала в режиме кипения определяется скоростью поступления тепла из зоны горения, которая пропорциональна разности температур горения Тг и кипения Тк. Поскольку Тт в рассматриваемой области давлений почти не изменяется, а Тк увеличивается с увеличением давления, то разность Тг-Тк уменьшается с ростом давления и вместе с этим уменьшается скорость газификации ( испарения) металла тгф а ( Тг-ТК) / ЬИСЯ. Таким образом, при увеличении давления происходит приближение зоны горения к поверхности металла и парофазное горение может прекратиться. Следовательно, при горении алюминия существует область давлений, в которой механизм горения алюминия контролируется скоростью его испарения, и в этой области происходит постепенный переход от парофазного горения при наличии кипения к горению в отсутствие кипения, при котором могут преобладать реакции на поверхности металла. [31]

Близкая к этому значению температура горения алюминия приводится в работах [ 11, с. Температуре 3533 К по формуле (1.15), описывающей кривую кипения, соответствует давление р 3 22 МПа. Отсюда ясно, что при давлениях, больших 3 22 МПа. [33]

Оборудование для кислородной резки

Поскольку для работы часто используют ацетилен, то в качестве оборудования нередко берут установки для ацетиленовой сварки. Вместо сварочных горелок там применяются газовые резаки. Наиболее распространенный вариант — резак инжекторного типа.

По своей конструкции резаки существенно отличаются от горелок. Они имеют дополнительные трубки, через которые подается режущий кислород, и наконечники с мелкими отверстиями для смеси газов. Центральное отверстие предусмотрено для подачи режущего кислорода.

Рисунок 4 — Схема установки для кислородной резки

Принцип работы машины для кислородной резки:

  1. заготовка располагается горизонтально, вентили резака закрыты;
  2. открывается кислородный вентиль, а после — вентиль горючего газа;
  3. смесь воспламеняется и регулируется по мощности;
  4. металл нагревается по площади реза;
  5. открывается вентиль с режущим кислородом, активирующим горение при достижении разогретого металла;
  6. в процессе появляются окислы, они удаляются струей кислорода;
  7. при окончании работы сначала закрывают вентиль режущего кислорода, потом горючего газа, в завершении — горелки.

Основной инструмент комплекта кислородной резки — резак. Существуют классификации этих элементов:

  • по виду горючего газа (резаки для жидких горючих смесей, ацетилена, газов-заменителей);
  • степени автоматизации (ручные, машинные);
  • назначению (специальные и универсальные);
  • смешиванию газов (безинжекторные и инжекторные);
  • мощности пламени (большая, средняя, малая).

Пожары класса D: горят ли металлы?

Фраза «горение металлов» у многих вызывает недоумение. Люди далекие от вопросов пожарной безопасности уверены, что металлы не горят. Однако это не совсем так. Некоторые металлы способны не просто гореть, но даже самовоспламеняться.

Основные опасности, которые несут в себе разные металлы:

  • Алюминий – легкий электропроводный металл с довольно низкой температурой плавления (660°С), в связи с чем при пожаре может произойти разрушение алюминиевых конструкций. Но самым опасным является алюминиевый порошок, который несет в себе угрозу взрыва и может гореть.
  • Кадмий и многие другие металлы под воздействием высоких температур выделяют токсичные пары. Поэтому тушение горящих металлов следует производить в защитных масках.
  • Щелочные металлы (натрий, калий, литий) вступают в реакцию с водой, образуя при этом водород и количество теплоты, необходимой для его воспламенения.
  • Чугун в виде порошка при воздействии высоких температур или огня может взорваться. Искры от чугуна могут спровоцировать возгорание горючих материалов, находящихся вблизи.
  • Сталь, которая не считается горючим металлом, также может загореться, если она находится в порошкообразном состоянии или в виде опилок.
  • Титан – прочный металл, основной элемент стальных сплавов. Плавится он при высоких температурах (2000°С) и в больших конструкциях или изделиях не горит. Но маленькие детали из титана вполне могут воспламениться.
  • Магний – один из главных элементов в легких сплавах, придающий им пластичность и прочность. Гореть могут хлопья и порошок магния. Твердый магний также может воспламениться, но только если его нагреть до температуры выше 650°С.

Как видно, гореть способны в основном измельченные металлы в виде порошка, стружки, опилок. Помимо указанных опасностей, металлы могут также стать причиной травм, ожогов и увечий людей.

Тушение пожаров класса D

Горение класса D происходит на поверхности металла при очень высокой температуре и сильным искрообразованием.

Вода как огнетушащее вещество совершенно не подходит для металлических изделий и порошков, так как многие из них вступают в реакцию с ней, вследствие чего пожар может только усилиться. Также попадание воды на горящий металл может способствовать разбрызгиванию его на людей и окружающие предметы.

Песком также нельзя тушить горящие металлы. Его применение может привести к взаимодействию этих двух материалов и усилить горение.

Для тушения металлов чаще всего используют специальные сухие порошки. Причем для каждого метала необходимо подбирать свой состав.

Горение магния и сплавов на его основе подавляется посредством сухих молотых флюсов, применяемых при их плавке. Флюсы способствуют отделению очага возгорания от воздуха с помощью образующейся жидкой пленки.

Литература:

  1. Чибисов А.Л., Соина Е.А., Габриэлян С.Г., Смирнова Т.М., Габриэлян Г.С. Предельные условия и особенности воспламенения, горения и тушения различных металлов// Водородное материаловедение и химия гидридов металлов: Сборник тезисов VII международной конференции.-Украина, Ялта, 2001.-С.416.
  2. Чибисов А.Л., Смирнова Т.М., Громов А.Д., Акинин Н. И. Определение безопасной удельной скорости выделения водорода в технологическом процессе// Водородное материаловедение и химия гидридов металлов: Сборник тезисов VIII международной конференции.-Украина, Ялта, 2003. С.356-357.
  3. Габриэлян С. Г., Габриэлян Г. С. Рекомендации по тушению жидкого натрия и пирофорных алюмоорганических катализаторов М.: Изд. ВНИИПО, 2000, 19 с.

Другие статьи по теме:

  • Основные неисправности подвески и рулевого управления — часть 1
  • Техника безопасности и основные требования ТБ во время разборки
  • Заточка и правка режущих инструментов
  • Основные неисправности подвески и рулевого управления — часть 2
  • Основные элементы системы зажигания. Катушка зажигания. Часть 2
  • Основные элементы системы зажигания. Катушка зажигания. Часть 1
  • Техника безопасности при эксплуатации моечного оборудования и применении моющих средств
  • Рабочее место. Особенности организации и ТБ
  • Техника безопасности при применении бензола и антифриза
  • Техника безопасности при работе на линии

Преимущества кислородной резки

Технология кислородной и кислородно-флюсовой резки имеет массу преимуществ. Среди них:

  1. большие толщины рассекаемого металла (до 500 мм), ограниченные лишь конструктивными особенностями установок кислородно-флюсовой резки;
  2. низкая себестоимость;
  3. высокое качество (современные машины позволяют достичь приемлемой ширины реза, отсутствия конусности реза, чистых кромок, не требующих обработки);
  4. возможность использования многорезаковых схем.

Качественную кислородную резку осуществляют специалисты «МетиСтр», в арсенале которых — высокоточные станки и богатый опыт.

6.3. Особенности горения металлов

Металлы отличаются от других ТГВ тем, что на их поверхности образуются твёрдые оксиды, препятствующие контакту металла и окислителя (кислорода воздуха).

По характеру горения и по температуре фазового перехода металлы делят на две группы: летучие и нелетучие.

К летучим металлам относятся щелочные и щелочноземельные металлы: литий Li, натрий Na, калий K, магний Mg, кальций Ca. Особенностью их горения является то, что при кипении металла окисел находится в твёрдом состоянии. Например, для магния

К нелетучим металлам относят алюминий AL, титан Ti, бериллий Be, цинк Zn. Температура кипения нелетучих металлов выше температуры плавления их окисла , т.е. когда металл кипит, окисел находится в жидком состоянии. Например, алюминий .

Металлы считаются негорючими, однако в некоторых случаях могут гореть (при высоких температурах, мощных источниках зажигания).

При поднесении источника зажигания к поверхности металла происходит нагревание, плавление металла, испарение паров, окисление паров. Далее горение летучих и нелетучих металлов из-за особенностей поведения их окислов происходит несколько по-разному.

Летучий металл в этот момент расплавлен, а его окисел находится в твердом состоянии, поэтому пары свободно проходят через его пористую структуру. При достижении концентрации паров значения нижнего КПРП происходит воспламенение, температура воспламенения для разных металлов лежит в пределах 70 600 С. Так как пламя располагается близко к поверхности, много тепла передаётся металлу, происходит его кипение, что способствует разрушению корки окисла. Кислород получает доступ непосредственно к металлу, что приводит к ускорению горения. Температура горения металла выше температуры кипения окислов , поэтому пары окислов находятся в газообразном состоянии, выделяется характерный белый дым.

У нелетучих металлов окисел расплавляется первым, окисная пленка препятствует контакту с кислородом. Крупные частицы нелетучих металлов не горят, только стружка, порошок. Горение происходит без дыма. Периодически происходит разрыв окисной пленки, интенсифицирующий горение. Температура горения нелетучих металлов порядка 300-1000 C.

Таким образом, особенности горения металлов связаны со свойствами их окислов и высокими температурами их горения.

Важно, что горение металлов, в отличие от прочих ТГВМ, продолжается в продуктах горения (флегматизаторы СО2, Н2О), что осложняет предотвращение пожаров и их тушение.

Большинством огнетушащих веществ тушить металлы не только неэффективно, но и опасно [9, 17, 22].

Металлы горят при настолько высокой температуре, что при подаче на горящий металл воды и пены выделяется водород, образуется гремучая смесь, горение происходит с хлопками, которые усиливают горение. В целом, водой можно водой тушить порошкообразное железо и компактные металлы, но с принятием мер безопасности (с безопасного расстояния, из-за укрытий). Однако подача воды на радиоактивные материалы может спровоцировать самопроизвольную цепную реакцию.

В связи с тем, что горение металлов протекает не по цепному механизму, они, в отличие от других ТГВМ, продолжают гореть в среде продуктов горения (диоксид углерода , пары воды и азот ). Диоксид углерода при высокой температуре горения может разлагаться на горючий газ ‑ монооксид углерода СО (угарный газ). Из флегматизаторов можно тушить аргоном Ar, но необходимо долгое время поддерживать огнетушащую концентрацию, так как металлы продолжают гореть при содержании кислорода 2 % (МВСК = 2 %).

Обычные огнетушащие порошки также неэффективны, т.к. их компоненты: бикарбонат Na и фосфорно-аммонийные соли, интенсивно взаимодействуют с горючим металлом.

Основное средство тушения при горении металлов – порошки специального назначения, например ПГС-М, МГС, ПХК. Однако и эти специальные порошки надо подавать со сравнительно большим удельным расходом. Так, удельный расход ПГС-М для тушения магния Mg, алюминия Al – 12-14 кг/м 2 , стружки титана Ti – 60 кг/м 2 ; уран в брикетах – 110 кг/м 2 . Для сравнения приведем удельный расход огнетушащего порошка для тушения горючих жидкостей – 0,8 -0,9 кг/м 2 . Подробнее о тушении металлов говорится в теме «Прекращение горения» [17].

На какие группы делят металлы по характеру горения?

Какие металлы относят к летучим, в чем состоит особенность их горения?

Какие металлы относят к нелетучим, в чем их особенность горения?

Почему обычные огнетушащие вещества неэффективно или опасно применять для тушения пожаров металлов?

Перечислите огнетушащие средства, рекомендуемые для тушения пожаров металлов

Читайте также: