Расчет металла для крепления воздуховодов

Обновлено: 18.05.2024

НОРМАТИВНЫЕ ПОКАЗАТЕЛИ РАСХОДА МАТЕРИАЛОВ

ВЕНТИЛЯЦИЯ И КОНДИЦИОНИРОВАНИЕ ВОЗДУХА

Разработаны инженерами Акимовой З.Н., Моисеевым В.А. (Государственное предприятие "Туластройпроект"), Кузнецовым В.И., Степановым В.А., Шутовым А.А. (Главное управление совершенствования ценообразования и сметного нормирования в строительстве Минстроя России), Кретовой В.П., Петрухиной К.М. (КТИ г.Тула), Карцевой Т.А., Саватеевым Л.А. (ЦНИИЭУС Минстроя России).

Настоящий сборник рекомендован Минстроем России для разработки ресурсных смет и ведомостей потребности в материалах и изделиях в составе проектно-сметной документации на всех уровнях инвестиционного процесса по специфицированной (марочной) номенклатуре. Нормы расхода материалов могут использоваться всеми сторонами независимо от форм собственности и ведомственной подчиненности для определения потребности в ресурсах при выполнении строительных и монтажных работ, расчета плановой и фактической себестоимости указанных работ на основе калькулирования издержек производства в ценах и тарифах того периода, для которого определяется сметная и фактическая стоимость работ.

ТЕХНИЧЕСКАЯ ЧАСТЬ

1. Общие указания

1.1. Настоящий сборник содержит нормативные показатели расхода материалов на работы по устройству систем вентиляции, кондиционирования воздуха и воздушного отопления в жилых, общественных, производственных и вспомогательных зданиях промышленных предприятий независимо от материала стен, перекрытий и перегородок.

Сборник разработан на основе сборника 20 "Вентиляция и кондиционирование воздуха" СНиР-91 (СНиП 4.02-91) с конкретизацией структур строительно-монтажных процессов и выделением операций, предусматривающих расход материалов.

1.2. Нормативные показатели расхода материалов предназначены для определения потребности ресурсов при выполнении работ по устройству систем вентиляции, кондиционирования воздуха и воздушного отопления и расчета плановой и фактической себестоимости указанных работ на основе калькулирования издержек производства в ценах и тарифах того периода, для которого определяется сметная и фактическая стоимость работ. Нормативные показатели применяются всеми участниками инвестиционного процесса независимо от форм собственности и ведомственной принадлежности.

1.3. В основу нормативных показателей положены производственные нормы расхода материалов, определяющие максимально допустимый расход материалов на производство единицы продукции строительного процесса (рабочей операции) заданного качества при уровне техники, технологии, организации строительства и использовании материальных ресурсов, соответствующих требованиям стандартов и нормативных документов.

1.4. Нормами учтены чистый расход и трудноустранимые потери (отходы) материалов, образующиеся в пределах строительной площадки, при выполнении рабочих операций, обусловленных технологией и организацией производства.

1.5. В нормы не включены:

потери и отходы материалов, обусловленные отступлением от регламентированных технологических процессов и режимов работы, нарушением установленных правил организации, производства и приемки работ, применением некачественных материалов;

потери и отходы материалов, образующиеся при транспортировании их от поставщика до приобъектного склада строительной площадки;

расход материалов на ремотно-эксплуатационные и производственно-эксплуатационные нужды в части изготовления, ремонта и эксплуатации оснастки, приспособлений, стендов, средств механизации и т.п.

1.6. Прокладка воздуховодов предусмотрена при наличии готовых сквозных отверстий в стенах, перегородках и перекрытиях. Заделка отверстий после прохода воздуховодов нормами настоящего сборника не предусмотрена.

1.7. Предусмотренная техническими условиями первичная окраска или грунтовка воздуховодов и вентиляционных изделий выполняется заводами-изготовителями.

1.8. Нормы расхода материалов на установку дроссель-клапанов в патрубках, шиберов, сеток в рамках, заглушек питометражных лючков, скоб и креплений учтены в нормах на прокладку воздуховодов. Количество, типы и размеры на указанные изделия принимаются по проектным данным.

1.9. В нормах расхода материалов (табл.20-1 - 20-6) присоединение воздуховодов прямоугольного сечения (на шинах) скобами следует исключить расход болтов с гайками и шайбами и учитывать расход скоб (по проектным данным).

1.10. В нормах расхода материалов (табл.20-23) на установку дефлекторов учтена установка растяжек с талрепами. Количество растяжек и талрепов принимается по проектным данным.

1.11. Нормы расхода материалов в табл.20-31, 20-32, 20-33 на установку вентиляторов радиальных, осевых и крышных распространяются на все типы вентиляторов независимо от материала, из которого они изготовлены (сталь углеродистая, коррозионностойкая или алюминий).

1.12. Нормами расхода материалов в табл.20-31, 20-32, 20-33 на установку вентиляторов не учтен расход виброизоляторов. Расход их следует принимать по нормам табл.20-41 "Установка виброизоляторов".

1.13. Нормами расхода материалов (табл.20-55) не учтен расход гибких вставок. Расход их следует определять по нормам табл.20-29 "Установка вставок".

1.14. Нормами расхода материалов настоящего сборника не учтен расход материалов на установку вентиляторов, фильтров всасывающих, циклонов батарейных, затворов шлюзовых, разгрузителей и других устройств, устанавливаемых в системах аспирации и пневмотранспорта в зернохранилищах, предприятиях по переработке зерна и других производствах. Расход их следует определять по сборникам на монтаж оборудования.

1.15. Отделка вентиляционных коробов с наружной стороны нормами не учтена и должна приниматься по сборнику 15 "Отделочные работы".

2. Правила исчисления объемов работ

2.1. Объем работ по прокладке воздуховодов следует исчислять в м поверхности воздуховодов (прямых участков и фасонных частей).

2.2. Длина воздуховодов измеряется между точками пересечения осевых линий магистралей, согласно проектным данным.

2.3. Поверхность круглых и прямоугольных воздуховодов определяется умножением периметра воздуховода на его длину; конических и пирамидальных - умножением среднего периметра воздуховода на его длину.

2.4. Площадь вентиляторных коробов и камер исчисляется по поверхности уложенных плит без вычета отверстий, занимаемых решетками. Количество жалюзийных решеток принимается по проекту.

01. ВОЗДУХОВОДЫ МЕТАЛЛИЧЕСКИЕ

Таблица 20-1. Прокладка воздуховодов класса Н (нормальные) из листовой стали

Состав работ: 01. Установка и заделка креплений. 02. Установка блоков в проектное положение. 03. Соединение блоков на болтах с постановкой прокладок.

Толщина стали воздуховодов: война экономики и физики

Without a second though subcontractors replace black steel air ducts with galvanized ones, made of thinner metal sheets, as part of the "budget optimization". There is a valid reason why such solution is quite dangerous in the modern architecture. And in general, correct selection of steel thickness is becoming more and more important and. quite not simple.

В рамках «оптимизации бюджета» подрядчики, недолго думая, меняют воздуховоды из черной стали на оцинкованные, выполненные из более тонких листов. Есть веская причина, по которой в современной архитектуре такое решение весьма опасно. Да и вообще правильный выбор толщины стали становится все более актуальным и… совсем непростым.

А. Ю. Иванов, руководитель проектной мастерской ООО «Траст инжиниринг»

К. С. Каргапольцева, главный конструктор ООО «Траст инжиниринг»

А. И. Павельчак, главный инженер проекта ООО «Траст инжиниринг»


Истоки проблемы

Задайте любому профильному проектировщику вопрос о том, какой толщины должны быть воздуховоды противодымной вентиляции, и получите мгновенный и чаще всего неправильный ответ: «Что за глупый вопрос? По СП – 0,8 мм».

Основа такого утверждения лежит намного глубже, чем тема экономии на металле, и берет свое начало в уютных дорогих офисах девелоперов и архитекторов.

Обычно проектирование объектов «большой архитектуры» происходит по одному и тому же отлаженному сценарию. Реализуя концепцию, архитекторы редко привлекают в качестве консультантов инженеров, поэтому вспоминают о технических помещениях, шахтах и воздухозаборниках в самую последнюю очередь, размещая их в самых «неликвидных» и ненужных (для архитекторов) местах.

Все бы ничего, но наряду с красивыми картинками в концепции содержится таблица ТЭПов, в которой декларируется полезная площадь. Скажем, в ней указано, что «на подземной стоянке размещается 600 машиномест». Девелопер интуитивно переводит эти цифры в рубли, а когда на более поздних этапах проектирования призываются на помощь инженеры, которые требуют изменить местоположение, количество и размеры вентиляционных камер в ущерб полезной площади, сделать это становится невозможно. «Вы съедаете четыре машиноместа – это 20 млн руб. Вписывайтесь в то, что есть»!

В дополнение к этому девелоперы и архитекторы настойчиво уменьшают высоту отведенного для коммуникаций запотолочного пространства, заставляя инженеров разгонять воздух и завязывать воздуховоды в узлы, что и приводит к росту сопротивления сети.

Рисунок 1

Исторически сложилось, что в СНиПах и СП рекомендуемые значения толщины стали определялись при условии, что воздуховоды работают при напорах до 1000 Па. Но один пункт СП по вентиляции не является для заказчика настолько весомым, чтобы изменить планировочные решения, пожертвовав полезной площадью. Как следствие, в современных зданиях системы с сопротивлением 1500 Па и более – вполне рядовое явление, которое и заставляет нас погрузиться в размышления.

В этом нелегком деле нам способствуют два пункта СП.

СП 7.13130.2013 «Требования пожарной безо­пасности к системам вентиляции»: «6.13. …толщину листовой стали для воздуховодов следует принимать расчетную, но не менее 0,8 мм».

СП 60.13330 «Отопление, вентиляция и кондиционирование» (в версиях разных годов формулировка пропадает и снова возрождается): «…для воздуховодов прямоугольного сечения, имеющих одну из сторон свыше 2000 мм, и воздуховодов сечением 2000×2000 мм толщину стали следует обосновывать расчетом».

В обоих документах упоминается некий «расчет», однако ссылки на методику его выполнения Вы там не найдете – поэтому инженеры по вентиляции о нем и не знают. А знают о нем специалисты в совсем другой области.

Расчет толщины стали

Решив разобраться с проблемой, мы отправились искать правды у конструкторов. Вот каким путем нам пришлось пройти.

Подобный расчет необходимо было выполнить в три шага.

1. Расчет по прочности, который показывает, при каком давлении воздуховод «лопнет» из-за нехватки прочности стали. Очевидно, что такое событие невероятно – ведь все понимают, что воздуховод перестанет выполнять свою функцию задолго до разрыва, – но проверить было необходимо. Итог расчета: лист стали толщиной 0,55 мм не выдержит напора в 7300 Па. Идем дальше.

Рисунок 2.

2. Расчет по деформациям, который, в свою очередь, должен быть разделен еще на два:

а) расчет по пределу текучести – показывает, при каком давлении листы будут «пластично деформированы», проще говоря – сомнутся, как бумага. В штатном же режиме воздуховоды могут прогибаться, но после отключения вентилятора они должны вернуться в исходное состояние. Воздуховод из стали 0,55 мм не сможет это сделать уже при 2200 Па. Именно то, что воздуховод не схлопывается, монтажники считают достаточным основанием для применения более тонких листов. Но они не учитывают третий, самый важный, расчет;

б) расчет по допустимому прогибу. В этом случае стенки воздуховода возвращаются в исходное положение после отключения системы, но при работе прогибы заужают проходное сечение канала. Что считать допустимым прогибом? Если воздуховод «играет» и «хлопает» – это еще допустимый прогиб или уже нет? Сомневаемся, что решения такого уровня можно принимать «на глазок».

Рисунок 3.

Найти прямого указания в нормативных документах не удалось. Тогда мы начали экстраполировать.

В «Пособии по производству и приемке работ при устройстве систем вентиляции и кондиционирования воздуха (к СНиП 3.05.01-85)» указываются отклонения наружных размеров при производстве воздуховодов. Не совсем идеальное совпадение, но уже что-то. В этом документе мы находим указание, что для прямоугольных воздуховодов допускается неплоскостность стенки воздуховода от 5 до 20 мм в зависимости от сечения (см. табл. 18 Пособия).


В пункте 6.13 СП 7.13130.2013 упоминается допустимое уменьшение площади проходного сечения вентиляционных каналов в строительном исполнении на 3 %. Опять-таки не совсем то, что нужно, но тоже близко.

Данные обоих источников более или менее совпадают, поэтому принимаем максимальные прогибы по таблице Пособия и передаем конструкторам.

Расчет пластины – в нашем случае горизонтального листа, который опирается на два фланца и на две вертикальные стороны воздуховода, – не такая простая процедура, как кажется.

Такие расчеты выполняются в специализированных программах, таких как SolidWorks, с помощью метода конечных элементов, когда пластина разделяется на небольшие участки и к каждому из них применяется целый набор дифференциальных уравнений.

Очевидно, что этот способ неприменим в ежедневной работе проектировщика по вентиляции, ведь изучать или вспоминать основы сопромата, осваивать сложную программу стоимостью 3000 долл. в год, когда нужно лишь выбрать толщину стали для воздуховода, – нерациональная трата времени и сил.

Поэтому мы задались целью найти более простой путь, который и обнаружили в книге Д. В. Вайнберга и Е. Д. Вайнберг «Расчет пластин» (1970) и в труде американских ученых российского происхождения С. П. Тимошенко (профессор Стэнфордского университета, на минуточку) и С. Войновского-Кригера «Пластинки и оболочки» (1966).

Мы сверили результаты расчетов по этой методике с результатами в SolidWorks и получили приемлемую для наших целей сходимость. Считаем, что рабочий инструмент для проектировщика найден.


Испытания

На одном из наших объектов подрядчик намеревался заменить проектные воздуховоды из черной стали толщиной 1,5 мм на оцинкованные из листов толщиной 0,9 мм. Главным козырем подрядчика было применение коротких отрезков воздуховодов длиной 625 мм от фланца до фланца. По его словам: «Мы так всегда делаем, и проблем не бывает».

Для подтверждения своих доводов подрядчик собрал участок воздуховода, к которому подключил тестовый вентилятор, пригласил заказчика и нажал на кнопку «Пуск». Вентилятор натужно гудел в попытках смять воздуховод, что ему, конечно же, не удалось. Это и позволило подрядчику убедить заказчика перейти на оцинкованные воздуховоды – ведь «это позволит увеличить скорость монтажа и снизить стоимость системы». На то, что воздуховод прогнулся, никто внимания не обратил.

Рисунок 4.

Теперь посмотрим на ситуацию со стороны проектировщика.

Во-первых, уже при 735 Па листы продемонстрировали прогиб более 30 мм, что не только превосходит предельные значения по таблице, но и приводит к уменьшению проходного сечения воздуховода более чем на 10 %.

Во-вторых, слабым местом оказались выполненные из стандартной шинорейки фланцы, которые также прогнулись, придавая коробу дополнительный прогиб.

И последнее. Испытания проводились при комнатной температуре, но при 350 °C этот воздуховод дополнительно прогнется еще на 15 %.

С точки зрения проектировщика это испытание полностью провалилось.

Вывод

В современной нестандартной архитектуре невозможно обойтись стандартными решениями по вентиляции, что и приводит к необходимости назначать толщины стали на основании расчетов. По нашему мнению, следует отказаться от практики использовать в сложных системах дымоудаления воздуховоды из оцинкованной стали толщиной 0,9 мм, вернувшись к применению черной стали толщиной не менее 1,5 мм. И вообще, если в проекте применяются вентиляторы с напорной характеристикой более 1000 Па, толщину стали нужно определять исключительно расчетом. Окажутся ли монтажники настолько сообразительными, что начнут устанавливать толстую сталь на самых напорных участках, а по мере удаления от вентилятора переходить на более тонкую, – покажет время.

Все иллюстрации приобретены на фотобанке Depositphotos или предоставлены авторами публикаций.


Расчет металла для крепления воздуховодов


Приветствую всех! Можете посоветовать программу для расчета массы сортовой стали для крепления воздуховодов или какой нить нормативный документ с объяснениями к расчету примерно так: d125= . килограмм стали

У нас считают так (на 1 м.п. воздуховодов):

до 160 мм - 0,33 кг
до 315 мм - 0,75 кг
до 500 мм - 1,80 кг
до 700 мм - 4,00 кг
до 900 мм - 6,50 кг
свыше 900 - 8,80 кг

У меня есть "Расход металла на крепление 1 м.п. трубопровода"
Разработано: ВНИИВПРОЕКТ Киевский филиал

-BuTeK-, а для возжуховодов есть ли зависимость массы крепежа от того мзолированные в/воды или нет?

Есть такая вещь, называемая НПРМ. Для наших разделов - сборники с 16 по 20. Учтены расходники, крепежи и прочее для монтажа.

Спасибо а то я графу расходные материалы в коммерческих предложениях по наитию считал. Теперь хоть обоснование будет!

Очень интересно, действительно откуда цифра получилась?

и у вас эти среднеарифметические цифры как получились?

Может кому-то пригодится
Нашел ссылку на старый материал, но для расчета массы металла для крепления
на стадии проектной документации, например, по серии 5.904-1 будет достаточно.
massa_kreplenii.pdf ( 112,32 килобайт ) Кол-во скачиваний: 4047

Нормативные показатели расхода материалов, Сборник 20, Вентиляция и кондиционирование воздуха, Часть 1, 1995

ТИПОВАЯ ТЕХНОЛОГИЧЕСКАЯ КАРТА НА МОНТАЖ СИСТЕМ ВЕНТИЛЯЦИИ И КОНДИЦИОНИРОВАНИЯ ВОЗДУХА

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

Типовая технологическая карта (ТТК) составлена на один из вариантов производства работ по монтажу воздуховодов систем вентиляции промышленных и общественных зданий.

ТТК предназначена для ознакомления рабочих и инженерно-технических работников с правилами производства работ, а также с целью использования при разработке проектов производства работ, проектов организации строительства, другой организационно-технологической документации.

2. ОБЩИЕ ПОЛОЖЕНИЯ

Системы вентиляции. Современные приемы монтажа воздуховодов

В общем объеме работ по монтажу систем вентиляции, кондиционирования воздуха, пневмотранспорта и аспирации на промышленных объектах - наиболее трудоемким является монтаж воздуховодов.

Большую часть монтажа воздуховодов приходится выполнять на высоте, что осложняет процесс сборки систем вентиляции, особенно, если учесть значительные габаритные размеры и массу деталей вентиляционного оборудования. Это вызывает необходимость применения при монтаже вентиляции специальных машин, механизмов и приспособлений. К ним относятся такие машины, как самоходные краны, автогидроподъемники, подмости выдвижные самоходные, передвижные монтажные площадки и пр.

При устройстве систем вентиляции метод монтажа воздуховодов зависит от особенностей проектирования вентиляционных систем, особенностей строительных конструкций, условий монтажа вентиляции, наличия подъемных механизмов.

Наиболее прогрессивный метод монтажа воздуховодов предусматривает предварительную сборку воздуховодов и укрупненные узлы длиной 25-30 м, составленные из прямых участков воздуховодов и фасонных частей.

Системы вентиляции. Монтаж горизонтальных металлических воздуховодов

При монтаже горизонтальных металлических воздуховодов обязательно соблюдают такую последовательность работ:

- устанавливают средства крепления путем приварки к закладным деталям или с помощью строительно-монтажного пистолета;

- намечают места установки механизмов для подъема узлов воздуховодов и готовят к работе инвентарные леса, подмости, вышки;

- подносят отдельные детали воздуховодов и собирают их в укрупненные узлы на инвентарных подставках, а детали воздуховодов больших сечений - на полу;

- устанавливают хомуты или другие средства крепления.

После промежуточной сборки воздуховодов монтажный узел тропят инвентарными стропами, а на концах узлов привязывают оттяжки из пенькового каната.

Монтажный узел воздуховода поднимают на проектную отметку с инвентарных подмостей автоподъемником или другими механизмами, затем подвешивают его к ранее установленным креплениям. В конце монтажа воздуховод соединяют фланцами с ранее смонтированным участком воздуховода.

В монтажной практике встречаются такие варианты проектных решений прокладки металлических воздуховодов, как прокладка под перекрытием здания, на наружной стене, эстакаде, в межферменном пространстве.

При монтаже воздуховодов следует соблюдать следующие основные требования СНиП 3.05.01-85 "Внутренние санитарно-технические системы".

Способ монтажа воздуховодов выбирают в зависимости от их положения (вертикальное, горизонтальное), характера объекта, местных условий, расположения относительно строительных конструкций (внутри или снаружи здания, у стены, у колонн, в межферменном пространстве, в шахте, на кровле зданий), а также от решений, заложенных в ППР или типовых технологических картах.

Воздуховоды систем вентиляции, кондиционирования воздуха и воздушного отопления следует проектировать в соответствии с требованиями пунктов СНиП 2.04.05-91, предусматривая в проектах технические решения, обеспечивающие ремонтопригодность, взрывопожаробезопасность систем и нормативные требования.

Монтажные положения, способы соединения и крепления воздуховодов

В целях унификации расположения воздуховодов относительно строительных конструкций рекомендуется использовать разработанные ГПИ "Проектпромвентиляция" монтажные положения воздуховодов круглого и прямоугольного сечения. Эти монтажные положения воздуховодов определяются следующими рекомендациями и размерами.

1. Оси воздуховодов должны быть параллельны плоскостям строительных конструкций.

2. Расстояние от оси воздуховода до поверхностей строительных конструкций вычисляют по следующим формулам:

- для воздуховодов круглого сечения

где - максимальный диаметр прокладываемого воздуховода, включая изоляцию, мм;

- для воздуховодов прямоугольного сечения

где - максимальная ширина прокладываемого воздуховода, мм; - расстояние между наружной поверхностью воздуховода и стеной (не менее 50 мм), мм.

При ширине воздуховода 100-400 мм 100 мм, при 400-800 мм 200 мм, при 800-1500 мм 400 мм.

3. Минимально допустимое расстояние от оси воздуховода до наружной поверхности электропроводов определяют по формулам:

4. Минимально допустимое расстояние от оси воздуховода до наружной поверхности трубопроводов находят по формулам:

5. При параллельной прокладке нескольких воздуховодов на одной отметке минимально допустимое расстояние между осями этих воздуховодов вычисляют по формулам:

где и - диаметры воздуховодов, мм; и - размеры сторон воздуховодов прямоугольного сечения, мм.

6. Минимально допустимое расстояние от оси воздуховодов до поверхности потолка определяют по формулам:

7. При прохождении воздуховодов через строительные конструкции фланцевые и другие разъемные соединения воздуховодов размещать на расстоянии не менее 100 мм от поверхности этих конструкций.

Отдельные детали воздуховодов (прямые участки и фасонные части) соединяются между собой в воздухопроводную сеть с помощью фланцевых и бесфланцевых соединений (бандажей, планок, реек, раструбных и других соединений).

Крепление воздуховодов следует выполнять в соответствии с рабочей документацией и требованиями СНиП 3.05.01-85*. Крепление горизонтальных металлических неизолированных воздуховодов (хомуты, подвески, опоры и другие) на бесфланцевом соединении следует устанавливать на следующих расстояниях:

- не более 4 м при диаметрах воздуховода круглого сечения или размерах большей стороны воздуховода прямоугольного сечения менее 400 мм;

- не более 3 м при диаметрах воздуховода круглого сечения или размерах большей стороны воздуховода прямоугольного сечения 400 мм и более.

Крепления горизонтальных металлических неизолированных воздуховодов на фланцевом соединении круглого сечения диаметром до 2000 мм или прямоугольного сечения при размерах большей его стороны до 2000 мм включительно следует устанавливать на расстоянии не более 6 м. Расстояние между креплениями изолированных металлических воздуховодов любых размеров поперечных сечений, а также неизолированных воздуховодов круглого сечения диаметром более 2000 мм или прямоугольного сечения при размерах его большей стороны более 2000 мм должны назначаться рабочей документацией.

Крепления вертикальных металлических воздуховодов следует устанавливать на расстоянии не более 4 м.

Крепления вертикальных металлических воздуховодов внутри помещений с высотой этажа более 4 м и на кровле здания должно назначаться рабочим проектом.

Конструкции соединений деталей воздуховодов будут рассмотрены более подробно в специальной литературе.

Разработка технической документации на изготовление и монтаж воздуховодов

Разработка технической документации на изготовление и монтаж воздуховодов сводится к разработке аксонометрической монтажной схемы системы вентиляции (кондиционирования воздуха), комплектовочных ведомостей деталей воздуховодов и ведомостей серийного производства (шумоглушители, заслонки, воздухораспределители, зонты, дефлекторы и др.), а также чертежей (эскизов) неунифицированных деталей. Перечисленная техническая документация называется монтажным или монтажно-заготовительным (МЗП) проектом.

МЗП нужен для оформления заказа в заготовительном предприятии на изготовление деталей воздуховодов монтируемых систем вентиляции и кондиционирования воздуха, для проверки комплектности заготовок систем, а также для определения места каждой выполненной на заготовительном предприятии детали в системе при ее монтаже. МЗП разрабатывается для каждой системы.

Для разработки МП необходимы следующие исходные данные:

- рабочие чертежи марки ОВ монтируемых систем и архитектурно-строительные чертежи марки АР, планы и разрезы здания (сооружения) в местах расположения монтируемых систем;

- альбомы и другие материалы, в которых содержатся данные по унифицированным деталям и узлам монтируемых систем;

- габаритные и присоединительные размеры оборудования и типовых деталей;

- рекомендуемые монтажные положения сборочных единиц систем;

- нормативные и методические материалы о порядке выполнения и оформления МП систем.

Монтажное проектирование состоит из следующих шагов:

- используя РЧ марки ОВ, вычерчивают аксонометрическую схему системы, производят деление трасс воздуховодов системы на детали, как правило, унифицированные, содержащиеся в альбомах, нормах и других документах;

- выбирают типы соединения деталей между собой и с другими сборочными единицами системы;

- устанавливают места и типы креплений трасс воздуховодов системы;

- разрабатывают эскизы (чертежи) неунифицированных деталей с определением всех необходимых для их изготовления размеров;

Расчет крепления воздуховодов

Тип креплений и расстояние между ними играет большую роль при монтаже воздуховодов. Принимают расстояния между креплениями воздуховодов за стандартами и нормами, или делают расчет, пример которого также можно найти в нормативных документах. Для экономии вашего времени, мы наведем некоторые стандартны и формулы расчёта. И так начнём…

При расчете крепления воздуховодов, важно знать: как и какими элементами выполняется этот крепеж — Детали креплений воздуховодов.


Рекомендации для расчета креплений

  1. Размещение оси воздуховода относительно плоскости строительной конструкции допускается только параллельное.
  1. Максимальная длина расстояния от осей воздуховодов к строительным конструкциям вычисляют за формулой:
  • для круглых воздуховодов

где Dmax — максимальный диаметр воздуховода вместе с изоляционным покрытием, мм;

где bmax — максимальная ширина воздуховода, мм;

х — дистанция между внешней поверхностью воздуховода и стеной (не меньше 50 мм), мм.


3. От внешней поверхности электропроводов наименьшее расстояние к оси воздуховода можно определить за формулой:

  1. Трубопроводы пролаживают так, чтобы минимальное расстояние от внешней стороны трубопровода до оси воздуховода было:
  • для круглых воздуховодов


  1. Минимальное расстояние между осями воздуховодов, при их параллельном прокладыванию на одной отметке, вычисляется за формулой:
  • для круглых воздуховодов

где Dmax и D’max — диаметры воздухопроводов, мм; b’max и bmax — величины сторон воздухопроводов прямоугольного сечения, мм.

  1. Ось воздуховода относительно потолка размещается на минимальном расстоянии, которое находят за формулой:
  • для круглых воздуховодов
  1. Если воздуховоды проходят сквозь строительные конструкции, тогда расстояние от фланцевых соединений к поверхности этих конструкций должно быть более 100 мм.
  1. Монтаж в горизонтальном положении металлических воздуховодов на бесфланцевом соединении, производится при расстояниях между креплениями:
  • не больше 4 м, если диаметр круглого воздуховода или большая сторона прямоугольного воздуховода меньше 400 мм;
  • меньше 3 м если диаметр круглого воздуховода или большая сторона прямоугольного воздуховода 400 мм или больше.
  1. При монтаже металлических воздуховодов на фланцевом соединении в горизонтальном положении, расстояние между креплениями принимается:
  • для неизолированных воздуховодов не больше 6 м, если диаметр круглого воздуховода или большая сторона прямоугольного воздуховода до 2000 мм;
  • для изолированных воздуховодов, если диаметр круглого воздуховода или большая сторона прямоугольного воздуховода больше 2000 мм, принимаются за рабочей документацией.

10. Вертикальные металлические воздуховоды монтируют при расстоянии не больше 4 м между креплениями.

Расстояние между креплениями внутренних вертикальных воздуховодов назначается рабочим проектом.

Крепление воздухопроводов выполняется монтажными бригадами при монтаже системы вентиляции, в соответствии строительно-монтажным нормам и стандартам, с учётом всех требований.

Читайте также: