Технология лазерной резки металла

Обновлено: 20.05.2024

Лазерная резка металла — это процесс нагревания и разрушения металла при помощи лазерного луча. Международное название технологии — Laser Beam Cutting (LBC).

На сегодняшний день существует 3 основных способа работы лазера по металлу:

лазерная резка металла

  1. Плавление — наиболее распространенный способ, который подходит для большого количества материалов. Луч лазера разогревает поверхность металла до температуры плавления, которая различается у видов сырья. При правильно подобранном режиме металл расплавляется только по срезу, целостность кромок сохраняется. В зону обработки бьет поток сжатого газа, который выдувает расплавленный металл, охлаждает края, предотвращает плавление и деформации на срезах. Например, присутствие кислорода при резке нержавеющей стали или алюминия грозит окислением места среза, поэтому поверхность обдувается азотом. Алгоритм движения составлен на базе информации о материале (толщине, температуре плавления) и заложен в программное обеспечение, которое управляет действиями оборудования. Эта технология отличается высокой точность, скоростью и экономичностью.
  2. Горение — способ лазерной резки металла, который оптимизирует обработку черных металлов, но не подходит для цветных металлов и стали с высоким содержанием легирующих элементов. Воздействие кислорода дает в несколько раз больше тепловой энергии, чем работа лазера. Себестоимость процесса и время обработки уменьшаются. Методика имеет недостаток — горят кромки некоторых материалов. Затраты на постобработку срезов могут превысить экономию непосредственно резки. Выбор технологии лазерной резки “горение” определяет материал. Например, черная сталь в процессе обработки не образует оксидов или позволяет легко удалить их. Сплавы алюминия и нержавеющая сталь при контакте с O₂ окисляются, поэтому при раскрое этих материалов поступление кислорода отсекают струей азота.
  3. Испарение — используется редко, востребован только при резке тонкостенных изделий или листов малой толщины. Луч работает не сплошной струей, а короткими импульсами, рассчитанными на то, чтобы расплавить и испарить металл, не задев ничего вокруг, например, подложку (в изделиях). Воздушный напор удаляет технический мусор из рабочей области. Эта методика требует значительно большего нагрева материала. Например, алюминий плавится при 660 ํС, а закипает при 2 519 ํС. Соответственно, нужно почти в четыре раза больше энергии. Процесс более затратный, поэтому оправдан только в случаях, где не справляются другие технологии.

Таким образом, лазерная резка методом плавления — оптимальное соотношение цены и качества для большинства материалов.

Оборудование для лазерной резки

Устройства классифицируют по разным параметрам. По типу рабочей среды — источника лазерного излучения — выделяют три вида приборов:

  • Твердотельные системы. В осветительном модуле располагается твердое рабочее тело и газоразрядная лампа высокой мощности. Рабочим телом может служить стержень из рубина, неодимового стекла и других материалов. Края стержня оснащены зеркалами: полупрозрачным и отражающим. Луч лазера, созданный рабочим телом, набирает мощность, благодаря множественным отражениям и выходит наружу через полупрозрачное зеркало.
  • Газовые устройства. В них работает CO₂ (отдельно или в комплексе с гелием и азотом). Углекислый газ активизируют электроразряды. Для увеличения мощности также используют систему зеркал.
  • Газодинамические приборы обладают самой высокой мощностью. Активным веществом тоже является оксид углерода (CO₂), разогретый до температуры в диапазоне от 726 до 2726 °С. Он активизируется при помощи дополнительного лазерного луча небольшой мощности. Проходя через специальное сопло, газ меняет состояние и становится источником излучения. Этот вид оборудования самый дорогостоящий.

Выбор вида лазерной резки зависит от материала, который необходимо обработать.

станок для лазерной резки

ЧПУ, использующие углекислый газ, отлично справляются со сваркой, раскроем, гравировкой металла, стекла, пластика и другого сырья. Оборудование твердотельного типа эффективно для резки алюминия, меди, серебра, латуни. Не работают с неметаллическими материалами.

Качество лазерной резки. От чего оно зависит?

лазерная резка металлических изделий

Под качеством лазерной резки обычно понимают точность, качество реза (минимальную шероховатость, прямые стенки), скорость предоставления услуг.

Результат работ зависит от многих составляющих:

  • Типа и размеров детали;
  • Правильной настройки оборудования для лазерной резки;
  • Технического состояния ЧПУ-станка;
  • Качества разработки макета.

Чтобы получить нужный результат, необходимо учесть все эти параметры. При соблюдении правил использования, лазерные резаки обеспечивают точность до 0,1 мм.

Скорость резки обусловлена мощностью оборудования, толщиной и теплопроводностью обрабатываемого материала. Чем выше показатель, тем быстрее отводится тепло с рабочего участка, соответственно требуется больше энергии. Например мощности лазера в 600 Ватт достаточно для резки титана или черных металлов, но мало для меди или алюминия.

Особенности резки отдельных металлов

лазерная резка металлических деталей

Индивидуальные свойства материалов требуют применения различных технологий лазерной резки. Сплавы и цветные металлы обрабатывают на станках мощностью не ниже 1 кВт, для работы с черными металлами будет достаточно мощности от 0,5 кВт.

Раскрой высокоуглеродистых сталей осуществляется в основном по газолазерной технологии с применением кислорода. Благодаря сильной тепловой реакции в зоне воздействия лазера, увеличивается скорость обработки металлического листа.

Этот метод дает высокое качество реза. Для фигурной резки, например, заготовок с острыми углами или отверстиями, в комплексе с лазерным лучом используют инертный газ.

При обработке изделий или листов из нержавеющей стали, используют азот, который транспортируют в рабочую область под давлением до двадцати атмосфер. Учитывая высокую прочность сырья, лазерная резка — практически единственный метод качественной обработки нержавеющей и оцинкованной стали.

Работа с цветными металлами требует аппаратов больше мощности, например твердотельного типа.

Для взаимодействия с латунью, алюминием и сплавами с его содержанием используют инертный газ под давлением до десяти атмосфер. Кромки получаются хорошего качество, возможно небольшое образование грата, который легко удалить.

Медь обладает высокими теплопроводными свойствами. Оптимальная толщина листов для раскроя лазером не больше 0,5 мм. Большая толщина требует значительных расходов, что не является экономически целесообразным.

Альтернатива лазерной резке металла

В современной металлообработке эффективно используют четыре технологии резки металла:

  1. Лазерная;
  2. Плазменная;
  3. Газовая;
  4. Гидроабразивная.

Каждый способ имеет свои преимущества и недостатки по отношению к различным видам материалов.

Плазменная резка металла

Плазменная резка — технология раскроя металла, при которой в качестве режущего инструмента выступает струя плазмы. К преимуществам относится возможность работы с любыми сырьем: цветными, тугоплавкими и другими сложными металлами. Еще один плюс технологии — создание резы любой формы, в том числе сложной геометрической.

Плазменная резка немного проигрывает лазерной в качестве кромок, соответственно и в точности. При лазерной обработке кромки имеют большую степень соответствия по перпендикулярности.

Для материалов толще 6 мм плазменный метод занимает меньше времени и затрат энергии по сравнению с лазерным. Однако при работе с тонкими материалами и изготовлении деталей сложной геометрии использование лазера эффективнее ввиду большей точности и максимального соответствия техническому заданию.

плазменная резка металла

Газовая резка металла

Суть процесса газовой резки заключается в следующем: газ ацителен или пропан разогревает материал обработки до 1000-1200⁰С, затем подключается кислород, который загорается при контакте с раскаленным металлом и режет его. Технология подходит для материалов, температура горения которых ниже, чем плавления: для сталей с низким и средним содержанием легирующих элементов. Преимущества метода в невысокой стоимости, простоте, мобильности оборудования. Однако он подходит не для всех материалов, точность резки значительно уступает лазерной и плазменной.

газовая резка металла

Гидроабразизная резка металла

Рабочим инструментом при гидроабразивной резке выступает смесь воды с абразивными частицами (зерна карбида кремния, электрокорунда, других твердых веществ, гранатовый песок). Вода поступает в режущую головку под давлением до 6000 атмосфер, оттуда она со скоростью около 1000 м/сек (и выше) вырывается в камеру, где смешивается с абразивом. Смешанная струя разрушает целостность металла и смывает отрезанные частицы. Важная особенность гидроабразивной резки состоит в том, что обрабатываемые поверхности практически не нагреваются, что дает методу массу неоспоримых преимуществ.

Технология имеет ряд плюсов:

  • Работа с любыми материалами;
  • Высокое качество реза благодаря отсутствию пригорания и плавления поверхности;
  • Возможность обработки термочувствительного сырья;
  • Отсутствие вредных выделений в рабочем процессе;
  • Пожаробезопасность работ.

К недостаткам можно отнести более низкую скорость в сравнении с плазменной и лазерной обработкой, высокую стоимость оборудования и себестоимость процесса.

гадроабразивная резка металла

Из рассмотренных вариантов лазерная резка — наиболее универсальный инструмент. Кроме непосредственного раскроя устройства используют для лазерной гравировки металла, маркировки, разметки и прочих операций.

Практическое применение технологии лазерной резки

Производство изделий при помощи лазерного оборудование состоит из нескольких этапов:

  1. Формирование идеи продукта.
  2. Разработка художественного эскиза.
  3. Создание технического макета модели.
  4. Изготовление тестовой детали на ЧПУ-станке.
  5. Контроль параметров и доработки в случае необходимости.
  6. Запуск серийного производства.

Созданию технического макета нужно уделить особое внимание, так как от его точности будет зависеть качество готового изделия.

технология лазерной резки

Станки используют форматы программ AutoCAD, CorelDraw, поэтому чертежи для лазерной гравировки или резки должны быть выполнены в этих программах.

Требования к макетам для лазерной резки

  • Масштаб чертежа 1:1.
  • Замкнутые внешние и внутренние контуры.
  • CIRCLE, LINE, ARC — команды для создания контуров.
  • Команды ELLIPSE, SPLINE не поддерживаются.
  • При наложении линий друг на друга лазерный резак будет проходить по одной и той же траектории несколько раз.
  • В чертеже для лазерной резки должно быть указано количество деталей и рабочий материал.
  • Вся информация о чертеже должна быть размещена в одном файле.

Ценообразование в услугах лазерной резки металлов

Цена услуг зависит от ряда составляющих и меняется в зависимости от технического задания.

Что влияет на стоимость услуг лазерной резки металла

  • Вид металла. Например, резка черных металлов, стали и нержавейки стоит в 2-3 раза дешевле резки меди, латуни, титана, алюминия и его сплавов.
  • Толщина листа. Чем больше толщина, тем выше цена. Нестандартные технические задания рассчитываются индивидуально.
  • Сложные формы деталей. Чем больше требуется резов для достижения результата, тем выше цена.

Эти и ряд других параметров, которые оговариваются с заказчиком, формируют стоимость лазерной резки и гравировки.

О компании

Адрес: Санкт-Петербург, Петровский пр., д.20 литер Я (около д. 20 литер В)

Режим работы:
Понедельник - пятница
10:00 - 18:00

Полезные статьи
Работаем по всей России
Высокоточное производство
Пользовательское соглашение

Основы технологии лазерной резки металла

Лазерная резка металла

Из школьного курса элементарной физики вы знаете о сильном тепловом воздействии сфокусированного света. Познавательный трюк с увеличительным стеклом ясно показывает возможности преломленного потока солнечного луча.

Принципом действия работы лазера может служить его перевод с английского: усиление света вынужденным излучением. По-простому — это световое излучение, вызванное атакой фотонов на рабочую среду с усилением за счет ответной реакции. Световой поток через систему оптических призм и зеркал фокусируется в узконаправленный луч импульсной или непрерывной модуляции. Мощность и интенсивность лазера зависит от используемого активатора и сложности резонирующих систем.

В качестве первичного активного вещества используют все возможные агрегатные состояния: твердое, газообразное, жидкое и плазменное. Важнейшим критерием является способность к возбуждению и отдаче свободных квантов-фотонов. Накачка первичных световых атомов производится разными способами. Это может быть сфокусированное солнечное излучение, специальные лампы, другие лазеры, электрическое воздействие или химические процессы. Для увеличения силы потока делают многоуровневые атакующие каскады. В основе резонаторов применяют плоскопараллельные и сферические зеркала или их комбинации. Главный параметр хорошего прибора — устойчивое сохранение светового луча и его точная фокусировка.

Принцип лазерной резки

Первый лазер был сделан на рубине в 1960 году, он работал в инфракрасном диапазоне и являлся началом эры световых помощников человека. История развития прикладной квантовой науки шла по пути усиления первоначальных систем накачки и совершенствования оптических резонаторов для достижения мощного и управляемого луча. Выискивались новые рабочие среды, были испробованы и получили путевку в жизнь лазерные установки на красителях, на свободных электронах, химические модели и полупроводниковые исполнения.

Производственное использование лазера


Лазер называют самым красочным и одним из важнейших изобретений XX века. Многие годы никто не понимал его практического применения, прибор называли устройством, которое само ищет задачи для решения. Теперь лазерные аппараты лечат людей, исследуют звезды и применятся для развлекательных мероприятий.

Машиностроительные производства давно начали использовать резку металла лазером. Пионерами выступили судостроительные верфи, авиационные заводы и автомобильные гиганты, искавшие передовые методы работы для увеличения производительности труда. Возрастающая конкуренция стимулировала появление инновационных обрабатывающих центров с принципиально новыми системами влияния на рабочий процесс.

К настоящему времени на промышленных предприятиях лазерная резка металла представлена следующими видами установок:

  • твердотельные — основанные на кристаллических драгоценных камнях или соединениях редкоземельных элементов, для накачки фотонов используется импульсные лампы или лазерные диоды;
  • газовые — в качестве активаторов применяются смеси инертных газов с источником возбуждения в виде электрических разрядов или направленной химической реакции;
  • волоконные — активная среда и резонатор сделаны целиком из оптического волокна или скомбинированы с другими конструктивными элементами.

Следующее видео представляет волоконный лазерный станок.


Для работы с цветными металлами и антикоррозионными сталями, имеющими высокую отражающую способность, прикладными исследовательскими институтами разработаны специальные модели традиционных лазеров с резонатором из оптико-волоконной трубки. Световой луч в таких установках более сфокусированный и концентрированный и не рассеивается о зеркальную поверхность алюминиевых, титановых или нержавеющих заготовок.

Широко распространенные газовые СО₂-лазеры работают на рабочей смеси углекислого газа, азота и гелия, зеркала резонатора покрыты серебряным или золотым напылением для увеличения отражающей способности.

Технология лазерной резки металлов постоянно совершенствуется: пробуются новые типы установок, усложняются системы управления процессом, применяются компьютерные комплексы для контроля режимов обработки. Основной упор делается на увеличение точности, чистоты реза и производительности.

Особенности технологического процесса


В результате воздействия светового луча материал заготовки проходит несколько промежуточных изменений для превращения в обработанную деталь:

  • первая стадия — воздействие лазера на металл в точке начала реза вызывает нагревание вещества до температуры плавления и появлению усадочной раковины;
  • вторая стадия — энергия излучения приводит к кипению и испарению металла;
  • третья стадия — при проплавлении заготовки на полную глубину начинается поступательное движение рабочего органа в соответствии с заданной траекторией.

В действительности, процесс испарения металла наблюдается только у тонких заготовок, при средней и большой толщине реза удаление остатков вещества из рабочей зоны производится с помощью струи вспомогательного газа (азот, кислород, воздушная смесь или инертные газы).

Такие установки, работа которой представлена на видео, называют газолазерными резаками.



Активный кислород, подаваемый в зону резания не только выводит продукты плавления металла и охлаждает поверхность среза, но и способствует поддержанию температуры и ускоряет режимы обработки. При лазерной резке не происходит деформации заготовки, следовательно, отсутствуют затраты материала на припуск линейных размеров и необходимость в дополнительных чистовых операциях.

сравнительная таблица лазерной резки

Сравнительные характеристики лазерной и плазменной резки приведены

Современные лазерные комплексы


Мировая станочная индустрия идет в ногу со временем и предлагает своим потребителям самое разнообразное оборудование для лазерной резки металла. Многокоординатные аппараты призваны заменить шумные и низко производительные механические резаки. Мощность лазера зависит от специфики производства и экономического обоснования выбранного агрегата.

Новое поколение прецизионных обрабатывающих станков с ЧПУ позволяют проводить обработку материалов с точностью до 0,005 мм. Площадь обработки некоторых моделей лазерных установок достигает нескольких квадратных метров. Большим достоинством является минимизация человеческого фактора, заключающаяся в высокой автоматизации производственного процесса.

Геометрия детали задается в программный блок, осуществляющий управление лазером и рабочим столом с заготовкой. Системы настройки фокуса автоматически выбирают оптимальное расстояние для эффективного резания. Специальные теплообменники регулируют температуру лазерной установки, выдавая оператору контрольные данные текущего состояния инструмента.

Лазерный станок оснащается клапанными механизмами для подключения газобаллонного оборудования, чтобы обеспечить подачу вспомогательных газов в рабочую зону. Система дымоулавливания призвана оптимизировать расходы на вытяжную вентиляцию, включая её непосредственно в момент обработки. Область обработки полностью экранируется защитным кожухом для безопасности обслуживающего персонала.


Лазерная резка листового металла на современном оборудовании превращается в легкий процесс задания числовых параметров и получения на выходе готовой детали. Производительность оборудования напрямую зависит от параметров станочного комплекса и квалификации оператора, создающего программный код. Технология лазерной резки металлов гармонично вписывается в концепцию роботизированного производства, призванного полностью освободить человека от тяжелого труда.

Производители предлагают различные типы лазерных станков: универсальные и специализированные. Стоимость первых на порядок больше, но они позволяют производить несколько операций и выпускать детали более сложной формы. Большое количество рыночных предложений дает возможность выбора для заинтересованных потребителей.

Преимущества и недостатки


Специалисты машиностроительных предприятий понимают перспективы использования данной технологии для получения точных деталей с хорошей шероховатостью. Область применения обширна: от простого раскроя листового металлопроката до получения сложных кузовных деталей автомобилей. Явные плюсы лазерной резки металлов сводятся к нескольким резюмирующим аспектам:

  • высокое качество обработанной поверхности;
  • экономия материала;
  • способность работы с хрупкими материалами и тонкими заготовками;
  • возможность получения деталей сложной конфигурации.

Среди минусов: высокая стоимость оборудования и расходных материалов.

Лазерная резка стали и цветных металлов пользуется большим рыночным спросом. Способность быстро выдавать чистовые детали нестандартной формы привлекает в профильные предприятия заказчиков малых партий разнообразных изделий. Лазерные технологии активно используются в декоративном творчестве при изготовлении дизайнерских украшений и оригинальных сувениров.

Решение о применении лазерной обработки должно приниматься с учетом расчета окупаемости оборудования и величине эксплуатационных расходов. В настоящее время такие установки могут себе позволить, в основном, крупные предприятия с большим производственным циклом. С развитием технологии будут снижаться стоимость станков и количество потребляемой энергии, поэтому в будущем лазерные аппараты вытеснят своих конкурентов из сферы резки любых материалов.

Что собой представляет лазерная резка металла: объяснение

Лазерная резка представляет собой высокотехнологичный способ обработки заготовок из металла и стали. Данная методика становится максимально точной и эффективной в тех случаях, когда она производится на специальных станках с ЧПУ (числовое программное управлением).

лазерная резка металла

1. Сам процесс резки: какой он?


Лазерная резка металла — относится к инновационным технологиям. Лист разрезается с помощью прожига лучом лазера. Известно, что направленный пучок света нагревает объект до высоких температур. Лазер является этим пучком и является очень не большим по диаметру при высокой интенсивности излучения.

Когда луч попадает на металл или другую плоскость, то она мгновенно нагревается. Температура становится настолько высокой, что лист металла в точке соприкосновения луча начинает плавиться. Примечательно, что при этом процессе металл, прилегающий к точке плавления лучом, останется неповрежденным.

2. Какие бывают виды лазерной резки металла

Лазерная резка нержавейки происходит при помощи пучка лазерных лучей с малым рассевом. Это наиболее эффективный метод обработки металлов. Его «минус» в том, что требуются большие затраты энергии.

Методов существует два типа:
● с применением кислорода;
● с применением азота.

Главное преимущество азотного вида резки металла заключается в том, что его можно использовать при обработке металлов, которые не терпят окисления. Такая резка подходит для выполнения непростого контура и фигур. Слабая сторона азотной резки – это потребность обязательно работать при высоком давлении.

3. Необходимое оборудование для лазерной резки

Для осуществления такой работы понадобится:

  • излучатель;
  • приспособление, которое будет передавать и формировать лазерный пучок;
  • кодировочная система (именно она настраивает станок для обработки разных металлов);
  • устройство автоуправления.

Лазерная технология металлообработки применяется для:

  1. Раскроя металла.
  2. Изготовления деталей со сложной геометрией.
  3. Производства высокоточных изделий.
  4. Гравировки на поверхности металла.

4. Особенности

  • хорошую производительность (лазерная резка алюминия происходит довольно быстро — специальная техника позволяет в сжатые сроки выполнять заказы);
  • экономность (она проявляется в том, что лазерная резка оставляет наименьший припуск на металлическом листе, благодаря этому расходы металла значительно уменьшаются);
  • позволяет сформировать фигурные края у листа, то есть раскроить его по неровному контуру (можно с уверенностью говорить, что сложность заказа зависит только от требования заказчика, но никак не от возможностей техники, так как они практически безграничны);
  • происходит с высокой точностью (плюс-минус 0,01 миллиметра);
  • лазерная резка предполагает, что срез у листа будет идеально гладким (благодаря этому потребность срезать кромку исчезнет);
  • Отсутствие необходимости создания форм или матриц, что позволяет производить минимальные тиражи изделий.
  • Процесс не является высокозатратным.
  • Высокая мощность излучения позволяет проводить резку с высокой скоростью.

5. Преимущества


Это самая эффективная технология получения металлоизделий для многих сфер производства (строительство, машиностроение).
С помощью лазерной резки можно изготовить металлические конструкции любого назначения и сложности.


Лазерная резка металла имеет свои особенности и преимущества по сравнению с газокислородной и лазерной резкой:

Стоимость лазерной резки определяется для каждого заказа индивидуально, с учётом общего метража и времени порезки, сложности контуров, толщины и типа металла, используемого для выполнения ваших деталей. Чем больше деталей в заказе – тем дешевле каждая из них будет стоить по отдельности.

Способы художественной резки металла

Художественная или фигурная резка металла способна создавать уникальные предметы интерьера и экстерьера. Мы рассмотрим плазменную и лазерную резку.

Художественная резка металла

Художественная резка металла (другое часто встречающееся название — фигурная) — это создание или нанесение на листы материала оригинальных рисунков, надписей или других изобразительных элементов. Она может быть выполнена при помощи специального оборудования, чаще всего станков, позволяющего обрабатывать прочный и твердый материал как сталь и другие металлы и сплавы. Для работы на подобном оборудовании, как правило, не требуются профессиональные навыки, достаточно внимательно изучить инструкцию и приемы обработки.

Виды художественной резки металла


Фигурная резка металла выполняется одним из четырех основных способов, в основе которых лежат следующие технологии:

  • лазерная;
  • плазменная;
  • гидроабразивная;
  • гильотинная.

Каждая из технологий имеет достоинства и недостатки. Наиболее современными и потому прогрессивными и широко используемыми считаются первые две.

Лазерная резка

Художественная резка металла

При лазерной резке по металлу для обработки и раскроя материала используется мощный лазер. Чаще данная технология используется в промышленных масштабах, где лазерный луч управляется специальной компьютерной программой. В результате узконаправленного воздействия происходит быстрое нагревание, плавление, а затем испарение или выдувание материала на участке, подвергаемом резке. При этом технология позволяет получать узкий рез с крайне малой зоной воздействия на обрабатываемую поверхность.

Лазерная резка имеет ряд преимуществ:

  • относительно невысокий уровень затрат (по сравнению с большинством альтернативных технологий, за исключением плазменной резки) при обработке твердых сплавов;
  • возможность работы с хрупкими сплавами, которые легко деформируются;
  • безопасность технологических процессов (при использовании исправного оборудования);
  • отсутствие или крайне малая деформация материала, которая достигается за счет узконаправленной обработки;
  • возможность создания самых разнообразных и сложных контуров;
  • отсутствие необходимости последующей отделки или обработки поверхности.

Благодаря особенностям технологии, с использованием лазерной резки можно выполнять рисунки любой сложности, не требующие при этом дополнительной обработки, так как кромки и края сразу получаются гладкие и ровные.

К недостаткам лазерной резки относится невозможность работы с алюминием и его сплавами с нержавеющей сталью. Это вызвано отражающими свойствами материала. Он может быть обработан только с использованием особо мощного лазерного оборудования.

Художественная лазерная резка металла является качественным способом создать узор с наименьшими затратами материала и времени.

Плазменная резка


Художественная резка металла плазмой выполняется плазменной струей, которая используется как режущий инструмент. Она создается следующим образом:

  • образуется электрическая дуга (между соплом и электродом или между металлом и электродом), зажигание которой происходит за счет импульса или короткого замыкания;
  • из сопла подается газ, находящийся под давлением;
  • под действием электрической дуги он превращается в плазменную струю, температура которой достигает 30 тыс. градусов, а скорость — 1,5 тыс. м/с.

Плазменная резка металла обладает следующими достоинствами:

  • возможность создания рисунков и фигур любой сложности;
  • качественный, чистый и гладкий разрез;
  • возможность обработки всех видов металлов;
  • скорость и производительность используемого оборудования;
  • отсутствие деформации материала;
  • безопасность технологических процессов (если используемое оборудование исправно).

Художественная плазменная резка металла

Художественная плазменная резка может применяться к материалам с ржавчиной или загрязнением, что не приводит к ухудшению качества обработки. По сравнению с резкой при помощи лазерного оборудования, плазменное обладает большей производительностью и диапазоном материалов, которые возможно обработать.

К недостаткам данного способа резки относятся:

  • образуемый на кромке конус, вызванный особенностью технологии;
  • несколько большая, по сравнению с резкой лазером, ширина реза.

Учитывая достоинства и недостатки каждого из описанных методов обработки, практикующие специалисты склоняются к тому, что плазменная резка наиболее востребована, так как имеет лучшее соотношение цена-качество.

Оборудование для художественной резки


Для каждой применяемой при обработке технологии, разработано значительное количество различного оборудования.

Станки для обработки металлов лазером достаточно дороги. Их выпускает множество зарубежных компаний, самыми известные из которых: Trumpf (Германия), ESAB (Швеция), MultiCam (США), Mazak (Япония), Bystronic (Швейцария) и т.д. Несмотря на то, что технология используется два десятка лет, приобрести новое оборудование перечисленных компаний могут позволить себе только относительно крупные промышленные производства.

Тем не менее, необходимо учитывать, что на рынке широко представлено предложение оборудования данной категории, уже бывшее в употреблении, но находящееся в рабочем состоянии. Даже в таком виде, оно практически всегда превосходит многочисленные аналоги китайского производства, которые даже новые не отличаются ни качеством обработки, ни надежностью при эксплуатации.

  • инвенторная плазморезка. Компактная, отличается экономным расходованием энергии, но боле требовательная к стабильности напряжения;
  • транформаторная плазморезка. Более надежная, но требующая значительного расхода энергии, имеет большие размеры.

Стол выполненный при помощи художественной плазменной резки металла

При выборе оборудования для плазменной резки металла учитывают следующие критерии:

  • мощность;
  • производительность работы;
  • материал, из которого выполнена горелка;
  • внешний вид и дизайн агрегата.

Оборудование для плазменной резки крайне широко представлено на современном рынке, поэтому каждый желающий без труда найдет модель, подходящую именно ему.

Заключение

Применение лазерной или плазменной резки металла позволяет получить качественный продукт с относительно небольшими затратами, благодаря использованию современных технологий и последних достижений в области обработки материалов.

Интересно узнать опыт людей, использовавших различные технологии художественной резки металла на практике. Его можно изложить в комментариях под статьей.

Читайте также: