Почему простое вещество кальций относят к щелочноземельным металлам

Обновлено: 16.05.2024

Эту статью могут комментировать только участники сообщества.
Вы можете вступить в сообщество одним кликом по кнопке справа.

Ка́льций — элемент главной подгруппы второй группы, четвёртого периода периодической системы химических элементов, с атомным номером 20. Обозначается символом Ca (лат. Calcium). Простое вещество кальций (CAS-номер: 7440-70-2) — мягкий, химически активный щёлочноземельный металл серебристо-белого цвета.

История и происхождение названия

Название элемента происходит от лат. calx (в родительном падеже calcis) — «известь», «мягкий камень». Оно было предложено английским химиком Хэмфри Дэви, в 1808 г. выделившим металлический кальций электролитическим методом. Дэви подверг электролизу смесь влажной гашёной извести с оксидом ртути HgO на платиновой пластине, которая являлась анодом. Катодом служила платиновая проволока, погруженная в жидкую ртуть. В результате электролиза получалась амальгама кальция. Отогнав из неё ртуть, Дэви получил металл, названный кальцием.
Соединения кальция — известняк, мрамор, гипс (а также известь — продукт обжига известняка) применялись в строительном деле уже несколько тысячелетий назад. Вплоть до конца XVIII века химики считали известь простым телом. В 1789 году А. Лавуазье предположил, что известь, магнезия, барит, глинозём и кремнезём — вещества сложные.

Свободный металлический кальций получают электролизом расплава, состоящего из CaCl2 (75-80 %) и KCl или из CaCl2 и CaF2, а также алюминотермическим восстановлением CaO при 1170—1200 °C:
4CaO + 2Al → CaAl2O4 + 3Ca.

Металл кальций существует в двух аллотропных модификациях. До 443 °C устойчив α-Ca с кубической гранецентрированной решеткой (параметр а = 0,558 нм), выше устойчив β-Ca с кубической объемно-центрированной решеткой типа α-Fe (параметр a = 0,448 нм). Стандартная энтальпия ΔH0 перехода α → β составляет 0,93 кДж/моль.
При постепенном повышении давления начинает проявлять свойства полупроводника, но не становится полупроводником в полном смысле этого слова (металлом уже тоже не является). При дальнейшем повышении давления возвращается в металлическое состояние и начинает проявлять сверхпроводящие свойства (температура сверхпроводимости в шесть раз выше, чем у ртути, и намного превосходит по проводимости все остальные элементы). Уникальное поведение кальция похоже во многом на стронций (т. е. параллели в периодической системе сохраняются).

Кальций — типичный щелочноземельный металл. Химическая активность кальция высока, но ниже, чем всех других щелочноземельных металлов. Он легко взаимодействует с кислородом, углекислым газом и влагой воздуха, из-за чего поверхность металлического кальция обычно тускло серая, поэтому в лаборатории кальций обычно хранят, как и другие щелочноземельные металлы, в плотно закрытой банке под слоем керосина или жидкого парафина.

Интересное о кальции

При комнатной температуре и нормальном давлении кальций представляет собой твердое вещество серебристо-белого цвета. Он находится в левой части периодической таблицы, рядом с другими щелочными и щелочноземельными металлами. В таблице он обозначен как Ca.

Он и его соединения используют для производства цемента и гипса в строительстве, при очистке воды и в химической промышленности.

И сегодня мы решили подробнее рассказать вам об этом элементе периодической таблицы. В публикации мы собрали самые интересные факты о кальции. Надеемся, что собранная информация понравится не только детям, но и более взрослой аудитории.

№1

Название этого химического элемента происходит от латинского слова «calx», что буквально переводится как «известняк», «известь». Это связано с тем, что негашеная известь (оксид кальция) в основном состоит из кальция. Этот элемент является третьим элементом 2-й группы периодической таблицы Менделеева (расположен сразу после магния). Элементы 2-й группы относятся к щелочноземельным металлам.

Щелочноземельные металлы имеют такое название по той причине, что они образуют щелочных растворы, когда реагируют с водой (образуя гидроксиды). «Земля» — это старый термин, используемый химиками для описания соединений, какие не растворяются в воде и очень плохо проводят тепло, что как раз присуще оксидам щелочноземельных металлов.

№2

Как уже было отмечено ранее, при комнатной температуре он представляет собой твердое (легко царапающееся) серебристо-белое вещество. Быстро коррозирует на воздухе и вступает в реакцию с водой. Он также очень активно реагирует с кислотами.

№3

Он не встречается в природе как свободный элемент (из-за того, что он очень реактивный). Однако его можно найти в разных минералах, к примеру, в таком как известняковая порода (CaCO3). Он также находится в «жесткой» воде.

№4

Это очень реактивный металл из-за двух валентных электронов. Он склонен отдавать эти электроны, образуя химическую связь, для достижения полного октета. При контакте с воздухом он корродирует (тускнеет) с образованием темного покрытия из оксида кальция (CaO) и нитрида (Ca3N2). Это покрытие предотвращает дальнейшую коррозию.

Его также можно сжечь, что приведет к очень яркому свету и образованию нитридного продукта.

Он легко реагирует с кислотами и водой, образуя различные соединения. Например, хлорид кальция (CaCl2), нитрат кальция (Ca(NO3)2).

Он является хорошим проводником электричества, потому что имеет металлическую связь, какая позволяет делокализованным электронам (электронам из внешней оболочки) свободно перемещаться от атома к атому, проводя электричество.

№5

Это поистине уникальный элемент. Потому что природный кальций фактически состоит из шести стабильных изотопов: 40Ca, 42Ca, 43Ca, 44Ca, 46Ca и 48Ca (имеет такой длительный период полураспада, благодаря чему его можно считать стабильным). Хотя, технически, 48Ca все же является нестабильным.

Эти изотопы имеют различное естественное содержание. Самая большая доля приходится на 40Ca – 96.941%, меньше на остальные: 42Ca – 0.64%, 43Ca – 0.135%, 44Ca – 2.086%, 46Ca – 0.004% и 48Ca – 0.187%.

№6

Его сплавы используются в крупномасштабных производственных процессах (чаще всего для производства батарей и других электрических компонентов). Основное преимущество кальциевых сплавов – эффективная проводимость электричества. Свинцово-кальциевый сплав, свинцово-кальциево-оловянный сплав и магниево-кальциевый сплав – это основные сплавы, используемые в этих отраслях промышленности.

№7

Несмотря на то, что его соединения были известны человечеству еще задолго до начала нашей эры (в частности, он использовался в качестве строительного материала в Древнем Египте и Риме), лишь в 1787 году французский ученый Антуан Лавуазье начал подозревать, что известь (смесь оксидов и гидроксидов кальция) может содержать в себе какой-то новый химический элемент. Но, несмотря на все старания Лавуазье, ему так и не удалось получить этот элемент в чистом виде.

Это удалось сделать лишь в 1808 году, в Лондоне. Тогда британский химик Гемфри Дэви получил чистый кальций (а также магний, стронций и барий).

№8

Он необходим человеку для жизни, так как именно из этого химического элемента формируются зубы и другие кости в нашем организме в форме фосфата кальция (Ca3 (PO4) 2), фторида кальция (CaF2) и карбоната кальция (CaCO3). Ионы кальция принимают участие в процессах свертывания крови и регулируют разные внутриклеточные процессы, такие как мышечное сокращение, экзоцитоз (процесс, включающий в себя перемещение веществ из клетки во внешнюю среду) и т.д.

В среднем, в человеческом организме находится около 1 килограмма этого элемента, что приблизительно соответствует 1.4% массы тела и делает его самым распространенным металлом в нашем организме.

№9

Фактически, его недостаток в человеческом организме приводит к такому состоянию как остеопороз, когда кости становятся очень пористыми и легко ломаются. Это состояние чаще всего встречается у пожилых женщин.

Его избыток также ни к чему хорошему не приводит. При избытке этого элемента в организме происходит его накапливание в почках, что в дальнейшем провоцирует образование камней.

№10

Он является пятым по содержанию и третьим по распространенности элементом в земной коре. Земная кора приблизительно на 5% состоит из этого элемента. И хоть он и не встречается в природе в чистом виде, он существует как часть нескольких минералов, включая известняк (CaCO3), гипс (CaSO4), флюорит (CaF2).

Как мы уже отмечали ранее, он также содержится в жесткой воде в виде бикарбоната кальция (Ca(HCO₃)₂), какой в пещерах образует сталактиты и сталагмиты.

№11

Сегодня основными производителями кальция являются Китай, Соединенные Штаты Америки и Индия. Кальций коммерчески производится из хлорида кальция (CaCl2) и известняка (CaCO3).

&feature=emb_logo

Щелочноземельные металлы

К щелочноземельным металлам относятся металлы IIa группы: бериллий, магний, кальций, стронций, барий и радий. Отличаются легкостью, мягкостью и сильной реакционной способностью.

Общая характеристика

От Be к Ra (сверху вниз в периодической таблице) происходит увеличение: атомного радиуса, металлических, основных, восстановительных свойств, реакционная способность. Уменьшается электроотрицательность, энергия ионизация, сродство к электрону.

Щелочноземельные металлы

  • Be - 2s 2
  • Mg - 3s 2
  • Ca - 4s 2
  • Sr - 5s 2
  • Ba - 6s 2
  • Ra - 7s 2
Природные соединения
  • Be - BeO*Al2O3*6SiO2 - берилл
  • Mg - MgCO3 - магнезит, MgO*Al2O3 - шпинель, 2MgO*SiO2 - оливин
  • Ca - CaCO3 - мел, мрамор, известняк, кальцит, CaSO4*2H2O - гипс, CaF2 - флюорит

Кальцит, берилл, магнезит

Получение

Это активные металлы, которые нельзя получить электролизом раствора. С целью их получения применяют электролиз расплавов, алюминотермию и вытеснением их из солей другими более активными металлами.

MgCl2 → (t) Mg + Cl2 (электролиз расплава)

CaO + Al → Al2O3 + Ca (алюминотермия - способ получения металлов путем восстановления их оксидов алюминием)

Алюминотермия

Химические свойства

Все щелочноземельные металлы (кроме бериллия и магния) реагируют с холодной водой с образованием соответствующих гидроксидов. Магний реагирует с водой только при нагревании.

Гашение извести

Щелочноземельные металлы - активные металлы, стоящие в ряду активности левее водорода, и, следовательно, способные вытеснить водород из кислот:

Хорошо реагируют с неметаллами: кислородом, образуя оксиды состава RO, с галогенами (F, Cl, Br, I). Степень окисления у щелочноземельных металлов постоянная +2.

Mg + O2 → MgO (оксид магния)

При нагревании реагируют с серой, азотом, водородом и углеродом.

Mg + S → (t) MgS (сульфид магния)

Ca + H2 → (t) CaH2 (гидрид кальция)

Ba + C → (t) BaC2 (карбид бария)

Барий

Ba + TiO2 → BaO + Ti (барий, как более активный металл, вытесняет титан)

Оксиды щелочноземельных металлов

Имеют общую формулу RO, например: MgO, CaO, BaO.

Оксиды щелочноземельных металлов можно получить путем разложения карбонатов и нитратов:

Рекомендую взять на вооружение общую схему разложения нитратов:

Разложение нитратов

Проявляют преимущественно основные свойства, все кроме BeO - амфотерного оксида.

    Реакции с кислотами и кислотными оксидами

В нее вступают все, кроме оксида бериллия.

Амфотерные свойства оксида бериллия требуют особого внимания. Этот оксид проявляет двойственные свойства: реагирует с кислотами с образованием солей, и с основаниями с образованием комплексных солей.

BeO + NaOH + H2O → Na2[Be(OH)4] (тетрагидроксобериллат натрия)

Если реакция проходит при высоких температурах (в расплаве) комплексная соль не образуется, так как происходит испарение воды:

BeO + NaOH → Na2BeO2 + H2O (бериллат натрия)

Бериллий

Гидроксиды щелочноземельных металлов

Проявляют основные свойства, за исключением гидроксида бериллия - амфотерного гидроксида.

Получают гидроксиды в реакции соответствующего оксида металла и воды (все кроме Be(OH)2)

Основные свойства большинства гидроксидов располагают к реакциям с кислотами и кислотными оксидами.

Известковое молоко

Реакции с солями (и не только) идут в том случае, если соль растворимы и по итогам реакции выделяется газ, выпадает осадок или образуется слабый электролит (вода).

Гидроксид бериллия относится к амфотерным: проявляет двойственные свойства, реагируя и с кислотами, и с основаниями.

Жесткость воды

Жесткостью воды называют совокупность свойств воды, зависящую от присутствия в ней преимущественно солей кальция и магния: гидрокарбонатов, сульфатов и хлоридов.

Различают временную (карбонатную) и постоянную (некарбонатную) жесткость.

Жесткость воды

Вероятно, вы часто устраняете жесткость воды у себя дома, осмелюсь предположить - каждый день. Временная жесткость воды устраняется обычным кипячением воды в чайнике, и известь на его стенках - CaCO3 - бесспорное доказательство устранения жесткости:

Также временную жесткость можно устранить, добавив Na2CO3 в воду:

С постоянной жесткостью бороться кипячением бесполезно: сульфаты и хлориды не выпадут в осадок при кипячении. Постоянную жесткость воды устраняют добавлением в воду Na2CO3:

Жесткость воды можно определить с помощью различных тестов. Чрезмерно высокая жесткость воды приводит к быстрому образованию накипи на стенках котлов, труб, чайника.

Карбонат кальция - накипь в чайнике

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Кальций – полезные свойства и особенности металла

Этот химический элемент жизненно важен в буквальном смысле: из него состоят наши кости и зубы. Кальций – это также морские раковины, цветные мелки, сталактиты и сталагмиты в пещерах.

Кальций

Что представляет собой

Кальций – это химический элемент периодической системы Д. И. Менделеева под №20. Мягкий серебристо-белый металл блестит, но затем тускнеет под пленкой-оксидом.

Состоит из шести стабильных изотопов, при этом 97% состава приходится на Ca40.

Относится к щелочноземельным металлам.

Международное обозначение – Calcium (Ca).

История

Применение кальциевых минералов – мрамора, гипса, известняка – исчисляется тысячелетиями.

Гипс

Гипс

Чистый металл первым в истории получил британский химик Гемфри Дэви (1808 год). Для этого он применил электролиз к смеси из оксида ртути и мокрой гашеной извести. Получив амальгаму, отделил ртуть.

Он же предложил латинское название элемента: calcis означает мягкий камень, известка.

Физико-химические характеристики

Кальций представлен двумя модификациями кубической решетки: с гране- и объемноцентрированной структурой.

Кальций металл

Металл наделен многими достоинствами: пластичен, режется ножом, обрабатывается прессованием, прокаткой.

Химические свойства проявляются при нагревании:

  • Взаимодействие с горячей водой приводит к образованию водородного «фонтана». Но реакция проходит без взрывов или горения.
  • Взаимодействует с кислотами, неметаллами, образуя соединения.
  • Даже при комнатной температуре во влажном микроклимате покрывается пленкой.

Нагреваясь в кислороде либо на воздухе, кальций, его растворимые соли горят. Пламя получается красно-оранжевым. По цвету его легко отличить от других металлов.

Кальций в атмосфере аргона

Кальций в атмосфере аргона

Химическая активность вещества зашкаливает. Для устранения этого недостатка металл хранят в керосине, растопленном парафине либо закупоренном сосуде.

Уникальные свойства кальция как металла проявляются при усилении давления.

Под давлением он ведет себя как полупроводник, затем как металл, потом подобно сверхпроводнику. По проводимости в разы превосходит все химические элементы (например, ртуть – вшестеро).

Присутствие в природе

Кальций – третий по распространенности в земной коре среди металлов, пятый среди всех элементов. Четвертый по количеству минералов (385).

Однако высокая химическая активность исключает присутствие элемента в свободном виде:

    Это компонент минералов и соединений. Самые распространенные минералы – гипс, кальцит, алебастр, флюорит, апатит, доломит.

Вещество с формулой СаСО3 – обычный мел.

  • Щелочноземельный металл обнаружен в каменных метеоритах – как почти ненаходимые на земле сульфиды.

Тонна земной коры содержит 32,7 кг кальция, литр морской воды – 410 мг.

Из морской воды кальций как строительный материал вытаскивают моллюски, кораллы.

Концентрацией кальция в составе определяется степень жесткости воды.

Технология получения

Конечный продукт промышленного производства – металлический кальций.

Металлический Кальций

Металлический Кальций

Получение металла проходит двумя методами:

  1. Электролиз. Расплавляют CaCl2, задействуя медно-кальциевый анод. Из полученного медно-кальциевого сплава (2:1) отгоняют металл.
  2. Алюминотермия. Прокаливается смесь CaO и порошковый алюминий. Конденсат из кальциевых паров аккумулируется на охлаждаемой поверхности.

Для обоих способов получения металла требуется вакуум и 960-1900°С.

Единственный производитель кальция в Европе – Чепецкий механический завод. Его открыли в 1949 году для нужд отечественной урановой промышленности. Уже тогда СССР отработал процесс восстановления урана кальцием. Сегодняшний ассортимент шире.

Где используется

Утилитарные характеристики металла обусловили сферы применения.

Применение Кальция

Применение Кальция

Промышленность

Львиная доля продукции металлургических комбинатов достается промышленному комплексу.

Здесь миссия кальция многогранна:

  • Восстановление редкоземельных, тугоплавких элементов из соединений. Речь о хроме, никеле, меди, тории, уране.
  • Удаление серы из бензина, керосина, других нефтепродуктов.
  • Раскисление стали и сплавов цветных металлов.
  • Получение антифрикционных сплавов.
  • Очистка электровакуумных приборов от воздуха, других газов.
  • Обезвоживание органических растворителей.

Металл используется при производстве аккумуляторных батарей, подшипников, оболочек кабелей.

Наука

Изотоп Ca-48 – материал с высоким КПД для производства сверхтяжелых элементов.

Кальцием восстанавливают уран.

С его помощью ученые пополняют таблицу Менделеева.

Другие сферы

Кальциевые материалы нашли применение на бытовом уровне:

  • Строительный материал (известняк, гипс, мрамор).
  • Сырье при производстве гипса, включая медицинский.
  • Дезинфектор (хлорка).
  • Мелки для рисования.
  • Аптечные препараты, БАДы (особенно с витамином D).

Эстетично выглядящие образцы (флюорит, кальцинит, мрамор) попадают в минералогические коллекции.

Биологическое влияние

Кальций – важный для биологических организмов макроэлемент (1,6-2,1% по массе): он есть в растениях, организме животных, человека.

Жизненные процессы

Макроэлемент аккумулируется костями и зубами.

Известь (карбонат кальция) – строительный материал ракушек, кораллов, яичной скорлупы, накипи в чайнике.

Вещество задействовано в следующих процессах:

  • Свертывание крови.
  • Сокращение мышц.
  • Секреция гормонов.

Тело человека массой 60 кг содержит полтора килограмма кальция.

Достаточное количество металла критично для детей и подростков: их скелет растет каждую минуту. У младенцев может проявиться рахитичность.

Питание

Макроэлемент поступает в организм во время еды. В детском возрасте продукт номер один – молоко.

Рацион взрослых разнообразнее. Веществом насыщены продукты всех групп:

  • Цельнозерновой хлеб, гречка.
  • Морепродукты, рыба (особенно мягкие кости).
  • Бобовые.
  • Орехи, свежий кунжут.
  • Листовой салат, укроп, петрушка, спаржа.

Всасыванию кальция содействует лактоза, препятствуют кофе, углеводы, пальмовое масло, животные жиры (кроме сала).

Нормы

Суточная потребность в макроэлементе определяется возрастом (г):

Возраст (лет) Количество кальция (мг)
0-6 1490
7-9 750
10-12 (мальчики) 910
10-12 (девочки) 1250
13-19 1250
20-49 1050
49+ 1150-1350

Беременным и кормящим матерям требуется повышенная норма вещества.

Симптомы нехватки/переизбытка

Дефицит металла в организме проявляется многопланово:

  • судороги, онемение конечностей, суставная боль;
  • тахикардия;
  • гипертония;
  • расслоение, ломкость ногтей.

На ментальном плане это депрессия, нервозность.

Хроническая нехватка макроэлемента ведет к хрупкости костей (остеопорозу).

Об избытке макроэлемента сигнализируют отвращение к еде, неутолимая жажда, расстройство ЖКТ (тошнота, рвота), повышенное мочеотделение, слабость.

Избыток вещества опасен: организм «цементируется».

Максимальная суточная доза кальция для взрослых – 2,5 г.

На российском рынке представлена промышленная и аптечная продукция.

Цены на промышленный кальций (руб. / кг):

  • металлический – 450;
  • кусковой (чистота: 99,82%) – 1500;
  • хлористый технический – 47;
  • хлористый пищевой – 95.

Аптечный сегмент представлен отечественной и зарубежной продукцией. Упаковка глюконата кальция (10 таблеток) российского производства стоит 15-25 руб., препарата «Кальций-Д3 Никомед» – 300 – 700 руб.

Щелочноземельные металлы – перечень, свойства и польза элементов

Этой группе металлов отдан весь второй столбец таблицы Менделеева. И атомщики, и ювелиры используют щелочноземельные металлы. С ними интересно экспериментировать, но требуется осторожность.

Щелочноземельные металлы

Что представляют собой

Щелочноземельные металлы – это вся вторая группа таблицы Менделеева.

К щёлочноземельным металлам относятся:

То есть «щелочноземельный» список насчитывает шесть позиций, которые обычно располагаются по возрастанию атомного номера – от бериллия к радию.

Двойное название группы – отражение природы и характеристик входящих в нее элементов:

  1. Они способны образовывать щелочи.
  2. Ряд свойств их оксидов близки окислам алюминия и железа. Такие вещества еще средневековые алхимики именовали «землями».

Сегодняшний состав щелочноземельной группы сформировался не сразу: бериллий и магний отсутствовали.

Это объяснялось отличием свойств данных элементов от остальных:

  • По большинству характеристик они ближе к алюминию, чем к другим элементам группы.
  • Их гидроксиды – не щелочи.
  • Магний взаимодействует с водой в замедленном режиме, у бериллия реакция в таком растворе нулевая. Та же картина при контакте с неметаллами.

Однако специалисты Международного союза теоретической и прикладной химии (IUPAC) решили все-таки причислить бериллий и магний к щелочноземельной группе.

Формы нахождения в природе

Щёлочноземельным металлам присуща чрезмерная активность, поэтому в природе они как самостоятельный элемент отсутствуют.

Почти всегда это составляющая минералов либо руд:

  • Самый распространенный элемент щелочноземельной группы – кальций (2,9-12,9% по массе). Его получают из известняков, им насыщены мрамор, гранит.
  • Почти три процента забирает магний.
  • В сто раз реже в литосфере представлены барий со стронцием.
  • Содержание остальных элементов измеряется тысячными долями процента.

Самым редким на планете щёлочноземельным металлом является радий. Но найти его легче других: это обязательный компонент урановых рудников.

Элементы группы наделены общими физическими свойствами:

  • Серебристый с сероватостью цвет.
  • Твердость в стандартных условиях, ножом режется только стронций.
  • Металлический блеск.
  • Тускнение на воздухе с разной скоростью вследствие образования оксидной пленки.
  • Хорошая пропускная способность для тепла и электричества.
  • Два электрона на внешнем слое атома у каждого элемента, степень окисления – всегда +2. Это отражают формулы соединений, образованных металлами группы.

Самая тяжелая «щелочная земля» – радий. Кубик вещества с ребром в 1 см весит 5,5 грамма.

Более интересны химические свойства «земель».

Есть общие и оригинальные:

  • Покрытый пленкой-оксидом бериллий способен на реакцию только при 600+°С (кроме фтора).
  • Окисленный магний при средней температуре не реагирует ни с чем. Получение соединений металла возможно при температуре от 645°C.
  • Кальций окисляется неспешно и только если воздух влажный. При незначительном нагреве горит, растворяется водой.
  • Осмотрительности требуют барий, стронций, радий. На открытом пространстве взаимодействие этих металлов с кислородом и азотом чревато взрывом. Их держат в герметичных контейнерах, залив керосином. Эта особенность объединяет щелочные и щелочноземельные металлы.

Общие свойства щёлочноземельных металлов – растворение в кислотах, образование солей, щелочей при взаимодействии с водой.

Химическая активность щелочноземельных металлов усиливается с увеличением габаритов атома – от бериллия к радию.

Где используются

Свойства металлов щелочноземельной группы обусловили применение каждого во всех сегментах – от авиастроения до медицины и ювелирного дела:

  • Бериллий. Исходник при выплавке сплавов, включая «атомные», получения ракетного топлива. Компонент ювелирных минералов первого ряда – аквамарина, гелиодора, изумруда.
  • Кальций. Базис большинства огнеупоров, строительных материалов. Металл задействован при производстве топлива, аптечных препаратов.
  • Магний. Самый легкий щелочноземельный металл. Как восстановитель нашел применение в металлургии. Без проблем куется, раскатывается. Чаще используется как «ингредиент» сплавов, снижающий их массивность, – материал корпусов и деталей ракет, самолетов, автомобилей, электроники. А также приборов для нужд оборонного комплекса и предприятий приборостроения.

Сегодня на первое место по использованию магниевых сплавов выходят смартфоны, планшеты, другие гаджеты.

  • Стронций. Металлургами используется как лигатура сплавов, очиститель сталей, чугуна, меди от серы, других вредных примесей. Сырье закупают производители радиоэлектроники, химических источников тока, атомщики, пиротехники. Продукция «высокого сегмента» из металла – чистый уран, керамика-сверхпроводник, вакуумный инструментарий.

Стронций создает насыщенно-красные оттенки огней салюта. Изотопом вещества лечат онкологию.

  • Барий. Используются соединения металла. Главный потребитель – атомщики. Ассортимент: вакуумные, пьезоэлектрические приборы, жидкий теплоноситель, линзы, стекло для урановых стержней, керамика-сверхпроводник. Нетоксичный сульфат используется рентгенологами как контрастное вещество.

На особом счету радий. Это самый редкий щелочноземельный металл: на планете его получено всего полтора килограмма.

Даже микродозы радиоактивного вещества смертельно опасны для человека. Однако это свойство используется исследователями ядерных процессов и для лечения онкологии.

Шкалы, стрелки компасов, бортовых приборов, изготовленных до 1970-х годов, покрыты краской, содержащей радий. Она светится в темноте, но с тех пор не используется как опасная для человека.

Биологическое значение

Значение щелочноземельных элементов разнообразно:

  • Без кальция не формируется скелет, зубы, не сокращаются мышцы. Элемент «курирует» параметры крови.
  • Магний – компонент биологических структур (к примеру, хлорофилла у растений). В организме человека содействует синтезу нуклеиновых кислот, работе ферментов, нервной системы.
  • Микродозы стронция присутствуют в организме как аналог кальция. Особо важен щелочноземельный элемент для детей младше четырех лет.

Барий, радий, бериллий, их соединения ядовиты. Поэтому для биологических структур опасны.

Читайте также: