Расчет металлической стойки пример

Обновлено: 02.07.2024

Помогите если можно в определение расчетной длины металлической колонны коробчатого сечения высотой 9м в плоскости и из плоскости фермы, узлы прилагаю. Одноэтажное , однопролетной здание,24х60м, шаг колонн 4м, связи по фермам в верхнем и нижнем поясе и профлист покрытия создают жесткий диск по покрытию, вертикальные связи по колоннам не предусмотрены.

Ув. Алиса Селезнева!

профлист - это гибкое покрытие.

Сопряжение фермы с колонной - шарнирное
Сопряжение колонны с фундаментом - конструктивный шарнир (хотя на форуме найдутся специалисты, которые будут доказывать, что это жесткое сопряжение)
у Вас избыточное количество шарниров 4 , а надо-бы 3.

горизонтальные связи по покрытию нужны в любом случае
мю = 2 по расчету ф-ла 69, n=0 при шарнирном опирании верхних ригелей
корень(n+0.56)/(n+0.14)=2
кстати эта ф-ла в СНиПе косвенно потверждает возможность существования такой схемы

гиппопо приведите пример конструктивного решения узла базы, которое вы признаете жестким, так как этот вопрос возникает уже черт знает какой раз

Проектирование зданий и сооружений

С позволения гиппопо:
1. для жесткой базы должны иметь место два условия - это крепление не менее четырех анкерных болтов за траверсы колонны и контролируемое натяжение этих самых болтов.
2. Когда два анкерных болта, да еще и цепляются за опорную плиту колонны - чистый шарнир.
3. А когда четыре болта за опорную плиту цепляются (как в данном случае) - то все-равно шарнир, пусть где-то называют такое полужестким узлом, констуктивным шарниром - все равно это шарнир.

Спасибо всем . кто откликнулся, может еще подскажите где установить вертикальные связи по колоннам. что.бы снизить мю до 1?

А когда четыре болта за опорную плиту цепляются (как в данном случае) - то все-равно шарнир, пусть где-то называют такое полужестким узлом, констуктивным шарниром - все равно это шарнир.

3. А когда четыре болта за опорную плиту цепляются (как в данном случае) - то все-равно шарнир, пусть где-то называют такое полужестким узлом, констуктивным шарниром - все равно это шарнир.

За 30 с лишним лет работы в Ростовском отделении ЦНИИПСК наклепали таких баз не одну сотню, наивно полагая такое решение жесткой заделкой. Завтра пройдусь по отделам, всех оповещу чтобы, значить, сухари сушили

P.S. А еще, даже и сказать страшно, серии с такими решениями были. Видно за то и аннулированы.

А Вы не могли бы пояснить, что в Вашем понимании "конструктивный шарнир"? тольк не надо отправлять в книги и т.д. Мне интересна Ваша логика

Что касается жесткости покрытия. выполнено по указаниям серии "Молодечно" , они пишут . что можно считать за жесткий диск. Еще всетаки хотела уточнить, расчетная длина колонн из плоскости ферм то-же " Мю " равно 2?

Да ладно глумиться, в курсе я, что в сериях подобный узел принимается за защемленный, но жесткость такого узла не абсолютна (IMHO).

611611, Посмотрите еще раз на базу. Куда еще более "абсолютно жестче! Помоему это димагогия. Иначе бы сухарей на страну бы ни хватило

Ок, действительно, ушли от темы, тем более, что на форуме это уже не раз обсуждалось.
Признаю, в п.3 нехватает некоторых значительных уточнений.
В конкретном примере, ориентируясь по сечению колонны - узел считаем жестким.
На этом перемещаюсь в наблюдатели.

диск не отменяет гор.связи, в молодеченской серии связи есть

по вертикальным:
связи можно не ставить вообще, тогда мю=2 в 2-х направлениях,
можно поставить в каком-нибудь одном (разумно для двутавров из плоскости рамы, но бывает всякое) тогда в направлении гда есть связь мю=1,
или поставить в двух направлления - оба мю=1 в случае пролета 24 м надо по торцам ставить несущие колонны с 6 м шагом и балки покрытия
1 и 3 вариант хорошо подходит для квадратных и круглых колонн

0,8 - это для стоек , а не для элемента рам

конечно не бывает абсолютной жесткости, даже с траверсой, не бывает и чистого шарнира если только не поставить каток, как в мостах делают,
но если расчитать опорную плиту на момент, то этого достаточно, чтоб считать узел жестким

МОЕ понимание и толкование!
шарнир - узел не воспринимающий и не передающий изгибающий момент
идеальный (чистый) шарнир - редко встречающийся тип узла из-за его простоты(например - одноболтовое соединенние двух элементов)
конструктивный шарнир - наиболее распространенный тип узла, имеющий наряду с жесткостью определенную податливость, которая позволяет не воспринимать и не передавать момент (например- крепление фермы к колонне сбоку, может быть как шарнирным так и жестким- это определяется толщиной фланца, крепящего верхний пояс к колоне)
Если крепление колонны к фундаменту осуществляется через опорную плиту(двумя, четырьмя болтами) - это конструктивный шарнир, во всех примерах расчета опорная плита подбирается из условия прочности. Но при этом все забывают о величине ее деформативности (податливости). Плита никогда не передаст момент на фундамент, в силу малости своей изгибной жесткости, кроме того в плите может возникнуть фибровая текучесть металла, которая исключает передачу момента.
Жесткое сопряжение колонны с фундаментом возможно только при ее крепление анкерными болтами через траверсу, т.е когда Вы создаете плечо для восприятия и передачи момента.

Народная пословица.
Век живи, век учись, дураком помреш. Все знает только всевышний.

Расчет металлической стойки пример

Расчет перемычки из металлических профилей для несущих стен почти ничем не отличается от расчета металлической перемычки для перегородок. Главное отличие - это определение нагрузки на перемычку и выбор правильной схемы расчета. В данном случае перемычка из металлических профилей представляет собой несущую балку над дверным или оконным проемом, поэтому такая перемычка может рассчитываться как балка на шарнирных опорах.

Пример расчета треугольной фермы

При расчете промышленных ферм, перекрывающих большие пролеты и работающих под большими нагрузками, может использоваться до 10-15 видов сечений, точнее профилей с различными параметрами сечения. Это связано с тем, что напряжения в стержнях фермы разные и потому максимально точный подбор сечения при промышленных объемах производства ферм дает ощутимую экономию. В частном же строительстве при изготовлении ферм используются 1-2, максимум 3 вида сечений, не только из экономических, но и из эстетических соображений и потому достаточно рассчитать максимально нагруженные стержни и по этим показателям принимать сечение для остальных стержней фермы. В общем виде это может выглядеть примерно так:

Расчет перемычки из металлических профилей для перегородок

Хорошо, когда при выполнении кладочных работ есть железобетонные перемычки. Инженеры-технологи уже поработали, заложили в перемычки арматуру нужного сечения и указали несущую способность перемычки в маркировке (последняя цифра перед буквой П, чтобы определить нагрузку на погонный метр в килограммах нужно эту цифру умножить на 100). А вот для людей собирающихся делать перемычку из металлических уголков, швеллеров или других прокатных профилей, такого удобства нет. Я тоже не сильно облегчу проблему подбора сечения так как вместо большой всеобъемлющей таблицы приведу

Металлические балки перекрытия

Металлические балки - универсальные балки для перекрытий. По ним можно делать и деревянное и железобетонное и металлическое перекрытие. К тому же расчет металлических балок наиболее прост, по сравнению с железобетонными балками, а надежность металлических балок выше, чем деревянных. В том смысле, что деревянные балки могут со временем сгнить, быть испорченными различными насекомыми, да и вообще учесть возможные деформации, когда перекрытие делается по деревянным балкам из свежепиленного бруса, достаточно сложно.

Расчет профнастила для кровли

При устройстве обычной кровли по обрешетке шагом 50-60 см никакого особенного расчета профнастила как правило не требуется. Даже и так называемый стеновой профилированный лист отлично справляется с нагрузками. Однако бывают случаи, когда хочется сделать шаг обрешетки больше или шаг обрешетки обусловлен конструкцией кровли. В таких случаях проверить несущую способность выбранного профлиста, а заодно проверить его на прогиб совсем не помешает. Если профнастил соответствует требованиям ГОСТ 24045-94, то весь расчет займет не более 10 минут, если в разумных пределах воспользоваться "Рекомендациями по применению стальных профилированных настилов нового сортамента в утепленных покрытиях производственных зданий" 1985 года выпуска.

Расчет пола в гараже

Обычно при строительстве гаражей проблемы, как и из чего сделать пол, не возникает. Но ситуации бывают разные, например человек хочет сделать в гараже подвальное помещение для хранения картошки или релаксации после наездов жены. Пример: строится гараж размерами 6х4 м под автомобиль массой 1500 кг. Перекрытие предполагается сделать из досок, уложенных на металлические профили. В наличии имеются профильные трубы 60х60х3.5 мм и возникает вопрос: можно ли использовать профильные трубы и если да, то через какое расстояние их укладывать?

Изначально ясно, что чем меньше пролет, тем меньше требуется сечение балки, это азы сопромата. Поэтому рациональнее укладывать балки перекрытия по вдоль короткой стороны - 4 м.

Расчет прочности потолочного профиля для гипсокартона

Гипсокартон прочно и безвозвратно вошел в нашу жизнь, причем случилось это намного раньше, чем в стране появились металлические профили для монтажа гипсокартона. Старые строители еще помнят "сухую штукатурку", ныне называемую гипсокартоном, которая использовалась с 50 годов в строительстве, однако широкого распространения из-за недостатков технологии производства сухой штукатурки и проблем с монтажом листов широкого распространения не получила.

В усовершенствованном виде и под маркой компании Knauf гипсокартон пришел к нам из Германии, но главное, что вместе с листовым материалом пришли и оцинкованные профили каркаса. Продуманная до мелочей система монтажа металлического каркаса и крепления гипсокартонных листов к каркасу превратила отделку стен и потолков в простое и быстрое занятие. Теперь и гипсокартонные листы и все виды профилей, включая потолочные, направляющие и стеновые, а также фурнитуру к ним в виде подвесов, соединительных скоб, саморезов, дюбелей для быстрого монтажа и др. производит множество отечественных фирм.

Расчет металлического косоура

Как правило при устройстве лестничных маршей по металлическим косоурам используются уже готовые типовые решения. Тем не менее никогда не помешает проверить несущую способность косоура, который был принят не по расчету, а исходя из конструктивных соображений и наличия в продаже.

Например, продолжим рассмотрение ситуации, с которой столкнулся один из посетителей сайта. Проектируется 2-х маршевая лестничная клетка, размеры в плане 5800х2600 мм. Под каждой лестничной площадкой на продольные кирпичные стены толщиной 380 мм опираются по 2 стальные балки из двутавра высотой h = 270 мм. Сверху на стальные балки опираются металлические косоуры также из двутавра высотой h = 270 мм. Ну и выше монолитная ж/б площадка высотой h = 110 мм. Впрочем, знать толщину площадки для расчета косоура не нужно.

Максимальная нагрузка на стальную колонну

Как правило определение параметров сечения стальных колонн при уже известной нагрузке производится согласно требований существующих нормативных документов, в частности согласно СНиП II-23-81 (1990) "Стальные конструкции" или СП 16.13330.2011, являющегося актиализированной редакцией вышеуказанного СНиПа. Но иногда перед проектировщиком стоит обратная задача, когда сечение и прочие параметры колонны уже известны и нужно узнать, какую максимальную нагрузку такая колонна выдержит.

Конечно же, решение этой обратной задачи большого труда не составляет. Для этого можно воспользоваться все теми же нормативными документами. Вот только знания площади сечения колонны и ее реальной длины будет не достаточно.

Несущая способность металлической балки

Иногда люди сначала делают перекрытие по металлическим балкам, а потом начинают задумываться, какова несущая способность таких металлических балок или проще говоря, какую нагрузку такая балка выдержит?

Ответ на этот вопрос достаточно прост, так как основные параметры поперечного сечения уже известны во всяком случае их несложно определить по соответствующим таблицам. Вот только виды нагрузки и опорных связей могут быть разными, поэтому каждый случай нужно рассматривать отдельно. Начнем с самого распространенного:

Прогиб стальной пластины, шарнирно опертой по контуру

Особенность работы пластин, с шарнирным опиранием по контуру в том, что чем больше прогиб такой пластины, тем больше ее прочность, как ни странно это звучит.

Дело в том, что геометрическая форма поперечных сечений балок, рассчитываемых на линейную нагрузку, остается неизменной (во всяком случае так предполагается для упрощения расчетов), наличие прогиба никак на эту форму не влияет. А вот геометрическая форма поперечных сечений пластин при наличии прогиба изменяется и там, где прогиб максимальный, изменения формы поперечного сечения также максимально.

А раз изменяется геометрическая форма сечения, значит изменяется момент инерции и момент сопротивления сечения. Так как прогиб увеличивает условную высоту рассматриваемого сечения, то это и приводит к увеличению момента инерции и к увеличению момента сопротивления.

Расчет на устойчивость стальной арки

При расчетах на устойчивость помимо всего прочего необходимо знать расчетную длину и предельно допустимую гибкость рассматриваемого элемента, в данном случае стальной арки. Как ни странно, но в ныне действующих нормативных документах, в частности в СНиП II-23-81* (1990) "Стальные конструкции" нет отдельных требований по проверке устойчивости стальных арок.

В связи с этим можно предположить, что для стальных арок такая проверка не требуется. Ведь арка - это не просто сжатый элемент, а криволинейный сжато изгибаемый элемент и сжимающие напряжения в арке возникают не в результате действия продольной нагрузки, а наоборот - горизонтальные опорные реакции возникают в результате действия вертикальной нагрузки. Т.е. даже если арка и прогнется под действием вертикальной нагрузки, то это приведет лишь к увеличению горизонтальной опорной реакции из-за уменьшения стрелы арки, и на прочность арки повлияет незначительно (за счет увеличения нормальных сжимающих напряжений).

Расчет металлической балки под лестничные марши

Недавно один из посетителей обратился ко мне со следующим вопросом:

Добрый вечер Доктор Лом, хочу рассчитать балку под площадкой лестничной клетки, 2х маршевая лестничная клетка размеры в плане 5800х2600, под каждой площадкой на продольные кирпичные стены (380 мм) опираются по 2 стальные балки (двутавр h=270), сверху на стальные балки опираются металлические косоуры (двутавр h=270) ну и выше монолитная ж/б площадка=110 (общая высота 270+270+110=650 мм) если я правильно понимаю на балку приходится распределенная нагрузка от площадки и 4 сосредоточенных силы (по 2 косоура на марш), поправьте если я не прав и подскажите каким примером лучше воспользоваться для расчёта балки?

Расчет стальных однопролетных балок с шарнирными опорами при изгибе согласно СП 16.13330.2011

Расчет стальных балок - изгибаемых элементов - по идее не должен сильно отличаться от расчета балок из любых других материалов. Тем не менее такой расчет имеет свои особенности, и связаны они с тем, что как правило стальные балки - это тонкостенные стержни незамкнутого (двутавры, швеллеры, уголки) или замкнутого профиля (профилированные трубы, обычные трубы).

В связи с этим при расчете стальных балок, работающих на изгиб, помимо обычного и вполне понятного требования к изгибаемым элементам:

а также проверки по касательным напряжениям добавляются еще как минимум два требования. Вот об этих требованиях, сформулированных в нормативных документах, и в частости в СП 16.13330.2011, мы ниже и поговорим, но сначала рассмотрим общие положения расчета стальных балок - изгибаемых элементов.

Примерный текст свода правил дан курсивом. При этом конечно же рассчитывать стальные балки следует, руководствуясь именно нормативными документами, а данная статья, не более чем мое понимание изложенного в нормативных документах.

Примеры расчета металлических конструкций. Общие положения

Металлические конструкции имеют очень высокие технико-экономические качества по сравнению с деревянными, каменными и даже железобетонными конструкциями. В связи с этим металлические конструкции получили очень широкое распростанение в промышленном и гражданском строительстве. В малоэтажном частном строительстве металлические конструкции используются все чаще и чаще.

Использование металлических конструкций позволяет значительно уменьшить массу строительных конструкций, добиться поточного производства и монтажа на стройплощадке, что в свою очередь значительно сокращает сроки строительства.

Область применения металлических конструкций

Сейчас металлические конструкции очень широко используются при строительстве самых разных зданий и сооружений, в частости в малоэтажном частном строительстве.

Причин этому несколько. Металлические конструкции по сравнению с конструкциями из других строительных материалов имеют значительно большую прочность (что обусловнено плотностью металла или удельным весом), большую эффективность соединений элементов металлических конструкций (вожможны как сварка, так и болтовые соединения), более высокую степень индустриализации изготовления и монтажа. Кроме того металлические конструкции на болтовых соединиях могут быть собраны и разобраны достаточно большое количество раз.

Также к достоинствам металлических конструкций следует отнести относительно малый собственный вес конструкций, высокую водо и газонепроницаемость, возможность быстрого монтажа, соответственно быстрого ввода в эксплуатацию зданий.

Расчет металлических колонн

Часто люди, делающие во дворе крытый навес для автомобиля или для защиты от солнца и атмосферных осадков, сечение стоек, на которые будет опираться навес, не рассчитывают, а подбирают сечение на глаз или проконсультировавшись у соседа.

Понять их можно, нагрузки на стойки, в данном случае являющиеся колоннами, не ахти какие большие, объем выполняемых работ тоже не громадный, да и внешний вид колонн иногда намного важнее их несущей способности, поэтому даже если колонны будут сделаны с многократным запасом по прочности - большой беды в этом нет. Тем более, что на поиски простой и внятной информации о расчете сплошных колонн можно потратить бесконечное количество времени без какого-либо результата - разобраться в примерах расчета колонн для производственных зданий с приложением нагрузки в нескольких уровнях без хороших знаний сопромата практически невозможно, а заказ расчета колонны в инженерной организации может свести всю ожидаемую экономию к нулю.

В данном разделе собраны статьи, посвященные теоретическим предпосылками расчета колонн из различных материалов, а также примеры подобных расчетов.

Расчет железобетонной колонны

В частном строительстве железобетонные колонны делаются не так уж и часто, а если и делаются, то как правило это центрально загруженные колонны достаточно большого сечения и относительно малой длины, да и арматуру на колонны жалеть не принято, а потому делаются такие колонны без особенного расчета и прочности им обычно хватает.

Между тем иметь хотя бы общее представление о принципах расчета железобетонных колонн не помешает, а если колонны будут внецентренно нагруженными, то без расчета уже не обойтись. Расчет следует производить согласно требований СНиП 2.03.01-84 или СП 52-101-2003. Приводимые ниже примеры расчета не более, чем примеры.

Расчет деревянной стойки на сжатие. Общие положения.

Деревянные стойки и колонны, не смотря на обилие металлопроката, железобетона и пластика, по-прежнему востребованы. Приятно иметь в саду деревянную беседку или навес во дворе. Как правило сечение элементов таких беседок или навесов подбирается из эстетических (архитектурных) соображений, но просчитать несущие элементы таких сооружений и в частности колонны или стойки на прочность не помешает, так как исторически сложившиеся архитектурные каноны приблизительно одинаковы по всей стране, а вот нагрузка на конструкции может быть ощутимо разной. Это же относится и к опорным стойкам, а также подкосам стропильных систем, да и любых других деревянных ферм.

Все основные требования по расчету деревянных колонн, стоек, подкосов и любых других элементов, работающих на центральное или внецентренное сжатие, можно найти в СНиП II-25-80 (1988). А в данной статье лишь максимально упрощенно изложены основные принципы расчета сжимаемых деревянных элементов, не более того.

Расчет кирпичной колонны на прочность и устойчивость.

Кирпич - достаточно прочный строительный материал, особенно полнотелый, и при строительстве домов в 2-3 этажа стены из рядового керамического кирпича в дополнительных расчетах как правило не нуждаются. Тем не менее ситуации бывают разные, например, планируется двухэтажный дом с террасой на втором этаже. Металлические ригеля, на которые будут опираться также металлические балки перекрытия террасы, планируется опереть на кирпичные колонны из лицевого пустотелого кирпича высотой 3 метра, выше будут еще колонны высотой 3 м, на которые будет опираться кровля:

Расчетная длина колонны (стены)

При расчете колонн или стоек ферм постоянного по длине сечения требуется помимо всего прочего знать расчетную длину колонны или стойки. Знание расчетной длины также необходимо при расчете участка стены на прочность. При этом не имеет решающего значения, из какого материала изготовлена или проектируется колонна, стойка или стена. Ни дерево ни металл ни бетон ни пластик на значение расчетной длины почти не влияют. А вот способ закрепления рассчитываемой конструкции на опорах или на опоре влияет на значение расчетной длины весьма значительно.

Так, например, для колонны с высотой Н с жестким защемлением только на нижней опоре, другими словами, глубоко заделанной в фундамент или крепящейся к фундаменту анкерными болтами, расчетная длина будет в 4 раза больше, чем колонны с такой же высотой Н и жестким защемлением на нижней опоре, но дополнительно имеющей жесткое защемление сверху. Почему? Сейчас попробуем разобраться.

Упрощенный расчет несущей наружной стены из ГСБ

Расчет наружных несущих стен из газосиликатных блоков отличается от расчета внутренних стен из тех же блоков тем, что нагрузка на наружные стены вроде бы значительно меньше, чем на внутренние стены, но при этом нагрузка эта как правило приложена с эксцентриситетом, а значит, на наружные стены дополнительно действует изгибающий момент.

Кроме того при соответствующем воздействии ветровой нагрузки возникает дополнительный изгибающий момент. А еще в наружных стенах как правило делаются оконные проемы, чтобы естественный свет попадал в комнаты. И эти проемы уменьшают несущую способность стен, поэтому расчет с учетом вышеперечисленных факторов, да еще и с учетом требований СТО НААГ 3.1-2013 становится не очень простой задачей, тем более для человека, занимающегося подобным расчетом впервые.

Сначала мы рассмотрим

Расчетные схемы стержней при внецентренном сжатии

Как правило стержни, на которые действуют сжимающие или растягивающие внешние силы, направленные вдоль нейтральной оси стержня, называются колоннами, стойками, подпорами и так далее. Однако с точки зрения теоретической механики они продолжают оставаться стержнями, т.е. такими физическими телами, параметры поперечного сечения которых (ширина и высота сечения) значительно меньше длины. А нормальными называются внешние силы, приложенные по нормали к рассматриваемому поперечному сечению, другими словами - перпендикулярные поперечному сечению.

Нормальные внешние силы могут быть приложены не только по центру тяжести сечения, но и со смещением от центра тяжести. Это смещение называется эксцентриситетом приложения нагрузки. Как правило нормальные силы обозначаются литерой "N", а эксцентриситет - литерой "е". Соответственно в рассматриваемых поперечных сечениях действует помимо нормальных напряжений еще и изгибающий момент М = Ne.

Расчет колонн (форумное)

alex6494: 27 янв 2013, 17:56

подскажите пожалуйста! прочитал вашу статью о расчете колонн и честно говоря растерялся. Я хочу в частном доме заменить одну несущую стену в середине дома на стойки из трубы 76 мм диаметром. нагрузкой на нее будет перекрытие от этой стены до другой несущей наружной стены. не знаю насколько понятно объяснил. длинна заменяемой стены 6м

Расчет кирпичной колонны (форумное)

Renat: 22 апр 2013, 22:04

Здравствуйте, я отправлял Вам письмо, возможно не дошло. Я хотел Вас попросить на примере моих исходных данных помочь в расчете кирпичной колонны 1 этажа 5этажного общественного здания, с сечением колонны 1000х1000мм. из керамзитобетонных блоков (399х199х199). Сетка колонн не симметричная, расстояния по осям до ближайших колонн по четырем сторонам: 3400, 5300, 1500, 7600мм. Плиты монолитные железобетонные оперты по контуру колонны с опиранием на 200мм( т.е. получается как внецентренное нагружение колонны от плиты) высота плиты 150мм. Крыша на колонну не нагружена т.к. на верхнем этаже(пятом) потолочная плита оперта на стены. В кладке колонны предполагается горизонтальное армирование, через каждые три ряда, но как эту арматуру рассчитывать не знаю. Я нигде примера не нашел, поэтому обращаюсь в к Вам за помощью. Ваши пояснения на примерах гораздо больше пользы приносят , чем пояснения преподавателя. Спасибо.

Перевод МПа в кгс/мм2 и стойка с консолями

18.10.2014 Александр

Добрый вечер. Есть вопрос. Если я хочу брать длины в мм и нагрузку в килограммах. То модуль упругости Е= 2.1*10^5 МПа = 2.1*10^6 кгс/мм2 , а также расчетное сопротивление "стали355" R= 355 МПа = 3550 кгс/мм2 .

Расчет стены из газосиликатных блоков на прочность и устойчивость

В последнее время в малоэтажном строительстве все чаще используются различные газобетонные, газосиликатные, пенобетонные и другие блоки с пористой структурой. Преимущества таких блоков по сравнению с традиционными конструкционными материалами для стен, такими как кирпич, камень, тяжелый бетон, казалось бы очевидны: малый объемный вес, низкая теплопроводность, простота обработки. Однако при всем при этом у блоков с пористой структурой есть один существенный недостаток: низкая прочность и это нужно учитывать при возведении стен.

Конечно же прочность пористых блоков напрямую зависит от плотности. Чем выше плотность, тем больше прочность, но это значит, что при большей плотности будет больше вес блока при тех же размерах и повысится теплопроводность.

Плотность блоков можно определить по маркировке. Обычно пористые блоки маркируются литерой D (от английского density), после которой следуют цифры, означающие удельную плотность.

Расчёт стальной колонны

Доброго времени суток, товарищи инженеры!
Имеется стальная колонна сплошного сечения - двутавр колонный, высотой 7,2м.
Вертикальная нагрузка - 30т.,
горизонтальная сосредоточенная нагрузка,
в верхней части колонны - 3т.
Закрепление узлов - шарнирное.
Требуется проверить сечение колонны. У меня в результате расчёта выходит двутавр колонный №26К2.
Просьба проверить сечение, а то возникают смутные сомнения.

Заранее всем огромное спасибо!

горизонтальная сосредоточенная нагрузка. Закрепление узлов - шарнирное.

Нарисуйте, не поленитесь. И поделитесь по поводу сомнений, как считали, с учетом устойчивости или только по прочности?

Уточняю:
Колонна расчитывается как сплошная внецентренно-сжатая (наличие момента от горизонтальной силы, приложенной в верхней части колонны).
Расчёт ведётся по прочности и по устойчивости в плоскости действия момента и из плоскости.

А приведите расчетные значения:

N - продольная сила (30т)
M - момент в плоскости стенки: M=3*7.2=21.6 тм ?
Mx - момент для расчета из плоскости Mx=2/3*21.6=14.4тм ?
Lx - расчетная длина в плоскости действия момента Lx=0.7*7.2=5.04 м ?
Ly - расчетная длина из плоскости момента Ly=7.2 м ?
а также: марка стали или расчетное сопротивления, коэффициент условий работы конструкции.
Да, забыл еще предельную гибкость Я=210-60а ?

Ну типа прочнист

горизонтальная сосредоточенная нагрузка,
в верхней части колонны - 3т.
Закрепление узлов - шарнирное.
Колонна расчитывается как сплошная внецентренно-сжатая (наличие момента от горизонтальной силы, приложенной в верхней части колонны

Так и не понял, если горизонтальная сила приложена в шарнире, то откуда момент и какой он? Если без момента, просто от 30т безо всяких коэффициентов шарнирно опертая по изгибу в обоих направлениях и с вилочным опиранием по кручению, то проходит 25К1. Меньший не проходит по предельной гибкости в слабой плоскости. Уточните про момент.

N - продольная сила 30т
M - момент в плоскости стенки: M=3*7.2=21.6 тм
Mx - момент для расчета из плоскости Mx=2/3*21.6=14.4тм
Lx - расчетная длина в плоскости действия момента Lx=0.7*7.2=5.04 м
Ly - расчетная длина из плоскости момента Ly=7.2 м
Марка стали С 255,
Коэффициент условий работы конструкции = 1.
Предельная гибкость 210-60а

При данных условиях оптимальным сортаментным сечением является I30K1
по АСЧМ или ГОСТ. Можно также применить I40Ш1 (АСЧМ), I55Б1 (ГОСТ/АСЧМ), I35Ш3 (ГОСТ). Предложенное Вами сечение I26K2 не проходит по прочности (G=2703 кг/см2) и устойчивости из плоскости действия момента (G=3276 кг/см2).


Lx - расчетная длина в плоскости действия момента Lx=0.7*7.2=5.04 м

Инженер-проектировщик, по совместительству Йожыг-Оборотень

__________________
Надежда - первый шаг на пути к разочарованию.
Безделье - суть ересь!
non errat, qui nihil facit

"Уточняю про момент: М=21,6 тм. Возникает от ветровой нагрузки. Жду ответа"
Неслабый ветер! А какой шаг колонн? Что за местность?

такой момент в колонне (21 тс) вобще нереален. тем более от ветра. сдается мне ошибка на стадии сбора нагрузок еще.

Момент как момент. Возьмем широкую транспортную галерею, где делать двухветвевую опору нельзя, например, из-за проезда. При реальных размерах 24X3.5 метров (пролет/высота непосредственно галереи) для 3-го ветрового района при высоте опорных стоек 7,2 метра ветровая нагрузка составит W=1.4*0.038*1.4*3.5*24*0,95=5,94 (т) Или по ~3 тонны на одну опору в уровне верха. Вот вам и 21 тм до копейки

Во первых момент (если я правильно понял) для распределенной нагрузки при шарнирном оперании М=ql^2/8!
Во вторых согластно СНиП 2-23-81* Стальные конструкции, коффициент для определения расчетной длины равен 1.
в третьих все фрмулы и расчетные значения даны в томже СНиП - советую прочитать!

N = 30 тн
M точно не правильный хотелось бы посмотреть расчетную схему
Mx для расчета из плоскости будет равен М (см. пункт 5.31 СНиП II-23-81* для стержней с одним защемленным, а другим свободным концом - момент в заделке (но не менее момента в сечении, отстоящем на треть длины стержня от заделки).
Lx соответственно 2L=14.4 м
Ly = L
Предельная гибкость 180-60а

Подходящая для Вас колонна 70Б1, 40Ш2, 30К3 по СТО АСЧМ оптимальное сечение 30К3 только такой сортамент лучше заменить сварным двутавром полки 280х12 стенка 500х5. Можно попробовать ассиметричны двутавр, только тогда надо смотреть расчетную схему.

cделаем что прийдется

1. Как я понял IBZ ты считаешь W - вертовое давление единица измерения которого кПа или тс/м2, при чем тут площадь поверхности сооружения 3,5х24м (в формуле), - соответственно W - это будет уже не давление, а сосредоточенное усилие тс, кН

2. Как уже указал выше момент расчитывается как для распределенной нагрузки M=1/8ql2

И вообще, если ветер будет так давить, сосредоточенно. по 3тс на точку, то почему он давит именно в верх колонны и по центру, может же и где-нибудь сбоку, в пролете - по середине высоты колонны приложиться.

1. Откуда такой вывод ?? W - это именно сосредоточенная сила в уровне верха стоек.

2. Картинку я, честно говоря, не смотрел - возможно это и так. Я просто попытался перевести в цифры, необходимые для подбора сечения, информацию, приведенную в исходном посте. В принципе, она почти непротиворечивая, за исключением, пожалуй, расчетной длины в плоскости действия момента.

Человек-то не просил оценить его данные, а спрашивал пройдет ли сечение 26K2. Только это я и сделал. А что до величины сосредоточенной силы от ветра в уровне верха колонны . Сейчас считаем металлургический завод в Армавире - так там для 3-х пролетной рамы сосредоточенная сила W=9.5 (т). Расположена она на высоте 20,5 метра и состоит от ветра на стропильную ферму (h=3.1 м), парапет (h=1м) и на 3 хитрых фонаря (h=5.3 м). А еще есть и распределенные ветровые нагрузки

Ну я думаю что W все-таки не сосредоточенная сила, из СНиП 2.01.07-85 :
6.3. Нормативное значение средней составляющей ветровой нагрузки wm на высоте z над поверхностью земли следует определять по формуле
Wm=W0*k*c (6)
где w0 - нормативное значение ветрового давления (см. п. 6.4);
k - коэффициент, учитывающий изменение ветрового давления по высоте (см. п. 6.5);
с - аэродинамический коэффициент (см. п. 6.6).

В верхней точке колонны будет небольшая сосредоточенная сила, при наличии ферм, не знаю какие там узлы примыкания стенового ограждения. И сосредоточенная сила будет прикладываться в центре грузовой площади, воспринимающей распределенную нагрузку, если не ошибаюсь это из сопромата.

Сечение колонны для данных условий по расчету получается - 30К2 по СТО АСЧМ 20-93

Расчет металлической колонны

Расчет металлической колонны

Металлические центрально сжатые колонны применяются для поддерживания междуэтажных перекрытий и покрытий зданий, в рабочих площадках, эстакадах и др.

Колонны передают нагрузку от выше лежащей конструкции на фундамент. Расчетная схема одноярусной колонны определяется с учетом способа закрепления ее в фундамент, а также способа прикрепления балок, передающих нагрузку на колонну.

Расчетная длина колонны определяется по формуле:

где, μ — коэффициент расчетной длины, применяемый в зависимости от закрепления стержня.

коэффициент расчетной длины

При шарнирном креплении колонны сверху и внизу μ = 1.

Колонны могут быть два типа: сплошные и сквозные.

Максимально возможная расчетная нагрузка для сквозных колонн из двух швеллеров достигает 2700…3600 кН, для колонн из двутавров — 5500…6000 кН.

При значительных нагрузках сквозные колонны получаются сложными в изготовлении, более рациональными оказываются сплошные колонны, которые проектируются в виде широкополочного двутавра (прокатного или сварного).

В данном примере рассмотрим расчет сквозной колонны, сечение которого составлено из двух швеллеров.

Расчет металлической колонны относительно оси Х-Х

Подбор сечения колонны начинаем с определения требуемой площади поперечного сечения колонны по формуле:

где, N — расчетная нагрузка на колонну, передаваемая балками;

φ — коэффициент продольного изгиба;

Ry = 24 кН/см 2 — расчетное сопротивление стали;

γc — коэффициент условной работы, принимается по табл.1

Коэф. условия работы

Табл. 1 Коэффициент условной работы γc

Так как на колонну опирается две главные балки, то N = 2Qmax

где, Qmax — реакция главной балки.

Коэф. φ принимаем по табл.2 в зависимости от предварительно заданной гибкости стержня колонны λs, которая назначается для сквозные колонн с нагрузкой:

  • до 1500 кН — λs = 90…60;
  • с нагрузкой до 3000 кН — λs = 60…40;
  • для сплошных колонн с нагрузкой до 2500 кН — λs = 100…70;
  • с нагрузкой до 4000 кН — λs = 70…50

Табл. 2 Коэффициенты устойчивости при центральном сжатии φ

Задаемся гибкостью λs = 70, при этом φ = 0,754

Требуемая площадь сечения:

Требуемая площадь сечения

Требуемый радиус инерции сечения:

По требуемой площади сечения и радиусу инерции подбиаем по сортаменту соответствующий прокатный профиль, выписываем действительные характеристики принятого сечения h, Jx, Jy0, ix, iy, z0 для сечения, составленного из двух швеллеров (Рис.3 а) или для двух двутавров (Рис.3 б).

Типы сечения сквозных колонн

Рис. 1 Типы сечения сквозных колонн а — сечение из двух швеллеров б — сечение из двух двутавров

По Aтр = 57,37 см 2 и ix,тр = 11,3 см по сортаменту принимаем два швеллера №27

Тогда А = 2*35,2 = 70,4 см 2 , ix = 10.9 см

Рассчитываем гибкость колонны:

По табл. 2 в зависимости от λx = 72.48 определяем коэффициент продольного изгиба φ = 0,737

Проверяем устойчивость стержня колонны по формуле:

Проверяем устойчивость стержня колонны

Перенапряжение не допускается, недонапряжение допускается не более 5 %.


Принимаем сечение. составленное из двух швеллеров №27 на планках.

Расчет металлической колонны относительно оси Y-Y

Определяем расстояние между ветвями колонны из условия равноустойчивости:

где, λпр — приведенная гибкость относительно оси Y-Y; λх — гибкость относительно оси Х-Х.

Задаемся гибкостью ветви на участке между планками от 30 до 40. Для рядовых планок равна:

где b — ширина сечения сквозной колонны;

Концевые планки принимаются длиной, равной примерно 1,5ls.

Толщина планок назначается из конструктивны условий ts = (1/10…1/25) ls в пределах 6…12 мм. Рис. 2

Схема расположения планок в колонне

Рис. 2 Схема расположения планок в колонне

Ширина сечения сквозной колонны равна:

где bшв — ширина пояса швеллера, а — 100…150 мм из конструктивных соображений.

b ≥ 2*95 + 100 ≈ 300 мм

Максимальное расстояние между планками l0 определяется по принятой гибкости λ1:

где λ1 = 30 — гибкость на участке между планками; i = 2,73 см — радиус инерции швеллера №27, i1 = iy;

Тогда, расчетная длина ветви равна:

Значение lв принимаем кратным высоте колонны.

где Jпл — момент инерции площади поперечного сечения планки;

J1 = 262 см 4 — момент инерции сечения швеллера №27;


Вычисляем гибкость стержня колонны λy. При n > 5 имеем:

Вычисляем гибкость стержня колонны λy

В колоннах с раскосной решеткой (рис.3) имеем:

где

A – площадь сечения всего стержня колонны;
Ap – площадь сечения раскосов в двух плоскостях.

Схема узла раскосной решетки

Рис. 3 Схема узла раскосной решетки

При λ1 = 30 — гибкость ветви (задаем в пределах 30…40);

n — соотношение жесткостей;

γ1 — угол перекоса;

Угол перекоса γ1 определяем по формуле:

где Δp — удлинение раскоса (Рис.3).

При λy определяется радиус инерции сечения стержня колонны

где Jy — момент инерции сечения стержня колонны;

Требуемая ширина сечения равна:

Требуемая ширина сечения

Полученное значение меньше b = 300 мм, следовательно, принимаем b = 30 см.

Определяем гибкость стержня колонны относительно свободной оси:

гибкость стержня колонны относительно свободной оси


Если λпр = λх, то напряжение можно не проверять, колонна устойчива в двух плоскостях.

Если значение λпр отличается от λх, то необходима проверка устойчивости стержня колонны по формуле:

где φy — коэф. принимаем по табл.2 в зависимости от λy.

Расчет планок

Расчет планок сквозной колонны сводится к назначению их размеров и расчету их прикрепления к ветвям.

Расчет планок проводится на условную поперечную силу Qусл:

где А — площадь поперечного сечения стержня колонны.

Поперечная сила, приходящаяся на планку одной грани, равна:

Определяем изгибающий момент и поперечную силу в месте прикрепления планки:

Принимается приварка планок к полкам швеллера угловыми швами с катетом шва kш = 0,7 см.

Тогда прочность по металлу шва, равна:

прочность по металлу шва

меньше прочности по металлу границы сплавления, равной

Следовательно, необходима проверка по металлу шва.

Для проверки определяется площадь сварного шва:

площадь сварного шва

где, lш = ls = 20 см — момент сопротивления шва.

момент сопротивления шва

Определяем напряжение в шве от момента и поперечной силы:

Прочность шва определяем по равнодействующему напряжению:

Прочность шва

Если проверка не выполняется, необходимо увеличить катет шва kш и сделать перерасчет.

p.s.: Если у вас есть знакомые которые ищут расчет строительных конструкций в программе Lira (Лира), Мономах, SCad поделитесь этой статьей в социальных сетях и тем самым поможете им.

Читайте также: