Почему металлы проводят электрический ток а диэлектрики нет

Обновлено: 05.10.2024

Почему диэлектрики не проводят ток

Для ответа на вопрос «почему же диэлектрик не проводит электрический ток?», сначала давайте вспомним что такое электрический ток, а также назовем условия, соблюдение которых необходимо для возникновения и существования электрического тока. А после этого сравним, как ведут себя проводники и диэлектрики применительно к поиску ответа на данный вопрос.

Почему не проводит ток диэлектрик

Электрическим током называется упорядоченное, то есть направленное, движение заряженных частиц под действием электрического поля. Таким образом, во-первых, для существования электрического тока необходимо наличие свободных заряженных частиц, способных двигаться направленно. Во-вторых, требуется электрическое поле, которое бы приводило данные заряды в движение. И, конечно, должно существовать некое пространство, в котором бы происходило данное движение заряженных частиц, называемое электрическим током.

Свободные заряженные частицы имеются в большом количестве в проводниках: в металлах, в электролитах, в плазме. В медном проводе, например, это — свободные электроны, в электролите — ионы, например ионы серной кислоты (водород и оксид серы) в свинцово-кислотном аккумуляторе, в плазме — ионы и электроны, именно они движутся при электрическом разряде в ионизированном газе.

Диэлектрические перчатки

Для примера возьмем два куска медного провода, и подключим с их помощью маленькую лампочку к батарейке. Что произойдет? Лампочка начнет светиться, а значит в цепи возник постоянный электрический ток. Между концами проводников теперь имеется разность потенциалов созданная батарейкой, а значит внутри проводника начало действовать электрическое поле.

Электрическое поле заставляет электроны внешних оболочек атомов меди дрейфовать по направлению поля - от атома к атому, от атома — к следующему атому, и так далее по цепи, поскольку электроны внешних оболочек атомов металлов намного слабее связаны с ядрами, чем электроны более близких к ядрам электронных орбит. Туда, откуда ушел электрон, приходит другой электрон с отрицательной клеммы батарейки, то есть электроны свободно перемещаются по металлической цепи, легко меняя свою принадлежность к атомам.

Они как-бы идут строем вдоль кристаллической решетки металла в том направлении, в котором их толкает, пытается ускорить, электрическое поле (от минуса - к плюсу источника постоянной ЭДС), при этом на всем своем пути электроны придерживаются атомов кристаллической решетки.

Некоторые электроны по ходу своего движения врезаются в атомы (в силу того что тепловое движение колеблет всю структуру атомов вместе с электронами), в результате происходит нагрев проводника — так проявляется электрическое сопротивление проводников.

Свободные электроны в металле

Изучение металлов при помощи рентгеновских лучей, а также другими методами показало, что металлы обладают кристаллической структурой. Это означает, что они состоят из определенным образом расположенных в пространстве атомов или молекул (строю говоря, ионов), создающих правильное чередование по всем трем измерениям.

В этих условиях атомы элементов оказываются расположенными друг к другу настолько близко, что их внешние электроны в той же мере принадлежат данному атому, как и соседним, вследствие чего степень связанности электрона с каким-либо отдельным атомом практически отсутствует.

В зависимости от рода металла по крайней мере один из электронов каждого атома, иногда два электрона, а в немногих случаях и три электрона оказываются свободными в отношении своих перемещений внутри металла, под воздействием наложенных извне сил.

Проводник

А что в диэлектрике? Если вместо медных проводов взять пластик, бумагу или что-нибудь подобное? Электрического тока не возникнет, лампочка не засветится. Почему? Структура диэлектрика такова, что он состоит из нейтральных молекул, которые даже под действием электрического поля не отпускают свои электроны в упорядоченное движение — просто не могут. В диэлектрике нет свободных электронов проводимости как в металле.

Внешние электроны в атоме каждой молекулы диэлектрика намертво запакованы, к тому же они участвуют во внутренних связях молекулы, при этом молекулы такого вещества в целом электрически нейтральны. Все что могут молекулы диэлектрика — поляризоваться.

Под действием приложенного к ним электрического поля, связанные электрические заряды каждой молекулы просто сместятся немного от положения равновесия, при этом заряженные частицы останутся каждая в своем атоме. Данное явление смещения зарядов называется поляризацией диэлектрика.

В результате поляризации, у поверхности диэлектрика, поляризованного таким образом приложенным к нему электрическим полем, появляются заряды, которые стремятся своим электрическим полем уменьшить внешнее электрическое поле, вызвавшее поляризацию. Способность диэлектрика ослаблять таким образом внешнее электрическое поле, называется диэлектрической проницаемостью диэлектрика.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Металлы и диэлектрики - в чем отличия

Валентные электроны металла слабо связаны со своими атомами. Когда атомы металла, конденсируясь из металлического пара, образуют жидкий или твердый металл, внешние электроны оказываются уже не связанными с отдельными атомами и могут свободно перемещаться по всему телу.

Эти электроны обусловливают хорошо известную значительную проводимость металлов, они так и называются электронами проводимости.

Атомы металла, лишенные своих валентных электронов, т. е. положительные ионы, составляют кристаллическую решетку.

В кристаллической решетке ионы совершают хаотические колебания около своих наложений равновесия, называемых узлами решетки. Эти колебания представляют собой тепловое движение решетки и усиливаются с повышением температуры.

Металл в электроэнергетике

Электроны проводимости в отсутствие электрического поля в металле совершают беспорядочное движение со скоростями порядка тысяч километров в секунду.

При приложении напряжения к металлическому проводнику электроны проводимости, не ослабляя своего хаотического движения, сравнительно медленно сносятся электрическим полем вдоль проводника.

При таком сносе все электроны получают, дополнительно к хаотической скорости, еще к небольшую скорость упорядоченного движения (порядка, например, миллиметров в секунду). Именно это слабое упорядоченное движение к обусловливает электрический ток в проводнике.

Электрический кабель

Диэлектрики

Совсем иначе обстоит дело в других веществах, которые носят название изоляторов (на языке физики — диэлектриков). В диэлектриках атомы точно так же колеблются вокруг положений равновесия, как и в металлах, но они имеют полный комплект электронов.

Внешние электроны атомов диэлектрика сильно связаны со своими атомами, и разлучить их не так-то просто. Для этого нужно значительно поднять температуру диэлектрика или подвергнуть его какому-нибудь интенсивному облучению, которое смогло бы оторвать электроны от атомов. В обычном же состоянии электронов проводимости в диэлектрике нет, и диэлектрики не пропускают тока.

Большая часть диэлектриков является не атомными, а молекулярными кристаллами или жидкостями. Это значит, что в узлах решетки находятся не атомы, а молекулы.

Многие молекулы состоят из двух групп атомов или просто из двух атомов, один из которых электрически положителен, а другой отрицателен (такие молекулы называются полярными). Например, у молекулы воды положительной частью являются оба атома водорода, а отрицательной — атом кислорода, около которого большую часть времени вращаются электроны водородных атомов.

Два заряда, равные по величине, но противоположные по знаку, находящиеся на очень малом расстоянии друг от друга, называются диполем. Полярные молекулы представляют собой пример диполей.

Если молекулы не состоят из противоположных по заряду ионов (заряженных атомов), т. е. не являются полярными и не приставляют собой диполей, то они становятся диполями под действием электрического поля.

Электрическое поле тянет положительные заряды, входящие а состав молекулы (например, ядра), в одну сторону, а отрицательные — в другую и, раздвигая их, создает диполи.

Такие диполи называются упругими - поле растягивает их, как пружину. Поведение диэлектрика с неполярными молекулами мало отличается от поведения диэлектрика с полярными молекулами, и будем считать, что молекулы диэлектрика являются диполями.

диэлектрические материалы

Если кусок диэлектрика поместить в электрическое поле, т. е. поднести к диэлектрику электрически заряженное тело, обладающее, например, положительный нарядом, отрицательные ионы молекул-диполей будут притягиваться к этому заряду, а положительные — отталкиваться. Из-за этого молекулы-диполи будут поворачиваться. Этот поворот называют ориентацией.

Ориентация не представляет собой полного поворота всех молекул диэлектрика. Взятая наугад молекула в данный момент может оказаться повернутой против поля, и только в среднем у большого числа молекул существует слабая ориентация в сторону поля (т. е. больше молекул повернуто в сторону поля, чем в противоположную сторону).

Ориентации препятствует тепловое движение — хаотические колебания молекул вокруг их положений равновесия. Чем ниже температура, тем сильнее ориентация молекул, вызываемая данным полем. С другой стороны, при данной температуре ориентация, естественно, тем сильнее, чем больше поле.

Диэлектрики на трансформаторной подстанции

Поляризация диэлектрика

В результате ориентации молекул диэлектрика на поверхность его, обращенную к положительному заряду, выступают отрицательные концы молекул диполей, а на противоположную поверхность — положительные.

На поверхностях диэлектрика образуются электрические заряды. Эти заряды носят название поляризационных, а их возникновение называется процессом поляризации диэлектрика.

Как следует из изложенного выше, поляризация, в зависимости от вида диэлектрика, может быть ориентационной (ориентируются готовые молекулы-диполи) и деформационной или поляризацией электронного смещения (молекулы в электрическом поле деформируются, превращаясь в диполи).

Может возникнуть вопрос, почему поляризационные заряды образуются только на поверхностях диэлектрика, а не внутри его? Объясняется это тем, что внутри диэлектрика положительные и отрицательные концы молекул-диполей как раз компенсируют друг друга. Компенсация будет отсутствовать только на поверхностях диэлектрика или на границе раздела двух диэлектриков, а также в неоднородном диэлектрике.

Если диэлектрик поляризован, то это не значит, что он заряжен, т. е. что он имеет в целом электрический заряд. При поляризации общий заряд диэлектрика не меняется. Однако диэлектрику можно сообщить заряд, перенося на него некоторое количество электронов извне или забирая некоторое число его собственных электронов. В первом случае диэлектрик зарядится отрицательно, а во втором — положительно.

Такую электризацию можно произвести, например, путем трения. Если потереть стеклянную палочку о шелк, то палочка и шелк зарядятся противоположными по знаку зарядами (стекло — положительно, шелк — отрицательно). У стеклянной палочки при этом будет отобрано некоторое число электронов (весьма малая доля общего числа электронов, принадлежащих всем атомам стеклянной палочки).

Итак, в металлах и других проводниках (например, электролитах) заряды могут свободно перемещаться по всему телу. Диэлектрики же не обладают проводимостью и в них заряды не могут перемещаться на макроскопические (т. е. большие по сравнению с размерами атомов и молекул) расстояния. В электрическом поле диэлектрик только поляризуется.

Поляризованность диэлектриков при напряженности поля, не превышающей определенных значений для данного материала пропорциональна напряженности поля.

Однако с ростом напряженности внутренние силы, связывающие элементарные частицы разных знаков в молекулах, становятся уже недостаточными, чтобы удержать эти частицы в пределах молекул. Тогда электроны вырываются из молекул, молекула ионизируется и диэлектрик теряет свои изоляционные свойства — происходит пробой диэлектрика.

Значение напряженности электрического поля, при котором начинается пробой диэлектрика, называется пробивным градиентом, или электрической прочностью диэлектрика.

Проводники электрического тока

Проводники электрического тока

Каждый человек, постоянно пользуясь электроприборами, сталкивается с:

1. проводниками, которые пропускают электрический ток;

2. диэлектриками, обладающими изоляционными свойствами;

3. полупроводниками, сочетающими в себе характеристики первых двух типов веществ и изменяющие их в зависимости от приложенного управляющего сигнала.

Отличительной чертой каждой из перечисленных групп является свойство электропроводности.

Что такое проводник

К проводникам относят те вещества, которые имеют в своей структуре большое количество свободных, а не связанных электрических зарядов, способных начинать движение под воздействием приложенной внешней силы. Они могут быть в твердом, жидком или газообразном состоянии.

Если взять два проводника, между которыми образована разность потенциалов и подключить внутри них металлическую проволоку, то сквозь нее потечет электрический ток. Его носителями станут свободные электроны, не удерживаемые связями атомов. Они характеризуют величину электрической проводимости или способность любого вещества пропускать через себя электрические заряды — ток.

Значение электрической проводимости обратно пропорционально сопротивлению вещества и измеряется соответствующей единицей: сименсом (См).

В природе носителями зарядов могут быть:

По этому принципу электропроводность подразделяют на:

Качество проводника позволяет оценить зависимость протекающего в нем тока от значения приложенного напряжения. Ее принято называть по обозначению единиц измерения этих электрических величин — вольтамперной характеристикой.

Проводники с электронной проводимостью

Наиболее распространенным представителем этого типа являются металлы. У них электрический ток создается исключительно за счет перемещения потока электронов.

Электропроводность в металлах

Внутри металлов они находятся в двух состояниях:

связанные силами атомного сцепления;

Электроны, удерживаемые на орбите силами притяжения ядра атома, как правило, не участвуют в создании электрического тока под действием внешних электродвижущих сил. Иначе ведут себя свободные частицы.

Если к металлическому проводнику не приложена ЭДС, то свободные электроны движутся хаотически, беспорядочно, в любых направлениях. Такое их перемещение обусловлено тепловой энергией. Оно характеризуется различными скоростями и направлениями перемещения каждой частицы в любой момент времени.

Когда к проводнику приложена энергия внешнего поля с напряженностью Е, то на все электроны вместе и каждый в отдельности действует сила, направленная противоположно действующему полю. Она создает строго ориентированное движение электронов, или другим словами — электрический ток.

Вольтамперная характеристика металлов представляет собой прямую линию, укладывающуюся в действие закона Ома для участка и полной цепи.

Вольтамперная характеристика металлов

Кроме чистых металлов электронной проводимостью обладают и другие вещества. К ним относят:

отдельные модификации углерода (графит, уголь).

Все вышеперечисленные вещества, включая металлы, относят к проводникам 1-го рода. У них электропроводность никоим образом не связана с переносом массы вещества за счет прохождения электрического тока, а обусловливается только движением электронов.

Если металлы и сплавы поместить в среду сверхнизких температур, то они переходят в состояние сверхпроводимости.

Проводники с ионной проводимостью

К этому классу относятся вещества, у которых электрический ток создается за счет движения зарядов ионами. Они классифицируются как проводники второго рода. Это:

растворы щелочей, кислот солей;

расплавы различных ионных соединений;

различные газы и пары?.

Электрический ток в жидкости

Проводящие электрический ток жидкие среды, в которых происходит электролиз — перенос вещества вместе с зарядами и осаждение его на электродах, принято называть электролитами, а сам процесс — электролизом.

Электрический ток в жидкостях

Он происходит под действием внешнего энергетического поля за счет приложения положительного потенциала к электроду-аноду и отрицательного — к катоду.

Ионы внутри жидкостей образуются за счет явления электролитической диссоциации, которая заключается в расщеплении части молекул вещества, обладающих нейтральными свойствами. В качестве примера можно привести хлорид меди, который в водном растворе распадается на составляющие ионы меди (катионы) и хлора (анионы).

Под действием приложенного напряжения к электролиту катионы начинают двигаться строго к катоду, а анионы — к аноду. Таким способом получают химически чистую, без примесей медь, которая выделяется на катоде.

Кроме жидкостей в природе существуют еще твердые электролиты. Их называют суперионными проводниками (супер-иониками), обладающими кристаллической структурой и ионной природой химических связей, обусловливающую высокую электропроводность за счет движения ионов одного типа.

Вольтамперная характеристика электролитов показана графиком.

Вольтамперная характеристика электролитов

Электрический ток в газах

При обычном состоянии среда газов обладает изоляционными свойствами и не проводит ток. Но под воздействием различных возмущающих факторов диэлектрические характеристики могут резко снизиться и спровоцировать прохождение ионизации среды.

Она возникает от бомбардировки нейтральных атомов движущимися электронами. В результате этого из атома выбивается один или несколько связанных электронов, и атом получает положительный заряд, превращаясь в ион. Одновременно внутри газа образуется дополнительное количество электронов, продолжающих процесс ионизации.

Таким образом, внутри газа электрический ток создается одновременным движением положительных и отрицательных частиц.

При нагреве или повышении напряженности приложенного электромагнитного поля внутри газа вначале проскакивает искра. По этому принципу образуется природная молния, которая состоит из каналов, пламени и факела разряда.

Искровой разряд в газах

В лабораторных условиях проскакивание искры можно наблюдать между электродами электроскопа. Практическая же реализация искрового разряда в свечах зажигания двигателей внутреннего сгорания известна каждому взрослому человеку.

Искра характерна тем, что через нее сразу расходуется вся энергия внешнего поля. Если же источник напряжения способен поддерживать протекание тока через газ, то возникает дуга.

Дуговой разряд в газах

Примером электрической дуги является сварка металлов различными способами. Для ее протекания используется эмиссия электронов с поверхности катода.

Он возникает внутри газовой среды с большими напряженностями и неоднородными электромагнитными полями, что проявляется на высоковольтных воздушных линиях электропередач с напряжением от 330 кВ и выше.

Коронный разряд в газах

Он протекает между проводом и близко расположенной плоскостью линии электропередачи. При коронном разряде происходит ионизация методом электронного удара около одного из электродов, обладающего областью повышенной напряженности.

Его используют внутри газов в специальных разрядных газосветных лампах и трубках, стабилизаторах напряжения. Он образуется за счет понижения давления в разрядном промежутке.

Тлеющий разряд в газах

Когда в газах процесс ионизации достигает большой величины и в них образуется равное число положительных и отрицательных носителей зарядов, то такое состояние называют плазмой. Тлеющий разряд происходит в среде плазмы.

Вольтамперная характеристика протекания токов в газах представлена на картинке. Она состоит из участков:

2. самостоятельного разряда.

Первый характеризуется тем, что происходит под воздействием внешнего ионизатора и при прекращении его действия затухает. А самостоятельный разряд продолжает течь при любом условии.

Вольтамперная харктеристика газовых разрядов

Проводники с дырочной проводимостью

К ним относятся:

соединения отдельных металлов с теллуром, серой, селеном и некоторыми органическими веществами.

Они получили название полупроводников и относятся к группе №1, то есть не образуют переноса вещества при протекании зарядов. Для увеличения концентрации свободных электронов внутри них необходимо потратить дополнительную энергию на отрыв связанных электронов. Она получила название энергии ионизации.

В составе полупроводника работает электронно-дырочный переход. За счет его полупроводник пропускает ток в одном направлении и блокирует в обратном, когда к нему приложено противоположное внешнее поле.

Структура полупроводника

Проводимость у полупроводников бывает:

Первый тип присущ конструкциям, у которых в процессе ионизации атомов своего вещества появляются носители зарядов: дырки и электроны. Их концентрация взаимно уравновешена.

Второй тип полупроводников создают за счет включения кристаллов с примесной проводимостью. Они обладают атомами трех- или пятивалентного элемента.

Полупроводники по проводимости бывают:

электронные n-типа «negative»;

дырочные p-типа «positive».

Вольтамперная характеристика обыкновенного полупроводникового диода показана на графике.

Вольтамперная характеристика полупроводникового диода

На основе полупроводников работают различные электронные приборы и устройства.

При очень низких температурах вещества определенные категории металлов и сплавов переходят в состояние, которое получило название сверхпроводимости. У этих веществ электрическое сопротивление току снижается практически до нулевого значения.

Переход происходит за счет изменения тепловых свойств. По отношению к поглощению или выделению теплоты во время перехода в сверхпроводящее состояние при отсутствии магнитного поля сверхпроводники подразделяют на 2 рода: №1 и №2.

Сверхпроводники

Явление сверхпроводимости проводников происходит за счет образования куперовских пар, когда создается связанное состояние для двух соседних электронов. У созданной пары образуется двойной заряд электрона.

Распределение электронов в металле при состоянии сверхпроводимости показано графиком.

Магнитная индукция сверхпроводников зависит от напряженности электромагнитного поля, а на величину последней влияет температура вещества.

Сверхпроводники

Свойства сверхпроводимости проводников ограничены критическими значениями предельного магнитного поля и температуры для них.

Таким образом, проводники электрического тока могут быть выполнены из совершенно различных веществ и обладать отличающимися друг от друга характеристиками. На них всегда оказывают влияние условия окружающей среды. По этой причине границы эксплуатационных характеристик проводников всегда оговариваются техническими нормативами.

Что такое проводник и диэлектрик?

электрический ток


Все материалы, существующие в природе, различаются своими электрическими свойствами. Таким образом, из всего многообразия физических веществ в отдельные группы выделяются диэлектрические материалы и проводники электрического тока.

Что представляют собой проводники?

Проводник – это такой материал, особенностью которого является наличие в составе свободно передвигающихся заряженных частиц, которые распространены по всему веществу.

Проводящими электрический ток веществами являются расплавы металлов и сами металлы, недистиллированная вода, раствор солей, влажный грунт, человеческое тело.

Металл – это самый лучший проводник электрического тока. Также и среди неметаллов есть хорошие проводники, например, углерод.

Все, существующие в природе проводники электрического тока, характеризуются двумя свойствами:

  • показатель сопротивления;
  • показатель электропроводности.

Электропроводность – это характеристика (способность) физического вещества проводить ток. Поэтому свойствами надежного проводника являются низкое сопротивление потоку движущихся электронов и, следовательно, высокая электропроводность. То есть, лучший проводник характеризуется большим показателем проводимости.

Например кабельная продукция: медный кабель обладает большей электропроводностью по сравнению с алюминиевым.

Что представляют собой диэлектрики?

Диэлектрики – это такие физические вещества, в которых при заниженных температурах отсутствуют электрические заряды. В состав таких веществ входят лишь атомы нейтрального заряда и молекулы. Заряды нейтрального атома имеют тесную связь друг с другом, поэтому лишены возможности свободного перемещения по всему веществу.

Самым лучшим диэлектриком является газ. Другие непроводящие электрический ток материалы – это стеклянные, фарфоровые, керамические изделия, а также резина, картон, сухое дерево, смолы и пластмассы.

Диэлектрические предметы – это изоляторы, свойства которых главным образом зависимы от состояния окружающей атмосферы. Например, при высокой влажности некоторые диэлектрические материалы частично лишаются своих свойств.

Проводники и диэлектрики широко используются в сфере электротехники для решения различных задач.

Например, вся кабельно-проводниковая продукция изготавливается из металлов, как правило, из меди или алюминия. Оболочка проводов и кабелей полимерная, также, как и вилках всех электрических приборов. Полимеры – отличные диэлектрики, которые не допускают пропуска заряженных частиц.

Серебряные, золотые и платиновые изделия – очень хорошие проводники. Но их отрицательная характеристика, которая ограничивает использование, состоит в очень высокой стоимости.

Поэтому применяются такие вещества в сферах, где качество гораздо важнее цены, которая за него уплачивается (оборонная промышленность и космос).

Медные и алюминиевые изделия также являются хорошими проводниками, при этом имеют не столь высокую стоимость. Следовательно, использование медных и алюминиевых проводов распространено повсеместно.

Вольфрамовые и молибденовые проводники имеют менее хорошие свойства, поэтому используются в основном в лампочках накаливания и нагревательных элементах высокой температуры. Плохая электропроводность может существенно нарушить работу электросхемы.

Диэлектрики также различаются между собой своими характеристиками и свойствами. Например, в некоторых диэлектрических материалах также присутствуют свободные электрически заряды, пусть и в небольшом количестве. Свободные заряды возникают из-за тепловых колебаний электронов, т.е. повышение температуры все-таки в некоторых случаях провоцирует отрыв электронов от ядра, что понижает изоляционные свойства материала. Некоторые изоляторы отличаются большим числом «оторванных» электронов, что говорит о плохих изоляционных свойствах.

Самый лучший диэлектрик – полный вакуум, которого очень трудно добиться на планете Земля.

Полностью очищенная вода также имеет высокие диэлектрические свойства, но таковой даже не существует в реальности. При этом стоит помнить, что присутствие каких-либо примесей в жидкости наделяет ее свойствами проводника.

Главный критерий качества любого диэлектрического материала – это степень соответствия возложенным на него функциям в конкретной электрической схеме. Например, если свойства диэлектрика таковы, что утечка тока совсем незначительная и не приносит никакого ущерба работе схемы, то диэлектрик является надежным.

Что такое полупроводник?

Промежуточное место между диэлектриками и проводниками занимают полупроводники. Главное отличие проводников заключается в зависимости степени электропроводности от температуры и количества примесей в составе. При том материалу свойственны характеристики и диэлектрика, и проводника.

С ростом температуры электропроводность полупроводников растет, а степень сопротивления при этом падает. При понижении температуры сопротивление стремится к бесконечности. То есть, при достижении нулевой температуры полупроводники начинают вести себя как изоляторы.

Читайте также: