Преднамеренное электрическое соединение металлических частей

Обновлено: 13.05.2024

В предназначении и монтаже этих способов защиты от поражения электрическим током путаются даже профессиональные электрики. Речь идет не о всех, но прецеденты есть. А ведь элементарное понятие терминов иногда спасает десятки жизней. Даже если говорить не о поражении током, а о сдаче в эксплуатацию нового частного дома. Если выполнить защиту неправильно, контролирующая организация не разрешит подачу напряжения на вводной щит. И правильно сделает, никому не хочется брать на себя ответственность за жизни людей. Сегодня разберемся, что означают термины заземление и зануление, в чем разница между ними, и когда возможно использование того или иного способа защиты.

Правильно выполненное заземление – залог долговечности бытовых приборов и безопасности человека.

1 Требования электробезопасности: выдержки из ГОСТ

2 Что такое заземление: как устроено, принцип работы и преимущества такой защиты

3 Что такое зануление электроприборов: возможности применения

4 Зануление и заземление: в чем разница

4.1 Чем отличается заземление от зануления: обобщение

5 Что такое зануление и как его правильно устроить

6 Лучший вариант защиты это заземляющее устройство?

7 Преимущества и недостатки квартирного зануления

Требования электробезопасности: выдержки из ГОСТ

В соответствии с ГОСТ 12.1.009–76:

защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением;

зануление – это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.

В ГОСТ Р 50571.2– 94 «Электроустановки зданий. Часть 3. Основные характеристики» приводится классификация систем заземления электрических сетей: IT, TT, TN–С, TN–C–S, TN–S.

Однако иногда возможности заземлить устройства, нет. Тогда делается защитное зануление

Согласно ПУЭ заземление выполняется (при наличии контура или возможности его монтажа) в обязательном порядке. Заземленными должны быт все металлические корпуса электроприборов, которые гипотетически могут попасть под напряжение. Если возможность заземления отсутствует, производится защитное зануление с обязательной установкой устройств защитного отключения (УЗО) и автоматических выключателей в вводном электрическом щите.

Конечно, язык, которым написаны ПУЭ и ГОСТ бывает сложен для человека без электротехнического образования, а значит стоит разобрать подробно, что такое заземление и зануление на обычном языке, понятном простому обывателю.

Все металлические шкафы и корпуса приборов должны быть заземлены или занулены

Что такое заземление: как устроено, принцип работы и преимущества такой защиты

Принцип работы заземления в том, чтобы не допустить прохождения электрического тока через тело человека, если в силу каких-либо обстоятельств корпус электроприбора окажется под напряжением. Такое может случиться при повреждении изоляции жил кабеля. Рассмотрим пример. Жила с поврежденной изоляцией соприкасается с металлическим корпусом микроволновой печи. Хозяйка, готовя пищу на кухне, прикасается к электроприбору, который не заземлен. Это приводит к тому, что ток устремляется к земле, используя человеческое тело, как проводник. Итог может быть самым плачевным, вплоть до летального исхода.

Неисправная электропроводка приводит к возникновению напряжения на корпусе бытовых приборов

Теперь разберем для чего нужно заземление, как оно работает. Тот же пример, но уже с использованием защиты. Требования к заземлению применяются самые жесткие. При замерах сопротивление контура должно практически отсутствовать, что позволяет току беспрепятственно уходить в землю по шине. Законы физики не дают напряжению протекать через человеческое тело, которое имеет свое сопротивление. У одних оно больше, у других меньше, но наличие его не оспаривается. Получается, что ток утекает по пути наименьшего сопротивления, через заземлитель. Если при этом в схему включено УЗО, оно определит утечку и отключит подачу электроэнергии на прибор.

Устройство защитного отключения (УЗО) срабатывает при малейшей утечке тока

Что такое зануление электроприборов: возможности применения

Защитное зануление электроприборов используется, если смонтировать заземление невозможно. Такая ситуация может возникнуть в случае, если многоквартирный дом построен в советские времена. Своего контура у таких домов нет, а самостоятельно его устроить не получится.

Защитное зануление – это система, выполняющая отличную от заземления работу. Если второе призвано увести напряжение в землю, исключая возможность поражения электрическим током, то первое выполняется с целью создания (при пробое изоляции и попадания напряжения на корпус) короткого замыкания. В этом случае срабатывает автоматика и электричество отключается.

Источником опасности может стать любой незаземленный электроприбор

Важная информация! В многоквартирных домах современной постройки и частных секторах в наши дни монтаж зануления запрещен. Это продиктовано целями безопасности проживающих. Автоматика может подвести, что приведет к непоправимым последствиям.

Защитное зануление требует правильного монтажа. Не стоит думать, что достаточно бросить перемычку с нулевого контакта внутри розетки на заземляющий. Это категорически запрещено. Рассмотрим ситуацию, когда уже «подгоревший» ноль подвергается нагрузке короткого замыкания, а автомат еще не успевает сработать. Ноль отгорает, исключив замыкание, но прибор остается под напряжением. Человек, надеясь на отсутствие электричества (света ведь нет, ноль отгорел) на ощупь продвигается к выходу и облокачивается на корпус бытового прибора, находящегося под напряжением. Исход ясен, не так ли?

Правильно выполненное заземление вкупе с защитной автоматикой – залог спокойствия проживающих в доме или квартире

Зануление и заземление: в чем разница

Разница этих систем в методе осуществления защиты. При устройстве защитного заземления роль отсекателя напряжения при возникновении аварийной ситуации берет на себя УЗО, а в случае монтажа зануления УЗО становится бессильно, сработать может только автомат. Почему так происходит? Устройство защитного отключения реагирует только на токовые утечки, совершенно игнорируя любые перегрузки, включая короткое замыкание. В случае монтажа зануления и включения в схему УЗО без автомата, при коротком замыкании УЗО не срабатывает, а попросту сгорает, не отключив напряжение с линии.

Вот к чему может привести неправильный монтаж защитного зануления

Чем отличается заземление от зануления: обобщение

Заземление отличается от зануления способом защиты и монтажом. Такие системы противоречат друг другу, а значит монтаж схемы с включением обоих вариантов, неприемлем. Зануление устраивается только в многоквартирных домах, не оборудованных собственным контуром. В иных случаях такой монтаж запрещен. О способах его устройства сейчас поговорим подробнее.

Что такое зануление и как его правильно устроить

Схема монтажа выглядит следующим образом. Пришедшая к вводному автомату нейтраль раздваивается, каждая из жил идет на отдельную шину. Одна из шин становится нулевой, а вторая заземляющей. От шины нейтрали жилы идут через автоматику и дальше на все нулевые контакты потребителей квартиры. Заземляющая соединяется с корпусом вводного щита, провод желто-зеленого цвета от нее идет на соответствующие контакты розеток и осветительные приборы, которые этого требуют. Соприкосновение заземляющего провода с нулевым после защитной автоматики запрещено.

Вывод заземления из-под земли. Ниже, на определенном расстоянии находится контур

Важная информация! Неправильный монтаж защитного зануления приводит к отгоранию жил кабелей, пожару. Так же возможно поражение электрическим током вплоть до летального исхода.

Лучший вариант защиты это заземляющее устройство?

Единственно правильный ответ на этот вопрос – да. Это действительно так. Контур заземления, смонтированный по всем правилам, защитит человека намного лучше предыдущего варианта. Улучшить защиту можно при помощи дополнительных устройств – автоматических выключателей, УЗО или дифавтоматов. Ведь что такое защитное заземление? По своей сути это система отвода электрического тока в случае аварии туда, где он не может навредить человеку.

Так должен выглядеть готовый контур заземления частного дома

Касаемо заземляющего устройства можно сказать, что оно может быть различным – контур заземления по периметру здания, «треугольник» во дворе или естественный заземлитель. Все правила и способы его монтажа мы обязательно рассмотрим в одной из ближайших тем. Но для общей информации имеет смысл понять определение, что является естественным заземлителем.

Полезно знать! В качестве естественного заземлителя можно использовать любые металлические конструкции, находящиеся под землей, за исключением трубопроводов ГСМ, канализации и предметов, покрытых антикоррозийными составами. Водопроводные трубы для этой цели могут использоваться.

В таких домах заземление не предусмотрено – придется довольствоваться занулением

Преимущества и недостатки квартирного зануления

О недостатках такой защиты говорилось сегодня много. Попробуем обобщить информацию. При таком способе нельзя быть уверенным на 100% в своей защите. Особенно, если монтаж выполнен неправильно. Еще одним минусом является то, что при слабом контакте или поврежденном кабеле, автомат просто не успеет сработать. В результате провод отгорит, что потребует ремонта.

Положительным в такой защите является возможность ее монтажа в многоквартирном доме старой постройки, где контур заземления отсутствует. Хоть и плохая, но все же защита. Сразу вспоминается поговорка, «с паршивой овцы хоть шерсти клок» или «на безрыбье и рак – рыба». Предлагаем посмотреть несколько фото примеров щитов с выполненным в них занулением.

Несмотря на то, что монтаж защитного зануления в жилых помещениях не рекомендуется, бывают ситуации, когда без него не обойтись. Тогда уже не до выбора, и человек применяет те средства защиты, которые ему доступны. Главное – это развести схему электропроводки квартиры и сделать правильно все расключения в вводном распределительном щите. Помните, что от этого зависит сохранность имущества, здоровье, а иногда и жизнь. Ведь напряжение в домашней сети опасно – оно может нанести серьезный ущерб организму.

Очень надеемся, что изложенная сегодня информация была полезна читателям. Если возникли вопросы, мы всегда рады на них ответить. Задать их можно в обсуждении ниже. Там же можно и поделиться своим опытом или оставить комментарий к статье.

А напоследок интересный и познавательный ролик по теме нашего сегодняшнего разговора:

Защитное заземление. Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей

Защитное заземление – это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Служит для превращения замыкания на корпус в замыкание на землю с целью уменьшения напряжения на корпусе относительно земли до безопасной величины.

Заземлить – означает металлически надежно, с помощью проводов, не имеющих изоляции, или шин, соединить с заземлителями подлежащие защите элементы или части оборудования. Заземлители бывают естественные и искусственные.

Естественные заземлители – металлические предметы, имеющие достаточную и постоянную поверхность соприкосновения с землей (трубопроводы, элементы конструкции зданий, баки для воды).

Искусственные заземлители – любые металлические предметы, имеющие достаточную и постоянную поверхность соприкосновения с землей, специально закладываемые в землю для целей заземления (трубы, уголки, профили, пруты).

Естественные и искусственные заземлители соединяют друг с другом металлической стальной шиной, сечение которой обуславливается значением токов замыкания на землю и механической прочностью заземлителей.

Заземляющим проводником называют провод, соединяющий защищаемое оборудование с находящимся в земле заземлителем.

Качество заземлителя определяется значением сопротивления заземления и изменением напряжения относительно земли. Под сопротивлением заземления заземлителя понимают сопротивление между заземлителем (у места соприкосновения с грунтом) и землей. Значение сопротивления заземления определяется как отношение полного напряжения относительно земли к полному току замыкания на землю. Под полным напряжением относительно земли понимается напряжение, возникающее в цепи тока замыкания на землю между заземлителем и землей (зона нулевого потенциала).

Физическая сущность защитного заземления показана на рисунке, где слева изображен любой трехфазный электроприемник (электродвигатель, трансформатор, прибор), справа – источник электроэнергии, нейтраль которого наглухо заземлена. На этом же рисунке представлена зависимость изменения напряжения U от L, где L – расстояние между заземлителем и зоной нулевого потенциала.


Принципиальная схема заземления для защиты от напряжения, возникшего на корпусе оборудования. 1 – электроприемник; 2, 3 – заземлители; 4 – источник элктроэнергии; zчел – полное сопротивление тела человека; Uп – полное напряжение относительно земли; Uпр – напряжение прикосновения; Uшаг – напряжение шага; r – активное сопротивление изоляции; с – емкость провода относительно земли.

Если изоляция электроприемника повредилась, то его токоведущая часть электрически соединилась с незаземленным металлическим корпусом технологического оборудования или защитного устройства. Коснувшись такого корпуса или же поддерживающей его конструкции, оставленной без заземления, человек оказывается под напряжением прикосновения, значение которого равно фазному или близко к нему. Таким образом, сущность защиты с помощью устройства заземлений заключается в создании такого заземления, которое обладало бы сопротивлением, достаточно малым для того, чтобы падение напряжения на нем (а именно оно и будет поражающим) не достигло значения, опасного для человека. В поврежденной цепи необходимо обеспечить такое значение тока, которое было бы достаточным для надежного срабатывания защитных устройств, установленных на источнике питания.

Нормирование сопротивления заземления. Для сетей напряжением ниже 1000 В на основании статистических данных “Правилами устройства электроустановок” определено лишь верхнее численное значение допустимого предела сопротивления заземления, а именно 40 м.

6. Зануление (заземляющая система с нулевым заземленным проводом).

Занулением называется защитное мероприятие, применяемое только в сетях с заземленной нейтралью напряжением ниже 1000 В, предназначенное для защиты людей от напряжения, возникающего на металлических частях оборудования, нормально не находящихся, но могущих оказаться под напряжением при тех или иных повреждениях изоляции, и заключающееся в создании в поврежденной цепи значения тока, достаточного для надежной работы защиты.


Занулить – это значит металлически (электрически) надежно соединить подлежащие защите части оборудования с нулевым проводом. Зануление требует применения заземлителей для присоединения к ним нулевого провода. Но значение этих заземлителей иное, чем при заземлении.

Принципиальная схема зануления для защиты людей от напряжения, возникающего на корпусе оборудования при повреждении изоляции. 1 – электроприемник; 2, 3 – заземлители; 4 – источник электроэнергии; 5 – распределение Uпр при отсутствии заземления; 6 – то же при его наличии; zчел – полное сопротивление тела человека; Rз,n – сопротивление повторного заземления; Rзм – сопротивление заземлителя нейтрали генератора; Uо – падение напряжения на нулевом проводе; Uпр – падение напряжения при отсутствии повторного заземления; Uпр – то же при его наличии.

Физическая сущность защиты в системе зануления поясняется на рисунке, на котором представлена принципиальная схема зануления с одним электроприемником. Показано соединение нейтралей источника электроэнергии с корпусом электроприемника; приведена диаграмма, характеризующая изменение напряжения относительно земли, возникающего при повреждении изоляции в двух случаях:

– нулевой провод имеет единственное заземление у источника электроэнергии;

– нулевой провод имеет повторное заземление у электроприемника.

В первом случае напряжение прикосновения увеличивается в сторону электроприемника и достигает максимального значения у его корпуса; численно это напряжение будет равно падению напряжения на нулевом проводе при коротком замыкании, возникающем в электроприемнике между фазным и нулевым проводом. Если сопротивление фазного провода rф будет равно сопротивлению нулевого провода r0, то напряжение прикосновения в момент короткого замыкания на корпусе электроприемника при отсутствии повторного заземлителя будет равно половине фазного. Если же сопротивление нулевого провода будет больше сопротивления фазного, то напряжение прикосновения будет больше половины фазного. Уменьшить напряжение прикосновения можно двумя путями: увеличив сечение нулевого провода или устроив повторные заземлители.

Вывод: физическая сущность защиты посредством системы зануления заключается в снижении напряжения прикосновения путем уменьшения сопротивления нулевого провода и перераспределения напряжения прикосновения между основным (нейтраль трансформатора) и повторным (у электроприемника) заземлителями с помощью повторных заземлителей, численные значения сопротивлений которых роли не играют.

7. Защитное отключение.

Защитное отключение – это система защиты, основанная на автоматическом отключении электроприемника, если на металлических частях его, нормально не находящихся под напряжением, появляется напряжение, значение которого опасно для человека.

Такую систему, предназначенную для сети с изолированной нейтралью, принципиально можно использовать и для сети с заземленной нейтралью.

Принципиальная схема защитного отключения.

1 – корпус электроприемника; 2 – оттягивающая пружина; 3 – защелка, удерживающая ножи отключателя; 4 – отключающая катушка; 5, 6 – заземлители.

При защите человека от напряжения, возникающего на корпусе одиночного электроприемника вследствие повреждения его изоляции, возможны два случая: электроприемник не заземлен и электроприемник имеет заземление.

Первому случаю соответствует рисунок (I) – контакт с заземлителем разомкнут. На некотором расстоянии от защищаемого электроприемника забивают в землю заземлитель. Далее ставят сам отключатель или защитный выключатель. На рисунке все элементы этого выключателя для наглядности принципа действия разобщены. Защитный выключатель (отключатель) имеет катушку, разрывающую цепь при подаче на нее напряжения. Он может иметь и включающую катушку, позволяющую производить включение нажатием кнопки. Отключающая катушка удерживает выключатель в замкнутом включенном состоянии с помощью защелки. Один конец катушки подсоединен к корпусу электроприемника, второй – к выносному заземлителю. В случае повреждения изоляции, между корпусом электроприемника и выносным заземлителем появляется фазное напряжение. Отключающая катушка окажется под напряжением, и через нее пойдет ток. Ее сердечник втянется и освободит удерживающую защелку. Пружина оттянет ножи выключателя, и цепь разорвется. Напряжение прикосновения на корпусе электроприемника пропадет, соприкосновение с ним станет безопасным.

Если корпус электроприемника заземлен, то разъединитель заземлителя будет включен. При повреждении изоляции на корпусе электроприемника появится напряжение, но оно уже не будет равно фазному. Значение возникшего напряжения определит падение напряжения на заземлителе, равное току замыкания на землю, умноженному на сопротивление заземления заземлителя. В этом случае катушка выключателя должна быть рассчитана на действие от меньшего напряжения. Основой защиты с помощью защитного отключения является быстрое отключение поврежденного электроприемника. Чем меньше время действия отключающего устройства, тем надежнее система защиты. Одним из преимуществ защитного отключения является то, что оно может срабатывать и не при полном замыкании, а уже в начале развития повреждения. Это его существенное преимущество.

Защитное заземление. Основная и дополнительная системы уравнивания потенциалов. Сторонние проводящие части

Защитное заземление – заземление, выполняемое в целях электробезопасности.

Защитное заземление —это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением.

Цель защитного заземления —снизить до безопасной величины напряжение относительно земли на металлических частях оборудования, которые не находятся под напряжением, но могут оказаться под напряжением вследствие нарушения изоляции электроустановок. В результате замыкания на корпус заземленного оборудования снижается напряжение прикосновения и, как следствие,- ток, проходящий через тело человека, при его прикосновении к корпусам.

При электрическом переменном токе промышленной частоты (50 герц) берут во внимание только активное сопротивление человека (его тела) и соотносят его с величиной равной 1 кОм. При длительном прохождении тока сопротивление тела снижается до 500 – 300 Ом.

Примечание: сопротивление тела человека постоянному току от 3 до 100 кОм.

risunok1.png

Расчеты, приведенные на рисунках, весьма приблизительны, но показывают оценить эффективность защитного заземления.

Существенное влияние на ток, проходящий через человека, оказывает величина тока короткого замыкания и сопротивление системы заземления. Наибольшее допустимое значение сопротивления заземления в установках до 1000 В: 10 Ом — при суммарной мощности генераторов и трансформаторов 100 кВА и менее, 4 Ом — во всех остальных случаях.

Указанные нормы обосновываются допустимой величиной напряжения прикосновения, которая в сетях до 1000 В не должна превышать 40 В.

Защитное заземление применяется в трехфазных трехпроводных сетях напряжением до 1000 В с изолированной нейтралью, а в сетях напряжением 1000 В и выше — с любым режимом нейтрали.

1. Каждый корпус электроустановки должен быть присоединен к заземлителю или к заземляющей магистрали с помощью отдельного ответвления. Последовательное включение нескольких заземляемых корпусов электроустановок в заземляющий проводник запрещается.

Заземляющее устройство — это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

risunok2.png

Заземляющее устройство — это совокупность заземлителя и заземляющих проводников, соединяющих заземляемые части электроустановки с заземлителем.

Заземлители

1.Естественные

- водопроводные трубы, проложенные в земле (ХВ)

- металлические конструкции здания и фундаменты, надежно соединенные с землей

- металлические оболочки кабелей

- обсадные трубы артезианских скважин

- газопроводы и трубопроводы с горючими жидкостями

- алюминиевые оболочки подземных кабелей

- трубы теплотрасс и горячего водоснабжения

Соединение с естественным заземлителем должно быть не менее чем в двух разных местах.

2. Искуственные

Контурные


При контурном заземлении обеспечивается выравнивание потенциалов в защищаемой зоне и уменьшается напряжение шага.

Выносные: групповые и одиночные

Позволяют выбрать место с минимальным сопротивлением грунта.

Традиционно, для искусственных заземлителей применяют угловую сталь толщиной полки не менее 4 мм, стальные полосы толщиной не менее 4 мм или прутковую сталь диаметром от 10 мм.

Широкое распространение в последнее время получили глубинные заземлители с омедненными или оцинкованными электродами, которые по долговечности и затратам на изготовление заземлителя существенно превосходят традиционные методы.

Особая проблема - создание качественного заземления в условиях вечной мерзлоты. Здесь стоит обратить внимание на системы электролитического заземления, позволяющие эффективно решить проблему.

risunok3.png

Основная система уравнивания потенциалов.

Построение основной системы уравнивания потенциалов – создание эквипотенциальной зоны в пределах электроустановки с целью обеспечения безопасности персонала и самой электроустановки при срабатывании системы молниезащиты, заносе потенциала и коротких замыканиях.

Основная система уравнивания потенциалов в электроустановках до 1 кВ должна соединять между собой следующие проводящие части:

1 ) нулевой защитный РЕ- или РЕN- проводник питающей линии в системе TN;

2 ) заземляющий проводник, присоединенный к заземляющему устройству электроустановки, в системах IT и TT;

3 ) заземляющий проводник, присоединенный к заземлителю повторного заземления на вводе в здание;

4)металлические трубы коммуникаций , входящих в здание…

5 ) металлические части каркаса здания;

6 ) металлические части централизованных систем вентиляции и кондиционирования….

7 ) заземляющее устройство системы молниезащиты 2-й и 3-й категории;

8 ) заземляющий проводник функционального ( рабочего ) заземления, если таковое имеется и отсутствуют ограничения на присоединение сети рабочего заземления к заземляющему устройству защитного заземления;

9 ) металлические оболочки телекоммуникационных кабелей.

Для соединения с основной системой уравнивания потенциалов все указанные части должны быть присоединены к главной заземляющей шине при помощи проводников системы уравнивания потенциалов. (ПУЭ п. 1.7.82)

risunok4.png

Несоединенный с ГЗШ элемент конструкции, инженерной системы, независимой системы рабочего заземления ( FE ) и тд. – грубейшее нарушение целостности основной системы уравнивания потенциалов. Появление разности потенциалов ( возможность искры ) – угроза жизни персонала и безопасности объекта.

Примечание: разрядник, указанный на рисунке – специализированный искровой разрядник с малым напряжением срабатывания для систем уравнивания потенциалов. Например: серии «KFSU», «EXFS..» компании DEHN.

Система дополнительного уравнивания потенциалов

- должна соединять между собой все одновременно доступные прикосновению открытые проводящие части стационарного электрооборудования и сторонние проводящие части, включая доступные прикосновению металлические части строительных конструкций здания, а также нулевые защитные проводники в системе TN и защитные заземляющие проводники в системах IT и ТТ, включая защитные проводники штепсельных розеток (ПУЭ п. 1.7.83).

risunok5.png

Система дополнительного уравнивания потенциалов значительно улучшает уровень электробезопасности в помещении. Короткие проводники защитного заземления и уравнивания потенциалов, сведенные на шину, формируют эквипотенциальную зону по принципу аналогично основной системы уравнивания потенциалов.

risunok6.png

Как видно из рисунков, схема электропитания претерпевает существенные изменения. Чрезвычайно важно обеспечить соединение контактов заземления розеток и клемм заземления стационарных приборов на шину дополнительного уравнивания потенциалов. При этом, даже если не будет выполнено соединение корпусов приборов с шиной ( безалаберная эксплуатация, особенно переносных приборов ) система сохранит свою эффективность по безопасности. Ситуация, когда земли розеток и приборов не подключены к шине, а сторонние проводящие части гарантированно соединены с шиной уравнивания потенциалов, в разы ухудшает электробезопасность в помещении даже по сравнению с классической схемой питания.

Сторонняя проводящая часть - проводящая часть, не являющаяся частью электроустановки.

Если формально подходить к определению, то и металлическая дверная ручка и петли на деревянной двери в деревянном доме являются сторонними проводящими частями.

При формировании дополнительной системы уравнивания потенциалов возникает вопрос, что подключать, а что не подключать на шину дополнительного уравнивания потенциалов, чтобы добиться необходимого уровня электробезопасности и не делать систему слишком громоздкой. Здесь, с точки зрения здравой логики, можно руководствоваться двумя принципами:

  1. Фактическая ( потенциальная ) возможность связи с «землей».
  2. Возможность появления потенциала на сторонней проводящей части при аварии электрооборудования в процессе эксплуатации.

Примеры сторонних проводящих частей подключаемых / не подключаемых к шине дополнительного уравнивания потенциалов:

Сторонняя проводящая часть

Металлическая полка, закрепленная на стене из непроводящего материала.

risunokа.png

Металлическая полка, закрепленная на стене из железобетона.

risunok7b.png

(потенциальная связь с «землей» за счет крепежа к стене)

На полке расположен электроприбор.

risunok7v.png

(возможность появления потенциала при аварии прибора с классом изоляции I)

Металлическая тумбочка с резиновыми (пластиковыми) колесиками на бетонном полу.

risunok7g.png

Металлическая тумбочка с резиновыми колесиками на бетонном полу.

В помещении грязь и пыль в сочетании с повышенной влажностью.

risunok7d.png

(потенциальная связь с «землей» за счет загрязнения и повышенной влажности)

Некоторое количество вопросов с уравниванием потенциалов возникает по ванным и душевым помещениям. Современные требования и рекомендации по устройству системы дополнительного уравнивания потенциалов изложены в циркуляре № 23/2009.

Широкое применение пластиковых труб породило закономерный вопрос: является ли водопроводная вода сторонней проводящей частью и возможен ли занос потенциала через воду….

Ответ, содержащийся в циркуляре, несколько настораживает: « … Водопроводная вода нормального качества …не рассматривается как сторонняя проводящая часть . »

К сожалению, вода нормального качества из наших кранов течет не всегда и лучше перестраховаться, используя токопроводящие вставки на отводах от стояков водопровода подключив их к шине дополнительного уравнивания потенциалов, чтобы не подключать отдельно каждый кран. Этот метод в качестве рекомендуемого описан в этом же циркуляре.

Практика выполнения дополнительной системы уравнивания потенциалов.

Фактически наиболее распространены пять вариантов выполнения шин системы дополнительного уравнивания потенциалов:

Вариант 1. С использованием стандартных коробок уравнивания потенциалов ( КУП ).

Вариант 2. Стальная шина 4х40 ( 4х50 ) с приварными болтами опоясывающая помещение.

Вариант 3. Стальная шина, уложенная в стандартный пластиковый короб.

Вариант 4. Использование шины заземления в РЩ ( для небольших помещений ).

Вариант 5. С использованием специализированного щитка типа ЩРМ – ЩЗ

( встроенный щиток с шиной 100 мм 2 ( Cu ) со степенью защиты IP54 ).

Главные требования нормативов по устройству шины дополнительного уравнивания потенциалов содержат два требования:

- возможность осмотра соединения

- возможность индивидуального отключения

  1. Длина проводников дополнительной системы уравнивания потенциалов, соединяющих контакты штепсельных розеток, сторонние проводящие части и корпуса электрооборудования не должна превышать 2,5 м.( ? ). Сечение 4 мм 2 Сu ( ПВ-1, ПВ-3 ). См. ПУЭ 1.7.82 рис. 1.7.7.
  2. Для электроустановки здания, где применяются негорючие ( ВВГ нг –FRLS…) кабеля, следует с осторожностью использовать кабеля марки ПВ-1, ПВ-3 ( проводники уравнивания потенциалов от дополнительной системы уравнивания потенциалов до ГЗШ или щитовой шины заземления ). Данный тип кабеля, будучи уложенным вместе с негорючими кабелями, формально превращает всю систему в распространяющую горение. В большинстве случаев контролирующие органы относятся к этому спокойно, но в некоторых случаях стоит применить негорючие одножильные кабеля той же марки с нанесением соответствующей маркировки.
  3. Для зданий детских дошкольных учреждений, больниц, специальных домах престарелых и тд. применяемые пластиковые короба должны иметь сертификат о не выделении токсичных веществ при горении. Тоже касается линолеума. Поставляемые в Россию короба Legrand, ABB … таких сертификатов не имеют. Как вариант - короба фирмы DKC в которых в качестве отбеливающего вещества используется мел и есть все необходимые сертификаты.

МЕД. ГОСТ Р 50571.28 п. 710.413.1.6.3 « Шина уравнивания потенциалов должны быть расположены в самом медицинском помещении или в непосредственной близости от него. В каждом распределительном шкафу или в непосредственной близости от него должны быть расположена шина системы дополнительного уравнивания потенциалов, к которой должны быть подключены проводники…»

risunok8.png

Для учреждений здравоохранения в помещениях гр.1 и особенно в помещениях гр.2 (чистые помещения) удобно воспользоваться вариантом № 5, схема которого представлена на рисунке.

Защитное заземление. Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей

Защитное заземление – преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением вследствие замыкания на корпус и по другим причинам (индуктивное влияние соседних токоведущих частей, вынос потенциала, разряд молнии и т. п.).

Назначение защитного заземления — устранение опасности поражения током в случае прикосновения к корпусу электроустановки и другим нетоковедущим металлическим частям, оказавшимся под напряжением вследствие замыкания на корпус и по другим причинам [5].

Защитное заземление следует отличать от других видов заземления, например, рабочего заземления и заземления молниезащиты.

Рабочее заземление — преднамеренное соединение с землей отдельных точек электрической цепи, например нейтральных точек обмоток генераторов, силовых и измерительных трансформаторов, дугогасящих аппаратов, реакторов поперечной компенсации в дальних линиях электропередачи, а также фазы при использовании земли в качестве фазного или обратного провода. Рабочее заземление предназначено для обеспечения надлежащей работы электроустановки в нормальных или аварийных условиях и осуществляется непосредственно (т. е. путем соединения проводником заземляемых частей с заземлителем) или через специальные аппараты — пробивные предохранители, разрядники, резисторы и т. п.

Заземление молниезащиты — преднамеренное соединение с землей молниеприемников и разрядников в целях отвода от них токов молнии в землю [5].

Принцип действия защитного заземления — снижение до безопасных значений напряжений прикосновения и шага, обусловленных замыканием на корпус и другими причинами.

Это достигается путем уменьшения потенциала заземленного оборудования (уменьшением сопротивления заземлителя), а также путем выравнивания потенциалов основания, на котором стоит человек, и заземленного оборудования (подъемом потенциала основания, на котором стоит человек, до значения, близкого к значению потенциала заземленного оборудования).

Рассмотрим два случая.

1.Корпус электроустановки не заземлен. В этом случае прикосновение к корпусу электроустановки также опасно, как и прикосновение к фазному проводу сети.

2.Корпус электроустановки заземлен (рис.15) . В этом случае напряжение корпуса электроустановки относительно земли уменьшится и станет равным:

Напряжение прикосновения и ток через тело человека в этом случае будут определяться по формулам:

где: a1− коэффициент напряжение прикосновения.

Уменьшая значение сопротивления заземлителя растеканию тока RЗ, можно уменьшить напряжение корпуса электроустановки относительно земли, в результате чего уменьшаются напряжение прикосновения и ток через тело человека.

Заземление будет эффективным лишь в том случае, если ток замыкания на землю IЗ практически не увеличивается с уменьшением сопротивления заземлителя [5].

Такое условие выполняется в сетях с изолированной нейтралью (типа IT) напряжением до 1 кВ, так как в них ток замыкания на землю в основном определяется сопротивлением изоляции проводов относительно земли, которое значительно больше сопротивления заземлителя (рис. 4.15).


Рис. 4.15. Схема сети с изолированной нейтралью (типа IT) и защитным заземлением электроустановки

В сетях переменного тока с заземленной нейтралью напряжением до 1 кВ защитное заземление в качестве основной защиты от поражения электрическим током при косвенном прикосновении не применяется, т.к. оно не эффективно (рис. 4.16).


Рис. 4.16.Схема сети с заземленной нейтралью и защитным заземлением потребителя электроэнергии

Область применения защитного заземления:

электроустановки напряжением до 1 кВ в трехфазных трехпроводных сетях переменного тока с изолированной нейтралью (система IT);

электроустановки напряжением до 1 кВ в однофазных двухпроводных сетях переменного тока изолированных от земли;

электроустановки напряжением до 1 кВ в двухпроводных сетях постоянного тока с изолированной средней точкой обмоток источника тока (система IT);

электроустановки в сетях напряжением выше 1 кВ переменного и постоянного тока с любым режимом нейтрали или средней точки обмоток источников тока [10].

Для установок напряжением до 1 кВ сопротивление заземляющего устройства, используемого для защитного заземления открытых проводящих частей в системе типа IT должно соответствовать условию:

где: − сопротивление заземляющего устройства, ом; Uпр.доп – напряжение прикосновения, значение которого принимается равным 50 В; – полный ток замыкания на землю, А.

Как правило, не требуется принимать значение сопротивления заземляющего устройства менее 4 Ом. Допускается сопротивление заземляющего устройства до 10 Ом, если соблюдено приведенное выше условие, а мощность трансформаторов и генераторов, питающих сеть, не превышает 100 кВА, в том числе суммарная мощность трансформаторов и (или) генераторов, работающих параллельно [10].

Читайте также: