Основные сведения о свариваемости металлов

Обновлено: 04.07.2024

При сварке плавлением наиболее характерными свойствами разнородных металлов , определяющими их взаимную свариваемость , являются предел взаимной растворимости, различия температуры плавления, соотношение коэффициентов теплового расширения, взаимодействие с газами и шлаками и др. С увеличением различия указанных свойств металлов усложняется металлургия их сварки. Область применения конструкций со сварными соединениями тугоплавких металлов с другими металлами достаточно обширная.

Для изготовления конструкций, отдельные элементы которых работают в агрессивных средах или при высоких температурах, перспективно применение тугоплавких металлов в сочетании с жаропрочными сплавами и коррозионно-стойкими сталями. При изготовлении энергетических атомных станций и двигателей широкое применение находят сочетания из тугоплавких металлов (вольфрам, молибден, ниобий, цирконий и др.) с конструкционными аустенитными сталями. Значительное распространение имеют трубопроводы из титана и стали с использованием промежуточных вставок из ванадия, хорошо сваривающегося как со сталью, так и с титаном.

Процесс образования соединений металлов в разнородном сочетании можно условно разделить на три стадии.

  1. Первая, начальная стадия заключается в сближении соединяемых поверхностей на расстояние, обеспечивающее образование физического контакта, что достигается путем расплавления и растекания жидкого металла по поверхности твердого металла. В зависимости от применяемой технологии расплавляют обе кромки соединяемых металлов или кромку одного более легкоплавкого металла.
  2. Вторая стадия характеризуется образованием химических прочных связей между атомами соединяемых металлов, образующихся в процессе смачивания жидким металлом поверхности твердого металла, активизированной нагревом. При сварке с расплавлением кромок соединяемых металлов первая и вторая стадии проходят практически одновременно. При сварке с расплавлением одной из соединяемых кромок вторая стадия образования соединения несколько смещена относительно первой на время, необходимое для термической активации поверхности твердого металла.
  3. Третья, завершающая стадия характеризуется развитием диффузионных и релаксационных процессов в зоне сварного шва, влияющих на образование химических хрупких соединений в металле шва и величину остаточных напряжений в сварном соединении. Процессы, развивающиеся в третьей стадии, в основном определяются температурой и характером взаимодействия соединяемых элементов.

При оценке свариваемости разнородных металлов принято считать, что образование сварных соединений с удовлетворительными свойствами возможно для металлов, обладающих неограниченной взаимной растворимостью в жидком и твердом состояниях. Одним из условий образования между элементами неограниченной взаимной растворимости считается, чтобы различие их атомных диаметров не превышало15 %.

Металлы, образующие ограниченный ряд твердых растворов, эвтектики и химические соединения, снижающие механические и коррозионные свойства сварного соединения, относятся к несвариваемым или плохо свариваемым. На основе анализа бинарных диаграмм состояния в табл. 15.1 представлены данные о взаимодействии элементов, составляющих основу наиболее распространенных конструкционных металлов и сплавов. Только незначительная часть элементов при взаимодействии образует непрерывный ряд растворов, остальные имеют ограниченную взаимную растворимость, и образуют химические соединения.

Физические свойства химических соединений в отличие от аналогичных свойств основных элементов характеризуются высокой твердостью, заметным изменением плотности, существенным изменением коэффициента теплового расширения и температуры плавления. На пределы взаимной растворимости свариваемых металлов и свойства химических соединений существенное влияние оказывают легирующие элементы, примеси и продукты химических реакций, полученные в результате взаимодействия свариваемых сплавов с окружающей средой. Поэтому при оценке возможности получения соединений сплавов в разнородном сочетании необходимо учитывать не только взаимодействие между элементами, составляющими основу, но и влияние легирующих элементов и примесей, имеющихся в соединяемых сплавах.

Общие сведения о свариваемости металлов

В современном машиностроении, наряду с обычной малоуглеродистой сталью , широко применяются металлы и сплавы , обладающие высокими механическими или специальными физическими свойствами, такими, как жаропрочность, коррозионная стойкость и т. д. Несмотря на высокие эксплуатационные свойства этих материалов, сварка их в большинстве случаев связана с определенными трудностями. К таким металлам и сплавам относятся углеродистые и легированные стали (конструкционные и теплоустойчивые), высоколегированные стали (нержавеющие и жаропрочные), чугун, медь, алюминий, магний и их сплавы, активные металлы.

Под свариваемостью понимают способность металлов и сплавов соединяться с помощью того или иного метода сварки ; при этом сварные соединения должны обладать теми же свойствами, что и свариваемый металл, и не иметь дефектов в виде трещин, пор, неметаллических включений и т. п.

Наиболее часто встречается неоднородность в свойствах сварного шва, околошовной зоны и основного металла, обусловленная различием в структуре, величиной зерна и другими причинами. Сварочный термический цикл в околошовной зоне характеризуется нагревом металла до высоких температур и значительными скоростями охлаждения. При сварке углеродистых и легированных сталей происходит закалка околошовной зоны. Закаленная околошовная зона имеет более высокую твердость и пониженную пластичность по сравнению с основным металлом и сварным швом ( рис. 198 ).

Рис. 198. Распределение твердости по сварному соединению стали 50ХФА: 1 — сварной шов; 2 — зона термического влияния; 3 — основной металл.

Следствием плохой свариваемости металлов являются трещины, которые разделяются на горячие и холодные. Горячие трещины образуются главным образом в сварных швах в процессе их кристаллизации в результате развития внутренних деформаций. Горячие трещины наблюдаются в сталях, алюминиевых и медных сплавах и др. ( рис. 199 ).

Рис. 199. Горячие трещины в сварном шве.

Качественная оценка сопротивляемости металла образованию горячих трещин при сварке может быть произведена путем сварки жестких образцов, так называемых «технологических проб» ( рис. 200 ). Материалы, получившие при сварке проб горячие трещины, считаются склонными к трещинообразованию. Один из способов количественной оценки сопротивляемости металла образованию горячих трещин при сварке заключается в испытании сварных образцов на специальной испытательной машине ( рис. 201 ). Испытание образцов ведется таким образом, что кристаллизующаяся сварочная ванна подвергается деформации растяжения. Скорость растяжения, вызывающая образование горячих трещин в образце, является критической и служит количественно оценкой сопротивляемости металла сварного шва образованию трещин.

Рис. 200. Крестовая «технологическая проба» 1, 2, 3 и 4 — порядок наложения сварных швов.

Рис. 201. Схема машины для определения сопротивляемости металла сварного шва образованию горячих трещин при сварке: 1 — разрезной образец (испытывается в момент нахождения сварочной ванны в разрезе); 2 — захваты машины; 3 — механический привод, обеспечивающий деформирование образцов с различной скоростью.

Холодные трещины возникают в околошовной зоне после полного затвердевания сварного шва в период завершения охлаждения или последующего вылеживания сварной конструкции ( рис. 202 ).

Рис. 202. Холодные трещины в околошовной зоне сварного соединения.

Холодные трещины образуются в сталях перлитного и мартенситного классов, если в процессе сварки происходит частичная или полная закалка околошовной зоны. Холодные трещины возникают под действием остаточных сварочных и структурных напряжений, которые постоянно действуют в сварной конструкции . На снижение сопротивляемости сталей образованию холодных трещин оказывает влияние водород, попадающий из электродных покрытий и флюсов в металл шва.

Наиболее простой качественный способ определения сопротивляемости сталей образованию холодных трещин заключается в сварке технологических проб. Количественный метод оценки сопротивляемости сталей образованию холодных трещин при сварке состоит в механическом испытании сварных образцов непосредственно после сварки постоянной длительно действующей нагрузкой. В специальных установках сварные образцы небольших размеров нагружаются грузами ( рис.203 ). Под действием груза образцы выдерживаются в течение 20 часов. Величина напряжений в образце, при которой возникают холодные трещины, является критической и служит для оценки сопротивляемости сталей образованию трещин.

Рис. 203. Схемы установок для определения сопротивляемости сталей образованию холодных трещин при сварке: а — испытание стыкового образца: 1 — образец; 2 — захваты машины; 3 — блок; 4 — груз; б — испытание таврового образца; 1 — образец; 2 — рычаг с вилкой: 3 — система блоков; 4 — груз.

В настоящее время почти все металлы и сплавы свариваются. Однако в ряде случаев для получения сварных соединений высокого качества необходимо применять сложные технологические приемы (подогрев, отжиг и т. п.). В зависимости от этого все материалы можно подразделить на хорошо, удовлетворительно, ограниченно и плохо сваривающиеся .

К хорошо сваривающимся относятся малоуглеродистые и низколегированные стали марок Сталь 25, 15НМ, 20Х и др.

Удовлетворительно свариваются стали марок: Сталь 35, 25ХНМА, 20ХГС и др. При сварке этих сталей необходимо строго соблюдать режим сварки, иногда их нужно подогревать до 100 — 150°.

К ограниченно сваривающимся относятся материалы, которые требуют для получения качественных соединений специальных сварочных материалов , подогрева до 150 — 350°, термообработки и т. п. К таким материалам относятся стали марок: Сталь 45; 30ХГС, 35ХНМ и др.

К плохо сваривающимся относятся материалы, которые, хотя и свариваются некоторыми способами с применением сложных технологических приемов, однако имеют пониженное качество сварных соединений. Плохо сваривающимися являются стали 50Г2, 50ХФА и др.

Свариваемость металлов

В современном машиностроении, наряду с обычной малоуглеродистой сталью, широко применяются металлы и сплавы, обладающие высокими механическими или специальными физическими свойствами, такими, как жаропрочность, коррозионная стойкость и т. д. Несмотря на высокие эксплуатационные свойства этих материалов, сварка их в большинстве случаев связана с определенными трудностями. К таким металлам и сплавам относятся углеродистые и легированные стали (конструкционные и теплоустойчивые), высоколегированные стали (нержавеющие и жаропрочные), чугун, медь, алюминий, магний и их сплавы, активные металлы.

Сварка углеродистых и легированных сталей

Углеродистые стали (С > 0,25%) и низколегированные (легирующих элементов до 3 ÷ 4%) относятся к категории конструкционных сталей (Сталь 45; 30ХГСА; 40ХФА и т. д.).

Сварка ферритных высокохромистых сталей

Высокохромистые стали (IX13, Х17, Х25, Х28) относятся к ферритному классу. Стали с более низким содержанием хрома являются сталями феррито-мартенситного и мартенситного типа.

Сварка аустенитных хромоникелевых сталей

При сварке нержавеющих сталей типа 18 — 8 (18%о Сr и 8% Ni) возможно выпадение карбидов хрома по границам зерен при нагреве до 800 — 800°С и возникновение склонности к межкристаллитной коррозии.

Сварка чугуна

Дуговая сварка холодного металла чугунными обмазанными электродами не обеспечивает хорошего качества сварных соединений.

Сварка меди и ее сплавов

На свариваемость меди большое влияние оказывают содержащиеся в ней вредные примеси О 2 , Н 2 , S, Р. Закись меди Сu 2 О приводит к образованию горячих трещин и пониженной пластичности сварных швов в холодном состоянии, образуя с медью эвтектику (Сu 2 О — Сu), которая придает затвердевшему металлу хрупкость.

Сварка алюминия и его сплавов

Сварка алюминия и его сплавов затруднена вследствие наличия на поверхности деталей и ванны тугоплавкой пленки окисла Al2О3, препятствующей сплавлению наплавленного и основного металла между собой.

Сварка магния и его сплавов

Трудность сварки магния связана с интенсивной окисляемостью магния. Магний и его сплавы свариваются теми же методами, которые применяются для сварки алюминия.

Сварка активных металлов

К активным металлам принадлежат титан, цирконий, ниобий, молибден и другие, интенсивно реагирующие с кислородом, водородом и азотом при нагреве. Для получения качественных сварных соединений необходимо создавать совершенную защиту места сварки от воздействия воздуха.

Сварка титана

Автоматическая сварка титана производится под слоем специального флюса. Титановые сплавы склонны к образованию холодных трещин при сварке. Перед сваркой проволока и металл подвергаются дегазации. Сварка циркония, ниобия, молибдена производится в камерах с контролируемой атмосферой и электронным лучом.

Виды сварки металлов

На сегодняшний день применяются различные виды стыковки металлов, основные различия и характеристики подразделяются на техническую, физическую, а также технологические разновидности. Технологический процесс соединения подразумевает взаимодействия материалов на межатомном уровне путем воздействия температур. Несъемные крепления используются для множества материалов, основные из них металлические детали, также свариваются стекло, пластмасса и керамика. Процесс происходит основными способами ручной, полуавтоматической или автоматической, в зависимости от характеристик механизмов.

Виды сварки

Понятие процесса сварки

Энергия подводится к электроду, материалу для сварки, путем усиления через инвертор. Определение сварки начинается с того, что воздействие электрической дуги приводит к расплавлению металла электрода, что приводит к образованию сварочной ванны. При процессе образования ванны происходит смешивание с основным материалом, шлаки всплывают на поверхность и служат как защитная пленка. Затвердевание металла после процессов называется процессом сварки.

Процесс сварки

Для определения, что такое сварка, важно знать, что существует два вида электродов – неплавящиеся и плавящиеся. Неплавящийся электрод подразумевает использование присадочной проволоки, которая вводится в сварочную ванну отдельно. Второй вариант плавит непосредственно прут электрода. Защита от окисления в процессе стыковки производится газами, подводящийся при горении головки. Существуют переменные и постоянные агрегаты, при работах с агрегатами постоянного тока происходит более качественный, равномерный шов.

Физические признаки сварки

Взаимодействие металлов или других материалов происходит путем межатомного воздействия элементов. При обычных температурных показателях материалы не взаимодействуют друг с другом вне зависимости от условий, из-за твердой структуры металлов. Загрязнение поверхностей при соединении в виде образований жира или окисей оказывает значительное влияние при процессе связки металлов.

Под действием сдавливания возможно физическое соединение на поверхности или пластическая деформация. Атомно — металлические связи происходит путем взаимодействий электронных соединений при сварке металлов, а также стыковка ковалентных металлов. Определение типа и вида сварки происходит по нескольким параметрам взаимопроникновения, например сдавливание, распайка и термомеханическое воздействие.

Расплав металла сваркой

Расплав металла сваркой

Расплавление материала происходит без воздействия внешних механических сил, обеспечивается необходимая температура сварочными дужками, газовым пламенем, другим источникам энергии. Виды сварочных работ под давлением подразумевают деформацию металла, что придает текучесть жидким соединениям. Процесс стыковки материалов происходит за счет наплыва свежих слоев материала друг на друга.

Технологичность главное свойство сварных работ

Существует множество разновидностей способов, видов сварочных работ. Классификация имеет прямую зависимость от типа материала и оборудования. Распространенные виды сварочных работ:

  • электрошлаковые;
  • дуговые;
  • плазменное и электронно-лучевое;
  • световые, газовые;
  • ультразвуковые;
  • холодные, печные, контактные виды.

Плазменная сварка Электрошлаковая сварка

Важность технологических свойств

Бесперебойность процесса и его механизацию обеспечивают технологические свойства. Металлический компонент в сварочном шве остается защищенным в случае соблюдения требований и технологий. Виды сварки подразделяются на:

  • вакуумные;
  • воздушные;
  • защитно — газовые;
  • по флюсные;
  • пенные;
  • под флюсные виды.

Степень расплавленной среды материала подразделяется на атмосферную и струйную разновидность. Расплавленное вещество на дужке сварного шва характеризует струйную технологию. Характер заменимости способствует возможной замене газа на более или менее активный. Существует совокупность активных или инертных соединений газов. Степень механизации подразделяется на ручную, механизированную и полностью автоматический процесс.

Классификация способов сварки

Основными способами создания сварочных швов выделяются три основные виды сварки. Плавление элементов без прилагаемого усилия или давления применяется к оборудованию, способному работать электрической дугой или газовым пламенем. Расплавленные металлы соединяются в сварочной ванне, образуя защитный слой поверх деталей для предотвращения окислов и взаимодействия с кислородом.

Электродуговая сварка

Термомеханическим видом соединения подразумевается применение давления и тепловой энергии. Подогрев заготовок элементов осуществляется за счет тепловой энергии, механическое усилие придает нужное соединение пластичному металлу. Классификация сварки имеет третий вид, при котором производится давление на части материалов. В результате действий, материал сжижается, становится текучим, что дает возможность соединить материалы в труднодоступных местах. Загрязнённый слой отводится на поверхность текучей жидкости, в результате чего появляется обновлённый слой, чистый шов.

Термический класс сварки

Данный класс сварочных работ выполняется путем плавления кромок частей материалов. В начале процесса образуется сварочная ванна, после отвода которой производится шов. Классификация видов сварки термическим способом разделяется на основные подкатегории:

  • газовая;
  • электронно-лучевая;
  • плазменная;
  • лазерная;
  • термитная;
  • электрически дуговая стыковка.

Наиболее распространенным считается последний вариант т.к. не требует специализированного инструмента, приспособлений.

Дуговая сварка

Электродуговая стыковка деталей пользуется наибольшей популярностью при проведении работ. Электрическая дуга между электродами производится мощным разрядом, одним из элементов производится процесс сварки.

Схема дуговой сварки

Схема дуговой сварки

Работа производится после обработки, заготовки материала, состоит из основных этапов.

  1. Производится соприкосновение электрода с металлом, что вызывает короткое замыкание, после этого, инструмент отводится на расстояние не более 5 мм. Короткое замыкание служит для достижения электродом требуемой температуры, путем интенсивной эмиссии электронов в конструкции катода. После достижения стабильной, устойчивой дуги, производятся работы.
  2. Устойчивый дуговой заряд производится путем ускорения электронов в электрическом поле, происходит ионизация газового соединения анода с катодом. Температура электрической дуги, как источника тепла достигает до 6000⁰. Сварочный ток при напряжении дуги до 50 В, использования покрытого специальным составов, достигает до 3 кПа.

Предназначение данного вида сварки с использованием покрытых электродов состоит в легировании состава шва, защиты расплава от окружающих воздействий путем газового и шлакового способа.

Газовая сварка

Электродуговой способ, при котором осуществляется процесс в газовой защитной среде. Подразделяются газообразные вещества на инертные и активные виды.

Методики сварки существуют МИГ и МАГ разновидностей, основное предназначение состоит в использовании универсальных материалов, различаются механическими параметрами.

Перед использованием оборудования необходимо проверить все составляющие, зачистить обрабатываемый металл от окраски и ржавчины.

Устройство аппарата для газовой сварки

Устройство аппарата для газовой сварки

Комплект газосварочного оборудования состоит из:

  • кислородный рукав номинальным давлением 0,64 МПа, используется для подачи ацетилена;
  • подача кислорода производится через рукав третьей категории давлением до 2 МПА;
  • два редуктора для регулировки давления;
  • баллоны объемом от 40 л;
  • горелка с регулировочным винтом.

Давление подачи ацетилена производится регулировкой редуктора на баллоне, специальный манометр указывает на точный параметр. Давление горючей смеси должно составлять около 0,2 МПа, кислород регулируется идентичным способом до уровня 0,5 МПа. Регулировка газовой горелки происходит путем открытия подачи ацетилена до тех пор, пока огонь не стабилизируется у основания, кислородом устанавливается мощность пламени.

Основные составляющие пламени это ядро, зона восстановления и факел. Горелка располагается под определенным градусом к основному металлу, расстояние между ядром и материалом составляет 1,5 мм. Поступательными движениями разогревается металл до температуры плавления, после изменяется градус подачи горелки, подается присадочная проволока.

Лучевая сварка

Высокое качества шва достигается путем работы в вакууме. Процесс представляет собой передачу мощного пучка энергии к заготовке. Электроны взаимодействуют со составляющими веществами материала, что приводит к быстрому разогреву, достижению необходимой температуры плавления. Используются данная категория сварочных работ при работе с микроэлементами, т.к. луч можно регулировать до размеров микрона в диаметре.

Установка для лучевой сварки Схема электролучевой сварки

Термитная сварка

Сварка происходит с использованием специального материала – термит, состоящего из соединений магния или алюминия, железной окалины. Порошкообразная смесь применятся к подготовленным в жаропрочном виде материала металлам, предварительно разжигая запалом либо электрической дугой. Результатом становится прочное соединение, основное предназначение данного вида работ состоит в стыковке труб, рельсов, наплавки массивных изделий.

Электрошлаковая сварка

Относительно новый способ произведения сварочных работ разработан в институте им. Патона. Подготовленные детали обволакиваются шлаком, который нагрет до температур, превышающих плавление проволоки и металла. Электрошлаковая сварка позволяет заполнять большие разрывы в один проход, процесс не отличается от дугового вида стыковки металлов. Высокое качества шва достигается за счет образования защитной ванны, которая выдвигает нестабильные соединения металлов на поверхность.

Схема процесса электрошлаковой сварки

Схема процесса электрошлаковой сварки

Процесс электрошлакового вида сварки происходит следующим образом:

  • кромки вертикально расположенных деталей наклоняются на 20-25⁰ по отношению к размеченной части;
  • устанавливается необходимый зазор для помещения порошка;
  • дуга, разжигаемая между нижней пластиной и электродом, расположенным сверху расплавляет флюс;
  • шлаковая ванна возникает путем плавления флюса, медных ползунов, после чего шунтируемая дуга потухает;
  • происходит переход из дугового вида в шлаковую, ванная которой нагревается до 1700⁰;
  • кромки металла расплавляются шлаком в сварочной ванне, после удаления электрода происходит остывание и кристаллизация металла.

Данным способом возможно работать со сложными швами, крупногабаритными деталями. Повышенное качество, отсутствие трещинообразования, позволяют стыковать шлаковой сваркой ответственные детали.

Газовые примеси и пузыри удаляются без затруднений из зоны сварки, этому способствует вертикальное расположение конструкции.

Термомеханический класс сварки

Комбинированный способ предлагает воздействие не только повышенной температурой на металл, но и механические усилия. В большинстве случаев, используется при стыковке малогабаритных частей, которые обычным способом качественно связать не представляется возможности. Процесс происходит в электродах — губках, в которых закрепляется две части деталей. Основными видами сварки называются контактная, диффузионная и кузнечные способы.

Кузнечная сварка

Качественное соединение кузнечным способом работ достигается при условиях очищенных от налетов, окислов прилагаемых поверхностей. Работа ручным инструментом осуществляется по нагретому металлу, детали нахлестываются и производятся удары молотком по поверхности.

Способы кузнечной сварки Кузнечная сварка

Кузнечный вид сварки применяется далеко не ко всем материалам, имеет малую производительность, требует достаточного опыта от кузнеца.

Современные виды работ вытеснили кузнечное дело ввиду малой надежности стыкованных деталей.

Контактная сварка

Нагрев при сварке сопротивлением достигается прилеганием поверхности иглы к изделию. Электрический ток проходит через инструмент нужного диаметра, предварительно необходимо подготовить металл путем сдавливания или осадочного механического воздействия. Химическое воздействие атомов металла дает возможность сварить мелкие детали, легко поддается автоматизации и высокопроизводительна.

Контактная сварка

Различается на три основные способа, точечную, роликовую и стыковую разновидность. Широко применяется в промышленности и машиностроении, в труднодоступных местах и соединениях.

Диффузионная сварка

Основой способ является использования диффузии атомов при высоком уровне вакуума. Поверхностные слои металла нагреваются в силу высокой диффузионной способности атомов до температур, приближенной к плавлению. Контакт и надежная стыковка происходит механическим воздействием высокой силы, минимальная мощность сжатия составляет 20 МПа.

Применяется данный вид при плохо контактирующих материалах.

Процесс начинается с помещения деталей в специальную камеру, крепление и передачи усилия. Материалы выдерживаются определенной время, под воздействием электрического тока.

Механический класс сварки

Виды и способы механической сварки используют физическое воздействие на стыкуемые материалы. Основные способы имеют преимущества при отсутствии возможности до температуры плавления. Переход энергии из механической в кинетическую позволяют нагреть стыкуемые изделия до порога плавления.

Сварка трением

Основные детали, к которым применяется сварка трением, являются трубы небольшого диаметра, стержневые конструкции. Автоматизированный процесс позволяет производить различные виды сварочных работ в специальных машинах, в шпиндель которых крепятся заготовки. Машина работает посредством перемещения одной из деталей к неподвижной части. Частота вращения доводится до 1500 об/мин, в результате чего происходит нагрев деталей и оплавление.

Сварка трением

После выключения муфты вращения, машина выполняет осадку изделий. Экономичность, быстрое выполнение поставленных задач, делают вид работ трением преимущественнее дуговой, а также имеется возможность варить металлы из разных сплавов.

Холодная сварка

Заготовки стыкуются путем холодной сварки путем деформирования пластических свойств материалов. Температура при операции может достигать минусовой, поверхности должны быть зачищены от окислов и ржавчины. Соединение происходит на межатомном уровне, поэтому элементы должны быть идеально ровными и обработанными.

Холодная сварка

Применяется холодный вид при стыковке шин, проволоки или труб. Давление варьируется от 1 до 3 ГПа, данный способ требует подготовленного к высоким нагрузкам оборудования.

Сварка взрывом

Соединение деталей при сварке взрывом происходит путем синхронной пластической деформации деталей. Подвижная часть детали прикладывается параллельно к устойчиво закрепленной мишени, после чего производится контролируемый взрыв. Основное применение данный способ получил ввиду возможности стыковки разнородных металлов. Взрывные вещества применяются из состава гранулотола, аммонита, гексогена.

Сварка взрывом

Ультразвуковая сварка

Стыковка деталей происходит с применением источников энергии, выдающим на выходе ультразвуковые колебания. Применяется при шовной, точечной, контурного вида сварки механическим воздействием. Сухое трение способствует разрушению оксидных пленок, после заменяется на чистое трение, при котором происходит процесс сварки. Основными преимуществами данного способа является отсутствие предварительной очистки поверхностей, что значительно экономит время. При сварке пластмассовых деталей не допускается перегрев прилагаемых зон, т.к. контролируется температурный диапазон определенного участка. Отсутствуют вредные пары, газы при процессе, нагрев происходит за доли секунды.

Ультразвуковая сварка

Недостатками при ультразвуковом виде можно выделить дорогостоящее оборудование, малый диапазон толщины материалов. Необходимо четко определить толщину свариваемых видов материалов, при размерах вне допуска, возможно применение акустической линзы, что дает возможность сфокусировать энергию на определенном участке детали.

Свариваемость сталей

Выделяют довольно большое количество параметров, которые определяют основные свойства металла. Среди них выделяют показатель свариваемости. На сегодняшний день сварка стали проводится крайне часто. Подобный способ соединения металлов и других материалов характеризуется высокой эффективностью, так сварной шов может выдерживать большую нагрузку. При плохом показателе провести подобную работу сложно, в некоторых случаях даже невозможно. Все металлы разделяются на несколько групп, о чем далее поговорим подробнее.

Свариваемость сталей

Основные критерии, устанавливающие свариваемость

Оценивая свариваемость сталей, всегда уделяют внимание химическому составу металла. Некоторые химические элементы могут повысить этот показатель или снизить его. Углерод считается самым важным элементов, который определяет прочность и пластичность, степень закаливаемости и плавкость. Проведенные исследования указывают на то, что при концентрации этого элемента до 0,25% степень обрабатываемости не снижается. Увеличение количества углерода в составе приводит к образованию закалочных структур и появлению трещин.

Понятие свариваемости

К другим особенностям, которые касаются рассматриваемого вопроса, можно отнести нижеприведенные моменты:

  1. Практически во всех металлах содержатся вредные примеси, которые могут снижать или повышать обрабатываемость сваркой.
  2. Фосфор считается вредным веществом, при повышении концентрации появляется хладноломкость.
  3. Сера становится причиной появления горячих трещин и появлению красноломкости.
  4. Кремний присутствует практически во всех сталях, при концентрации 0,3% степень обрабатываемости не снижается. Однако, если увеличить его до 1% могут появится тугоплавкие оксиды, которые и снижают рассматриваемый показатель.
  5. Процесс сварки не затрудняется в случае, если количество марганца не более 1%. Уже при 1,5% есть вероятность появления закалочной структуры и серьезных деформационных трещин в структуре.
  6. Основным легирующим элементом считается хром. Он добавляется в состав для повышения коррозионной стойкости. При концентрации около 3,5% показатель свариваемости остается практически неизменным, но в легированных составах составляет 12%. При нагреве хром приводит к появлению карбида, который существенно снижает коррозионную стойкость и затрудняет процесс соединения материалов.
  7. Никель также является основным легирующим элементом, концентрация которого достигает 35%. Это вещество способно повысить пластичность и прочность. Никель становится причиной улучшения основных свойств материала.
  8. Молибден включается в состав в небольшом количестве. Он способствует повышению прочности за счет уменьшения зернистости структуры. Однако, на момент воздействия высокой температуры вещество начинает выгорать, за счет чего появляются трещины и другие дефекты.
  9. В состав часто в качестве легирующего элемента добавляется медь. Ее концентрация составляет около 1%, за счет чего немного повышается коррозионная стойкость. Важной особенностью назовем то, что медь не ухудшает обработку сваркой.

Критерии свариваемости

В зависимости от особенностей структуры и химического состава материала все сплавы делятся на несколько групп. Только при учете подобной классификации можно выбрать наиболее подходящий сплав.

Классификация сталей по свариваемости

Хорошей обрабатываемостью обладают сплавы, в которых при нагреве не образуются трещины. По данной характеристике выделяют четыре основных группы:

  1. Хорошая обрабатываемость сваркой определяет то, что сталь после термической обработки остается прочным и надежным. При этом создаваемый шов может выдерживать существенное механическое воздействие.
  2. Удовлетворительная степень позволяет проводить обработку без предварительного подогрева. За счет этого существенно ускоряется процесс, а также снижаются затраты.
  3. Ограниченно свариваемые стали сложны в обработке, сварку можно провести только при применении специального оборудования. Именно поэтому повышается себестоимость самого процесса.
  4. Плохая податливость сварке не позволяет проводить рассматриваемую обработку, так как после получения шва могут появится трещины. Именно поэтому подобные материалы не могут использоваться для получения ответственных элементов.

Классификация сталей по свариваемости

Классификация сталей по свариваемости

Каждая группа характеризуется своими определенными особенностями, которые нужно учитывать. Сталь 20 относится к первой группе, в то время как распространенная сталь 45 обладает низкой податливостью к сварке.

Группы свариваемости

Все группы свариваемости сталей характеризуются своими определенными особенностями. Среди них можно отметить следующие моменты:

  1. Первая группа, которая характеризуется хорошей свариваемостью, может применяться при сварке без предварительного подогрева и последующей термической обработки шва. Отпуск выполняется для снижения напряжения в металле. Как правило, подобное свойство связано с низкой концентрацией углерода.
  2. Вторая характеризуется тем, что склонна к образованию трещин и дефектов на швах. Именно поэтому рекомендуется проводить предварительный подогрев материала, а также последующую термическую обработку для снижения напряжений.
  3. При ограниченном показателе сталь склонна к образованию трещин. Для того чтобы исключить вероятность появления трещин следует материал предварительно разогреть, после сварки в обязательном порядке проводится термообработка.
  4. Последняя группа характеризуется тем, что в большинстве случаев на швах образуются трещины. При этом предварительный разогрев структуры не во многом решает проблему. После сварки обязательно проводится многоступенчатое улучшение.

Группы свариваемости

Каждый сплав и металл относится к определенной группе. Кроме этого, степень свариваемости меняется после улучшения материала, к примеру, путем азотирования или закалки.

Как влияют на свариваемость легирующие примеси

Как ранее было отмечено, включение в состав большого количества легирующих элементов приводит к изменению основных характеристик. При этом отметим следующие моменты:

  1. При низком показателе концентрации сталь лучше поддается сварке.
  2. Некоторые химические вещества могут повысить рассматриваемый показатель, другие ухудшить.

Именно поэтому при выборе легированного сплава уделяется внимание не только типу легирующих элементов, но и их концентрации. Принятые стандарты ГОСТ определяют то, что при маркировке могут указывать основные химические вещества и их количество в составе.

Влияние содержания углерода на свариваемость стали

Во многом именно углерод определяет основные эксплуатационные характеристики сплава. Слишком высокая концентрация подобного химического вещества приводит к повышению твердости и прочности, но также и хрупкости. Кроме этого, в несколько раз снижается степень свариваемости. К другим особенностям отнесем следующие моменты:

  1. Если в составе углерода не более 0,25%, то рассматриваемый показатель остается на достаточно высоком уровне.
  2. Слишком большое количество углерода в составе приводит к тому, что металл после термического воздействия начинает менять свою структуру, за счет чего появляются трещины.

Стоит учитывать, что проводимая химикотермическая процедура может привести к снижению податливости к рассматриваемому способу соединения. Именно поэтому улучшение сплава проводится после создания конструкции путем обработки шва.

Свариваемость низкоуглеродистых сталей

Низкоуглеродистые сплавы хорошо подаются свариванию. При этом можно отметить следующие моменты:

  1. В подобных сплава концентрация углерода менее 0,25%. Этот показатель свойственен сплавам, которые имеют повышенную гибкость и относительно невысокую твердость поверхностного слоя. Кроме этого, снижается значение хрупкости. Поэтому низкоуглеродистые стали часто используют при создании листовых заготовок. При добавлении небольшого количество легирующих элементов может быть повышена коррозионная стойкость.
  2. Для повышения основных характеристик в состав могут добавлять различные легированные элементы, но в небольшом количестве. Примером можно назвать марганец и никель, а также титан.

Низкоуглеродистая сталь

Как правило, подобные металлы не нужно перед обработкой подвергать подогреву, а после проведения процедура закалка или отпуск выполняется только для при необходимости.

Свариваемость закаленной стали

Распространенной термической обработкой можно назвать закалку. Она предусматривает воздействие высокой температуры, которая может изменить структуру материала. После охлаждения происходит перестроение структуры, за счет чего происходит упрочнение структуры и повышение твердости поверхностного слоя. К другим особенностям отнесем следующие моменты:

  1. Закалка предусматривает увеличение концентрации углерода в поверхностном слое. Именно поэтому степень свариваемости существенно снижается.
  2. Подогрев заготовки проводится для того, чтобы упростить проводимую работу. Для этого может использоваться газовая грелка или иной источник тепла.

Закаленная сталь сложна в обработке. Кроме этого, если ранее не проводился отпуск в структуре может быть переизбыток напряжения, что и приводит к появлению трещин.

Повторная обработка швов может не привести к повышению их прочности.

Закаленная сталь

В заключение отметим, что хорошей податливость сварке обладают металлы из различных групп. Примером можно назвать некоторые нержавейки, которые даже после воздействия тепла обладают коррозионной устойчивостью. Именно поэтому для сварочных работ рекомендуется выбирать материал, который характеризуется хорошей обрабатываемостью.

Читайте также: