Почему металлы не вытесняют водород из азотной кислоты

Обновлено: 15.05.2024

Азотная кислота реагирует практически со всеми металлами, кроме золота, но при этом образуются другие продукты реакции.

Контрольные задания III

Выписать из раздела II формулы приведенных в таблице 1 кислот, составить следующую таблицу и заполнить ее согласно примеру.

Формула кислоты Название Тип кислоты Основность Тип элек-тролита Соответству-ющий оксид
HCl соляная бескислородная одноосновная сильный -
угольная кислородосодержащая двухосновная слабый
…… ……. ………………… …………….. …………. …….

С какими из приведенных веществ будет реагировать данная кислота? Написать уравнения реакций

49. При взаимодействии соляной кислоты с карбонатом натрия выделилось 5,6 л углекислого газа (нормальные условия). Сколько граммов соли при этом образовалось?

50. Сколько граммов серного ангидрида потребуется для получения 4,9 г серной кислоты?

51. Сколько литров сероводорода (нормальные условия) выделится при действии серной кислоты на 43,5 г сульфида цинка?

52. При взаимодействии цинка с соляной кислотой выделилось 5,6 л газа (нормальные условия). Сколько граммов соли при этом образовалось?

53. Сколько литров газообразного хлора (нормальные условия) необходимо для получения раствора соляной кислоты, содержащего 146 г ?

54. Какое количество нитрата меди (II) образуется при взаимодействии 20 г оксида меди (II) с азотной кислотой? Какое количество азотной кислоты будет израсходовано?

55. Какую массу магния надо растворить в соляной кислоте, чтобы образовалось 47,5 г хлорида магния? Сколько литров водорода (нормальные условия) при этом выделится?

56. Определить массу сульфата железа (II), полученного при растворении в серной кислоте 11,2 г железа, и объем полученного выделившегося водорода (нормальные условия)?

57. Сколько граммов соляной кислоты потребуется для превращения 40 г оксида меди(II) в хлорид меди (II)? Какая масса соли при этом образуется?

58. Сколько граммов воды выделится при нейтрализации 10 г гидроксида натрия серной кислотой? Сколько молей соли при этом образуется?

59. Сколько литров оксида углерода(IV) (нормальные условия) выделится при действии соляной кислоты на 25 г карбоната кальция?

60. Сколько граммов цинка необходимо взять, чтобы при растворении его в соляной кислоте выделилось 5,6 л водорода (нормальные условия)? Сколько граммов соли при этом образуется?

61. Сколько литров водорода (нормальные условия) выделится при растворении 9 г алюминия в серной кислоте? Сколько граммов соли при этом образуется?

62. Сколько граммов нитрата меди(II) образуется при взаимодействии 24,5 г гидроксида меди(II) с азотной кислотой? Сколько граммов азотной кислоты будет израсходовано?

63. Сколько граммов нитрата кальция получится при нейтрализации раствора, содержащего 31,5 г азотной кислоты, гидроксидом кальция?

64. При растворении алюминия в соляной кислоте выделилось 5,6 л водорода (нормальные условия). Сколько граммов хлорида алюминия при этом образовалось?

В данной работе рассматривается три типа солей – средние, кислые и основные.

Главной реакцией получения солей является реакция нейтрализации – взаимодействие кислоты с основанием. Любую соль можно рассматривать как продукт замещения ионов водорода в кислоте на катионы основания, или как продукт замещения гидроксо-ионов основания на анионы – кислотные остатки кислоты. При этом происходит соединение ионов водорода кислоты с гидроксо-ионами основания, т.е. эти ионы нейтрализуют друг друга – отсюда название “реакция нейтрализации”.

Если происходит полное замещение ионов по указанным схемам и при этом все ионы водорода кислоты соединяются со всеми гидроксо-ионами основания, то образуется средняя соль. Если водород в кислоте замещен не полностью, то образуется кислая соль, а если гидроксо-ионы в основании замещены не полностью, то образуется основная соль.

Рассмотрим в качестве примера реакцию между серной кислотой и гидроксидом кальция. Реакция может происходить по трем направлениям:

В этой реакции кислота взята в избытке, а основание – в недостатке. Получилась кислая соль.

В этой реакции наоборот, основание взято в избытке, а кислота – в недостатке. Получена основная соль.

В этой реакции кислоты и основания взято столько, чтобы все ионы водорода кислоты соединились со всеми гидроксо-ионами основания, и в результате образовалась средняя соль.

Таким образом, при реакции нейтрализации в зависимости от условий проведения процесса могут быть получены все три типа солей.

Представляется очевидным, что одноосновные кислоты не могут образовывать кислые соли, а однокислотные основания – основные соли.

Для того, чтобы из средней соли получить кислую, надо добавить к ней соответствующую кислоту

А чтобы получить основную – добавить основание

И наоборот, чтобы перевести кислую соль в среднюю, надо добавить основание, а чтобы перевести основную в среднюю – добавить кислоту

С точки зрения электролитической диссоциации все соли являются сильными электролитами.

Методы получения солей

1. Реакция нейтрализации

2. Взаимодействие метала с неметаллом

3. Взаимодействие метала с кислотой

4. Взаимодействие основного оксида с кислотным

5. Взаимодействие основного оксида с кислотой

6. Взаимодействие кислотного оксида с основанием

7. Взаимодействие аммиака с кислотами с образованием солей аммония

Химические свойства солей

1. Многие соли способны разлагаться при нагревании. Разложение солей различного состава происходит по-разному и является предметом рассмотрения в курсе неорганической химии.

Некоторые соли (карбонаты, сульфаты) разлагаются при нагревании на кислотный и основной оксиды

Соли щелочных металлов обычно устойчивы при нагревании.

Перечисленные ниже химические свойства солей являются одновременно методами получения одной соли из другой.

2. Взаимодействие металла с солью

Эти реакции протекают в том случае, если реагирующий металл стоит в ряду напряжений левее металла, входящего в состав соли. Иными словами, более активный металл вытеснят менее активный из соли.

Щелочные и щелочно-земельные металлы не вытесняют друг друга из солей.

Большинство реакций, отражающих химические свойства солей, приведенные в пунктах 1-5, происходят в растворах и протекают необратимо (или как принято говорить – “до конца”), если в результате процесса образуется: а) осадок, б) газ, в) слабый электролит. Если эти правила не выполняются, реакция до конца не идет. Например, реакция

существует только на бумаге.

При написании реакций в растворах следует указывать, почему эта реакция идет до конца.

3. Взаимодействие соли со щелочью

4. Взаимодействие соли с кислотой

Последняя реакция, на первый взгляд, противоречит правилу, указанному в химических свойствах кислот, а именно, что сильные кислоты вытесняют слабые из их солей. В приведенном примере, наоборот, слабая кислота вытесняет сильную ( ). Однако вторым продуктом реакции является нерастворимая соль, , выпадающая в осадок. Поэтому данная реакция идет до конца.

5. Взаимодействие в растворе двух солей между собой

Контрольные задания IV

Получите всеми возможными способами следующие соли (№№1-24)

1. Карбонат натрия

  1. Сульфат бария
  2. Нитрат калия
  3. Хлорид цинка
  4. Хлорид серебра
  5. Карбонат кальция
  6. Фосфат натрия
  7. Сульфат аммония
  8. Нитрат бария
  9. Сульфат железа(III)
  10. Сульфат ртути(II)
  11. Силикат калия
  12. Нитрит магния
  13. Сульфит натрия
  14. Нитрат меди(II)
  15. Хлорид аммония
  16. Фосфат кальция
  17. Бромид серебра
  18. Нитрат железа(III)
  19. Сульфид натрия
  20. Силикат натрия
  21. Сульфид меди(II)
  22. Хлорид натрия
  23. Сульфат железа(III).

Назвать все вещества в цепочках и осуществить указанные превращения (№№25-40)

Урок 24. Выделение водорода в реакциях кислот с металлами

В уроке 24 «Выделение водорода в реакциях кислот с металлами» из курса «Химия для чайников» познакомимся с рядом активности металлов, а также больше узнаем о кислотах в химических реакциях.


Характерное химическое свойство кислот — выделение из них водорода в реакциях с некоторыми металлами. Атомы металлов замещают атомы водорода в молекулах кислот, в результате чего водород выделяется в виде газа. В пробирку с хлороводородной кислотой опустим кусочек цинка. На поверхности металла образуются, а затем выделяются из раствора пузырьки газа. Соберем этот газ в пробирку и поднесем ее к пламени спиртовки (рис. 100). Мы услышим хлопок. Это свидетельствует о наличии в пробирке водорода.

выделение водорода

Каплю образовавшегося раствора поместим на стеклянную пластинку и подогреем ее в пламени спиртовки. После испарения воды на пластинке остается вещество белого цвета. Опытным путем можно установить, что состав этого вещества выражается формулой ZnCl2.

Теперь мы можем записать уравнение реакции цинка с кислотой:

реакции замещения

На рисунке 101 дана схема этой реакции. Из уравнения и поясняющей его схемы видим, что атомы цинка замещают атомы водорода в кислоте. В результате из простого вещества цинка и сложного вещества хлороводородной кислоты образуются два новых: сложное вещество ZnCl2 и простое вещество водород Н2.

реакции замещения

Так же протекают реакции алюминия, железа, других металлов и с раствором серной кислоты:

выделение водорода

Эти химические реакции подтверждают, что кислоты являются сложными веществами, состоящими из атомов водорода,
способных замещаться на атомы металла, и кислотных остатков.

Вытеснительный ряд металлов

При проведении опыта вы убедились, что алюминий энергично вытесняет водород из раствора хлороводородной кислоты. С железом реакция вытеснения водорода протекает менее энергично, а с медью вовсе не идет.

По интенсивности вытеснения водорода из кислот металлы можно разместить в ряд:

вытеснительный ряд металлов

Его называют рядом активности или вытеснительным рядом металлов.

Чем левее расположен металл в вытеснительном ряду до водорода2), тем активнее он вытесняет водород из кислот. Металлы, стоящие в ряду правее водорода, из кислот водород не вытесняют.

Зная расположение металлов в вытеснительном ряду, заранее можно предсказать:

  1. Будут ли реагировать металлы с кислотами с выделением водорода;
  2. Насколько активно будут протекать эти реакции.

Для получения водорода из кислот в лаборатории или школьном кабинете химии необходимо брать металлы, которые в вытеснительном ряду стоят до водорода. Но не каждый металл подходит для этих целей. Активные металлы натрий и калий реагируют с кислотами со взрывом, а реакции кислот с оловом и свинцом протекают медленно. Наиболее подходящими металлами для практического получения водорода являются цинк и алюминий. Как вы убедились, при проведении реакций этих металлов с раствором хлороводородной кислоты они протекают спокойно и достаточно быстро.

Краткие выводы урока:

  1. Кислоты — сложные вещества, состоящие из атомов водорода, способных замещаться на атомы металлов, и кислотных остатков.
  2. Металлы, стоящие в вытеснительном ряду до водорода, вытесняют его из кислот.
  3. В лаборатории водород получают в реакции металлов с кислотами.

Надеюсь урок 24 «Выделение водорода в реакциях кислот с металлами» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.

Почему металлы не вытесняют водород из азотной кислоты

Копилка знаний.

пятница, 20 февраля 2015 г.

Взаимодействие металлов с кислотами

С разбавленными кислотами, которые проявляют окислительные свойства за счет ионов водорода (разбавленные серная, фосфорная, сернистая, все бескислородные и органические кислоты и др.)


реагируют металлы:
• расположенные в ряду напряжений до водорода (эти металлы способны вытеснять водород из кислоты);
• образующие с этими кислотами растворимые соли (на поверхности этих металлов не образуется защитная солевая
пленка).

В результате реакции образуются растворимые соли и выделяется водород:
2А1 + 6НСI = 2А1С13 + ЗН2
М g + Н2 SO 4 = М gS О4 + Н2
разб.
С u + Н2 SO 4 X (так как С u стоит после Н2)
разб.
РЬ + Н2 SO 4 X (так как РЬ SO 4 нерастворим в воде)
разб.
Некоторые кислоты являются окислителями за счет элемента, образующего кислотный остаток, К ним относятся концентрированная серная, а также азотная кислота любой концентрации. Такие кислоты называют кислотами-окислителями.


Окислительные свойства кислотных остатков и значительно сильнее, чем нона водорода Н, поэтому азотная и концентрированная серная кислоты взаимодействуют практически со всеми металлами, расположенными в ряду напряжений как до водорода, так и после него, кроме золота и платины. Так как окислителями в этих случаях являются ноны кислотных остатков (за счет атомов серы и азота в высших степенях окисления), а не ноны водорода Н, то при взаимодействии азотной, а концентрированной серной кислот с металлами не выделяется водород. Металл под действием данных кислот окисляется до характерной (устойчивой) степени окисления и образует соль, а продукт восстановления кислоты зависит от активности металла и степени разбавления кислоты


Разбавленная и концентрированная серные кислоты ведут себя по-разному. Разбавленная серная кислота ведет себя, как обычная кислота. Активные металлы, стоящие в ряду напряжений левее водорода

вытесняют водород из разбавленной серной кислоты. Мы видим пузырьки водорода при добавлении разбавленной серной кислоты в пробирку с цинком.

Медь стоит в ряду напряжений после водорода – поэтому разбавленная серная кислота не действует на медь. А в концентрированной серной кислоты, цинк и медь, ведут себя таким образом…

Цинк, как активный металл, может образовывать с концентрированной серной кислотой сернистый газ, элементарную серу, и даже сероводород.

Медь - менее активный металл. При взаимодействии с концентрированно серной кислотой восстанавливает ее до сернистого газа.

Следует иметь в виду, что на схемах указаны продукты, содержание которых максимально среди возможных продуктов восстановления кислот.

На основании приведенных схем составим уравнения конкретных реакций — взаимодействия меди и магния с концентрированной серной кислотой:
0 +6 +2 +4
С u + 2Н2 SO 4 = С uSO 4 + SO 2 + 2Н2 O
конц.
0 +6 +2 -2
4М g + 5Н2 SO 4 = 4М gSO 4 + Н2 S + 4Н2 O
конц.

Некоторые металлы ( Fe . АI, С r ) не взаимодействуют с концентрированной серной и азотной кислотами при обычной температуре, так как происходит пассивации металла. Это явление связано с образованием на поверхности металла тонкой, но очень плотной оксидной пленки, которая и защищает металл. По этой причине азотную и концентрированную серную кислоты транспортируют в железных емкостях.

Если металл проявляет переменные степени окисления, то с кислотами, являющимися окислителями за счет ионов Н + , он образует соли, в которых его степень окисления ниже устойчивой, а с кислотами-окислителями — соли, в которых его степень окисления более устойчива:
0 +2
F е+Н2 SO 4 = F е SO 42
0 разб. + 3
F е+Н2 SO 4 = F е2( SO4 )3 + 3 SO2 + 6Н2 O
конц

Азотная кислота

Азотная кислота HNO3 – это сильная одноосновная кислота-гидроксид. При обычных условиях бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C ( при нормальном атмосферном давлении). Азотная кислота смешивается с водой во всех соотношениях. На свету частично разлагается.

Валентность азота в азотной кислоте равна IV, так как валентность V у азота отсутствует. При этом степень окисления атома азота равна +5. Так происходит потому, что атом азота образует 3 обменные связи и одну донорно-акцепторную, является донором электронной пары.

Поэтому строение молекулы азотной кислоты можно описать резонансными структурами:



Обозначим дополнительные связи между азотом и кислородом пунктиром. Этот пунктир по сути обозначает делокализованные электроны. Получается формула:


Способы получения

В лаборатории азотную кислоту можно получить разными способами:

1. Азотная кислота образуется при действии концентрированной серной кислоты на твердые нитраты металлов. При этом менее летучая серная кислота вытесняет более летучую азотную.

Например , концентрированная серная кислота вытесняет азотную из кристаллического нитрата калия:

2. В промышленности азотную кислоту получают из аммиака . Процесс осуществляется постадийно.

1 стадия. Каталитическое окисление аммиака.

2 стадия. Окисление оксида азота (II) до оксида азота (IV) кислородом воздуха.

3 стадия. Поглощение оксида азота (IV) водой в присутствии избытка кислорода.

Химические свойства

Азотная кислота – это сильная кислота . За счет азота со степенью окисления +5 азотная кислота проявляет сильные окислительные свойства .

1. Азотная кислота практически полностью диссоциирует в водном растворе.

2. Азотная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами и амфотерными гидроксидами.

Например , азотная кислота взаимодействует с оксидом меди (II):

Еще пример : азотная кислота реагирует с гидроксидом натрия:

3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов).

Например , азотная кислота взаимодействует с карбонатом натрия:

4. Азотная кислота частично разлагается при кипении или под действием света:

5. Азотная кислота активно взаимодействует с металлами. При этом никогда не выделяется водород! При взаимодействии азотной кислоты с металлами окислителем всегда выступает азот +5. Азот в степени окисления +5 может восстанавливаться до степеней окисления -3, 0, +1, +2 или +4 в зависимости от концентрации кислоты и активности металла.

металл + HNO3 → нитрат металла + вода + газ (или соль аммония)

С алюминием, хромом и железом на холоду концентрированная HNO3 не реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления +4:

Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 : 3 (по объему):

HNO3 + 3HCl + Au → AuCl3 + NO + 2H2O

Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:

С активными металлами (щелочными и щелочноземельными) концентрированная азотная кислота реагирует с образованием оксида азота (I):

Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).

С активными металлами (щелочными и щелочноземельными), а также оловом и железом разбавленная азотная кислота реагирует с образованием молекулярного азота:

При взаимодействии кальция и магния с азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):

Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:

Таблица . Взаимодействие азотной кислоты с металлами.

Азотная кислота
Концентрированная Разбавленная
с Fe, Al, Cr с неактивными металлами и металлами средней активности (после Al) с щелочными и щелочноземельными металлами с неактивными металлами и металлами средней активности (после Al) с металлами до Al в ряду активности, Sn, Fe
пассивация при низкой Т образуется NO2 образуется N2O образуется NO образуется N2

6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNO3 обычно восстанавливается до NO или NO2, неметаллы окисляются до соответствующих кислот, либо оксидов (если кислота неустойчива).

Например , азотная кислота окисляет серу, фосфор, углерод, йод:

Безводная азотная кислота – сильный окислитель. Поэтому она легко взаимодействует с красным и белым фосфором . Реакция с белым фосфором протекает очень бурно. Иногда она сопровождается взрывом.

Видеоопыт взаимодействия фосфора с безводной азотной кислотой можно посмотреть здесь.

Видеоопыт взаимодействия угля с безводной азотной кислотой можно посмотреть здесь.

7. Концентрированная а зотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др. При этом азот восстанавливается до NO2, неметаллы окисляются до соответствующих кислот (или оксидов), а металлы окисляются до устойчивых степеней окисления.

Например , азотная кислота окисляет оксид серы (IV):

Еще пример : азотная кислота окисляет иодоводород:

Сера в степени окисления -2 окисляется без нагревания до простого вещества, при нагревании до серной кислоты.

Например , сероводород окисляется азотной кислотой без нагревания до молекулярной серы:

При нагревании до серной кислоты:

Соединения железа (II) азотная кислота окисляет до соединений железа (III):

8. Азотная кислота окрашивает белки в оранжево-желтый цвет («ксантопротеиновая реакция«).

Ксантопротеиновую реакцию проводят для обнаружения белков, содержащих в своем составе ароматические аминокислоты. К раствору белка прибавляем концентрированную азотную кислоту. Белок свертывается. При нагревании белок желтеет. При добавлении избытка аммиака окраска переходит в оранжевую.


Видеоопыт обнаружения белков с помощью азотной кислоты можно посмотреть здесь.

Кислоты. Химические свойства и способы получения


Перед изучением этого раздела рекомендую прочитать следующую статью:

Кислоты – сложные вещества, которые при взаимодействии с водой образуют в качестве катионов только ионы Н + (или Н3О + ).

По растворимости в воде кислоты можно поделить на растворимые и нерастворимые . Некоторые кислоты самопроизвольно разлагаются и в водном растворе практически не существуют (неустойчивые) . Подробно про классификацию кислот можно прочитать здесь.



Получение кислот

1. Взаимодействие кислотных оксидов с водой. При этом с водой реагируют при обычных условиях только те оксиды, которым соответствует кислородсодержащая растворимая кислота.

кислотный оксид + вода = кислота

Например , оксид серы (VI) реагирует с водой с образованием серной кислоты:

При этом оксид кремния (IV) с водой не реагирует:

2. Взаимодействие неметаллов с водородом. Таким образом получают только бескислородные кислоты.

Неметалл + водород = бескислородная кислота

Например , хлор реагирует с водородом:

H2 0 + Cl2 0 → 2 H + Cl —

3. Электролиз растворов солей. Как правило, для получения кислот электролизу подвергают растворы солей, образованных кислотным остатком кислородсодержащих кислот. Более подробно этот вопрос рассмотрен в статье Электролиз.

Например , электролиз раствора сульфата меди (II):

4. Кислоты образуются при взаимодействии других кислот с солями. При этом более сильная кислота вытесняет менее сильную.

Например: карбонат кальция CaCO3 (нерастворимая соль угольной кислоты) может реагировать с более сильной серной кислотой.

5. Кислоты можно получить окислением оксидов, других кислот и неметаллов в водном растворе кислородом или другими окислителями.

Например , концентрированная азотная кислота окисляет фосфор до фосфорной кислоты:

Химические свойства кислот

1. В водных растворах кислоты диссоциируют на катионы водорода Н + и анионы кислотных остатков. При этом сильные кислоты диссоциируют почти полностью, а слабые кислоты диссоциируют частично.

Например , соляная кислота диссоциирует почти полностью:

HCl → H + + Cl –

Если говорить точнее, происходит протолиз воды, и в растворе образуются ионы гидроксония:

HCl + H2O → H3O + + Cl –

Многоосновные кислоты диссоциируют cтупенчато.

Например , сернистая кислота диссоциирует в две ступени:

HSO3 – ↔ H + + SO3 2–

2. Кислоты изменяют окраску индикатора. Водный раствор кислот окрашивает лакмус в красный цвет, метилоранж в красный цвет. Фенолфталеин не изменяет окраску в присутствии кислот.

3. Кислоты реагируют с основаниями и основными оксидами .

С нерастворимыми основаниями и соответствующими им оксидами взаимодействуют только растворимые кислоты.

нерастворимое основание + растворимая кислота = соль + вода

основный оксид + растворимая кислота = соль + вода

Например , гидроксид меди (II) взаимодействует с растворимой бромоводородной кислотой:

При этом гидроксид меди (II) не взаимодействует с нерастворимой кремниевой кислотой.

С сильными основаниями (щелочами) и соответствующими им оксидами реагируют любые кислотами.


Щёлочи взаимодействуют с любыми кислотами — и сильными, и слабыми . При этом образуются средняя соль и вода. Эти реакции называются реакциями нейтрализации . Возможно и образование кислой соли, если кислота многоосновная, при определенном соотношении реагентов, либо в избытке кислоты. В избытке щёлочи образуется средняя соль и вода:

щёлочь(избыток)+ кислота = средняя соль + вода

щёлочь + многоосновная кислота(избыток) = кислая соль + вода

Например , гидроксид натрия при взаимодействии с трёхосновной фосфорной кислотой может образовывать 3 типа солей: дигидрофосфаты, фосфаты или гидрофосфаты.

При этом дигидрофосфаты образуются в избытке кислоты, либо при мольном соотношении (соотношении количеств веществ) реагентов 1:1.

При мольном соотношении количества щелочи и кислоты 1:2 образуются гидрофосфаты:

В избытке щелочи, либо при мольном соотношении количества щелочи и кислоты 3:1 образуется фосфат щелочного металла.


4. Растворимые кислоты взаимодействуют с амфотерными оксидами и гидроксидами.

Растворимая кислота + амфотерный оксид = соль + вода

Растворимая кислота + амфотерный гидроксид = соль + вода

Например , уксусная кислота взаимодействует с гидроксидом алюминия:


5. Некоторые кислоты являются сильными восстановителями. Восстановителями являются кислоты, образованные неметаллами в минимальной или промежуточной степени окисления, которые могут повысить свою степень окисления (йодоводород HI, сернистая кислота H2SO3 и др.).

Например , йодоводород можно окислить хлоридом меди (II):

4H I — + 2 Cu +2 Cl2 → 4HCl + 2 Cu + I + I2 0

6. Кислоты взаимодействуют с солями.

Кислоты реагируют с растворимыми солями только при условии, что в продуктах реакции присутствует газ, вода, осадок или другой слабый электролит . Такие реакции протекают по механизму ионного обмена.

Кислота1 + растворимая соль1 = соль2 + кислота2/оксид + вода


Например , соляная кислота взаимодействует с нитратом серебра в растворе:

Ag + NO3 — + H + Cl — → Ag + Cl — ↓ + H + NO3

Кислоты реагируют и с нерастворимыми солями. При этом более сильные кислоты вытесняют менее сильные кислоты из солей .

Например , карбонат кальция (соль угольной кислоты), реагирует с соляной кислотой (более сильной, чем угольная):

7. Кислоты взаимодействуют с кислыми и основными солями. При этом более сильные кислоты вытесняют менее сильные из кислых солей. Либо кислые соли реагируют с кислотами с образованием более кислых солей.

кислая соль1 + кислота1 = средняя соль2 + кислота2/оксид + вода

Например , гидрокарбонат калия реагирует с соляной кислотой с образованием хлорида калия, углекислого газа и воды:

KHCO3 + HCl → KCl + CO2 + H2O

Ещё пример : гидрофосфат калия взаимодействует с фосфорной кислотой с образованием дигидрофосфата калия:

При взаимодействии основных солей с кислотами образуются средние соли. Более сильные кислоты также вытесняют менее сильные из солей.

Например , гидроксокарбонат меди (II) растворяется в серной кислоте:

Основные соли могут взаимодействовать с собственными кислотами. При этом вытеснения кислоты из соли не происходит, а просто образуются более средние соли.

Например , гидроксохлорид алюминия взаимодействует с соляной кислотой:

Al (OH) Cl2 + HCl → AlCl3 + H2O

8. Кислоты взаимодействуют с металлами.

При этом протекает окислительно-восстановительная реакция. Однако минеральные кислоты и кислоты-окислители взаимодействуют по-разному.

К минеральным кислотам относятся соляная кислота HCl, разбавленная серная кислота H2SO4, фосфорная кислота H3PO4, плавиковая кислота HF, бромоводородная HBr и йодоводородная кислоты HI и др.

Такие кислоты взаимодействуют только с металлами, расположенными в ряду активности до водорода:


При взаимодействии минеральных кислот с металлами образуются соль и водород:

минеральная кислота + металл = соль + H2

Например , железо взаимодействует с соляной кислотой с образованием хлорида железа (II):

Fe + 2 H + Cl → Fe +2 Cl2 + H2 0

Кислоты-окислители (азотная кислота HNO3 любой концентрации и серная концентрированная кислота H2SO4(конц)) при взаимодействии с металлами водород не образуют, т.к. окислителем выступает не водород, а азот или сера. Продукты восстановления азотной или серной кислот бывают различными. Определять их лучше по специальным правилам. Эти правила подробно разобраны в статье Окислительно-восстановительные реакции . Я настоятельно рекомендую выучить их наизусть.

9. Некоторые кислоты разлагаются при нагревании.

Угольная H2CO3, сернистая H2SO3 и азотистая HNO2 кислоты разлагаются самопроизвольно, без нагревания:

Кремниевая H2SiO3, йодоводородная HI кислоты разлагаются при нагревании:

Читайте также: