Раскисление металла в сварочной ванне

Обновлено: 01.05.2024

Раскисление сварочной ванны , как в случае рутиловых электродов, производится только с помощью ферромарганца. Уровень механических свойств металла шва примерно такой же, как и при сварке электродами с рутиловым видом покрытия. Количество образующегося сварочного шлака невелико, он легко отделяется даже при сварке многослойных швов в достаточно глубокие разделки. [1]

Раскисление сварочной ванны может в некоторой степени осуществляться углеродом, окисью углерода или водородом, имеющимися в пламени горелки. При этом пламя не только восстанавливает окислы, но и предохраняет расплавленный металл от окисления его кислородом и насыщения азотом воздуха, при растворении которых шов получается хрупким. Нужно иметь в виду, что ацетилено-кислород-ное пламя является слабым восстановителем, так как газы пламени действуют главным образом лишь на поверхности сварочной ванны. Поэтому газовую смесь сварочного пламени по отношению к расплавленному железу правильнее рассматривать не как раскислитель, восстанавливающий окислы железа, а как защитную среду, затрудняющую доступ кислорода к сварочной ванне и замедляющую окисление металла. Это особенно ярко выявляется при сварке высокоуглеродистых и высоколегированных сталей, а также при сварке меди, латуни, бронзы и алюминиевых сплавов, раскисление которых одним пламенем оказывается недостаточным. В таких случаях требуется применять флюсы, которые способствуют удалению окислов из металла. [2]

В определенной степени раскисление сварочной ванны осуществляется окисью углерода или водорода, имеющимся в сварочном пламени горелки, при этом пламя не только восстанавливает окислы, но и защищает расплавленный металл от воздействия кислорода и азота воздуха, при растворении которых в металле шов становится хрупким. Следует отметить, что ацетилено-кислородное пламя по отношению к расплавленному металлу является в основном защитной средой, затрудняющей доступ кислорода к сварочной ванне и замедляющей окисление металла. Особенно это ярко выявляется при сварке высокоуглеродистых сталей, а также при сварке меди, лату-ней, бронз и других цветных металлов и сплавов, раскисление которых одним пламенем недостаточно. В этом случае применяются флюсы, способствующие удалению окислов из металла. [3]

При сварке меди для раскисления сварочной ванны применяют медную проволоку с небольшим содержанием фосфора, который является раскислителем по отношению к окиси меди. [4]

Сварка меди затрудняется большой теплопроводностью и необходимостью в раскислении сварочной ванны . Кроме приведенных в таблице сварочных флюсов применяют для сварки меди и ее сплавов газообразный флюс БМ-2. Сварка меди и медных сплавов с использованием флюса БМ-2 обеспечивают устойчивое состояние сварочной ванны. [5]

Поэтому углекислый газ защищает зону сварки лишь от азотирования, а раскисление сварочной ванны производится путем применения легированной проволоки. Сварка плавящимся электродом в среде защитных газов выполняется только автоматами или полуавтоматами. [6]

При этом значительная часть титана окисляется в процессе плавления электродного покрытия и поэтому в раскислении сварочной ванны участвует лишь небольшая его часть. Положительная роль титана заключается также и в том, что он связывает азот в стойкие нитриды, нерастворимые в жидкой стали, и предупреждает тем самым старение сплава, а также благотворно влияет на процесс кристаллизации, измельчая зерно и улучшая механические свойства. [7]

В результате окисления кремния или марганца их количество в обмазке уменьшается, вследствие чего ухудшается раскисление сварочной ванны , а выделение водорода нспучивает обмазку, делает ее пенистой, пористой и текучей, сползающей с электрода при нанесении ее на стержень. Этот эффект называют иногда скисанием обмазки. После просушки такая пористая обмазка обладает худшей теплопроводностью и обнаруживает видимый эффект тугоплавкости, ухудшая технологические свойства электродов. Для предупреждения скисания обмазки необходимо придать ферросплавам пассивность к раствору жидкого стекла. Эта операция называется пассивированием ферросплавов. [8]

В результате окисления кремния или марганца их количество в обмазке уменьшается, вследствие чего ухудшается раскисление сварочной ванны , а выделение водорода вспучивает обмазку, делает ее пенистой, пористой и текучей, сползающей с электрода при нанесении ее на стержень. Этот эффект называют иногда скисанием обмазки. После просушки такая пористая обмазка обладает худшей теплопроводностью и повышенной тугоплавкостью, что ухудшает технологические свойства электродов. Для предупреждения скисания обмазки необходимо придать ферросплавам пассивность к раствору жидкого стекла. Эта операция называется пассивированием ферросплавов. Пассивирование ферросплавов производится путем создания на поверхности зернышек ферросплавов защитной пленочки. Наиболее просто это достигается созданием искусственно утолщенной пленки окиси кремния. [9]

Для получения требуемых свойств металла шва ( механических, коррозионных, физических) необходимо не только раскисление сварочной ванны , но и введение в нее различных элементов, легирующих металл шва. [10]

При дуговой сварке угольным электродом в качестве присадочного материала служат прутки чугуна, а для защиты и раскисления сварочной ванны применяют флюс, состоящий из технической безводной буры ( NajE O. [11]

При сварке электродной проволокой, не содержащей кремния, под основными флюсами, в составе которых количество кремнезема невелико, раскисление сварочной ванны идет за счет углерода. [12]

Для сварки низколегированных сталей проволокой соответствующего состава может применяться большинство промышленных плавленых флюсов ( табл. 4 и 5), так как концентрация марганца и кремния в низколегированных сталях достаточна для раскисления сварочной ванны и нейтрализации вредного действия серы. [13]

При сварке Си, А1, латуни и других металлов вводят флюсы, в состав которых входят компоненты, способствующие образованию легкоплавких соединений. Раскисление сварочной ванны частично осуществляется углеродом оксидом углерода и водородом, имеющимися в сварочном пламени. [14]

При сварке меди, алюминия, латуни и других металлов вводят флюсы, в состав которых входят компоненты, способствующие образованию легкоплавких соединений. Раскисление сварочной ванны частично осуществляется углеродом, окисью углерода и водородом, имеющимися в сварочном пламени. При этом сварочное пламя не только восстанавливает окислы, но и защищает расплавленный металл от кислорода и азота воздуха. [15]

Раскисление металла сварочной ванны

Восстановление металла сварного соединения требует удале­ния кислорода из сварочной ванны, пока она находится в жид­ком состоянии.

Восстановление или раскисление сварочной ванны можно осу­ществить несколькими путями:

1. Извлечение его более активными металлами — раскисление осаждением.

2. Восстановление металла газовой атмосферой, контактиру­ющей с металлом сварочной ванны.

3. Извлечение оксидов из металлической ванны путем обра­ботки ее шлаками.

Все эти методы реализуются в сварочной технологии, но для различных металлов они будут применяться с разным успехом. Так, для металлов с высокой термодинамической устойчивостью оксидов (титан и алюминий) эти способы восстановления почти не дают эффекта и для получения качественного сварного соеди­нения из этих металлов необходима по возможности полная изо­ляция их от окисляющей атмосферы (инертные газы, вакуум).

Возможность реализации этого метода заключается в том, что металлы очень ограниченно растворяют свои оксиды и свои суль­фиды, а оксиды и сульфиды других металлов практически не растворяют. Тогда возможен процесс:

Здесь ЭО — эндогенное шлаковое включение.

В качестве раскислителей берут активные элементы: марга­нец, кремний, алюминий, титан, редкоземельные металлы (РЗМ), у которых большое сродство к кислороду, зависящее от темпера­туры и концентрации.

Рассмотрим схему диссоциации оксида раскислителя:

Рис. 9.15. Схема окис­ления раскислителя в растворе другого ме-

Схема этого процесса показана на рис. 9.15. Число компонентов в этой системе рав­но трем (Э; О; Me), число степеней свобо­ды — двум: С — 3 + 2 — 3 = 2, т. е.

В константу равновесия будет входить ак­тивность раскислителя в растворе металла: КР — ро2эо = рОгЭО • а,,

Активность аэ будет определяться концентрацией растворен­ного элемента N3, если он не будет давать насыщенных раство­ров при температуре процесса (диаграмма плавкости Me — Э).

Ввиду того что концентрации раскислителей Э обычно малы, то можно принять аэ « где Nэ— мольная доля. Тогда

AG30= AG?,o4- 2/?ПпМэ. (9.23)

Если Nэ — 1, т. е. раскислитель будет свободным, то AGs-— AGa

Если Nэ 0, т. е. концентрация раскислителя стремится к нулю,

то AGso— — °о — будет окисляться вообще не раскислитель, а металл, в котором он растворен.

Так, при сварке хромоникелевой стали 12Х18Н10Т, содержа­щей 0,2—0,3% Ті, в металле шва можно сохранить до 0,10% титана, несмотря на его огромное сродство к кислороду. Найдем условия равновесия процесса (AG|0 и AG%,o известны):

A G = ДОмео — AGso— 0.

Подставляем их значения:

ДОэо== AG%0 + 2/?Ппаэ, (9.25)

AG = AGMeo 4" 27?Лпаме — 2/?7’1памео — АС? эо — 2RTna, s — 0.

При малой концентрации растворов аме стремится к единице, обращая в нуль выражение 2^ЛпаМе. Преобразуем полученную формулу так:

In (МмеоМэ) = (A GSm - A Gao) /(2 RT). (9.26)

Произведение мольных долей можно принять за константу раскисления, так как оно зависит только от температуры:

Кэ= МмеоМэ= е(До&ео-Ас§о)/(2лг) (9.27)

Если AG%o — оо, то AGVo— ДОэо —«- — оо; /Сэ — 0, т. е. металл будет освобожден от кислорода полностью. Если AG„e0 = AG|o, то никакого раскисления не будет. В металлургии чаще выра­жают концентрации в массовых, а не в мольных долях. Формулу для определения константы раскисления можно записать в следу­ющем виде:

Кэ= [% О] [% Э] — f(T). (9.28)

При пересчете мольных долей в массовые изменяются только

значения числовых множителей в уравнении константы равнове­

В общем случае в выражение константы раскисления войдут коэффициенты уравнения реакции как показатели степени при соответствующих концентрациях.

I Раскисление сталей при сварке ведут путем легирования сварочной ванны элементами с большим сродством к кислороду: марганцем, кремнием, титаном, алюминием. Эти элементы вводят или из электродной проволоки, или из покрытия электродов, или из сварочных флюсов в результате обменных реакций/]

Раскисление сталей хорошо изучено и для них существуют уравнения констант равновесия, полученные экспериментально

[FeO] + [Mn] ^ Fe + МпО;

1п/(мп = lg[% О] [% MnJ = - 25 270/7 + 12,55; (9.29)

2 [FeO] + [SiJ ^2Fe + Si02;

IgKs, =lg[%0]2[% Si] =- 48 174/74- 21,63; (9.30)

2 [FeO] + [Ті] 2Fe + Ti02;

lg/Ст. == lg [% O]2[% Ті] =- 30 700/7+ 10,33; (9.31)

3 [FeO] + 2 [Al] ** 3Fe + Ah03; lg/Сді = lg [% O]3[% Al]2 = — 58 715/7 + 16,5. (9.32)

Решения приведенных выше уравнений для постоянной тем­пературы дают гиперболические зависимости между равновес­ными или остаточными массовыми концентрациями кислорода и раскислителя в металле — для уравнения (9.29) простая, а для уравнений (9.30). (9.32) —степенные гиперболы.

Графики этих зависимостей приведены на рис. 9.16. Малая активность марганца как раскислителя создает большие оста­точные концентрации марганца в металле, но они не влияют на механические свойства стали (до 1 %). При высоких температурах и достаточно малых концентрациях Мп остаточная концентрация кислорода превышает предел концентрации насыщенного раство­ра L (см. с. 329 ), которая показана на рис. 9.16 штриховой линией. Несмотря на малую раскислительную активность, марга­нец широко применяется в сварочной металлургии, так как кроме кислорода он извлекает из жидкого металла серу, переводя ее в MnS, плавящийся при 1883 К, поэтому при кристаллизации ме­талла шва влияние легкоплавкой сульфидной эвтектики пони­жается и повышается сопротивление металла образованию горя­чих трещин. Обобщенная диаграмма плавкости Me — S для железа, кобальта и никеля приведена на рис. 9.17, указаны температуры плавления сульфидных эвтектик, лежащих ниже температур кристаллизации стали, никеля и кобальта.

[FeO] + [Fe3C] ^ 4Fe + COf *с=[%0] [%C]=/(7).

Углерод, всегда присутствующий в стали, также можно рас­сматривать как раскислитель:

0,2 0,0 0,6 0,8 1,0 fMn]%

0,010,050,1 0,15 0,2 0,25 0,3 [Si], 7»

0,05 0,10 0,15 0,20 0,25 0,30 [Ті], %

0,05 0,10 0,15 0,20 0,25 0,30 [At ],%

Рис. 9 16 Изотермы раскисления железа марганцем (а), кремнием (б), титаном (в) и алюминием (г)

Реакция между углеродом и оксидом железа эндотермичная и поэтому углерод будет выступать как раскислитель только при высоких температурах — в каплях электродного металла или в сварочной ванне в основании дугового разряда, что приводит к выгоранию углерода при сварке сталей плавлением.

Кремний — более активный раскис­литель стали и для него характерны малые остаточные концентрации кисло­рода в металле. При высоких темпера­турах активность Si как раскислителя уменьшается и он сам может восстанав­ливаться марганцем и даже железом.

Рис. 9.17. Обобщенная диа­грамма плавкости Me—S (массовые доли)

Раскисление чистой меди (МО; Ml) при сварке, несмотря на ее малую химическую активность, осложняется ее физическими свойствами:

1. Высокая температуропроводность меди резко сокращает время пребыва­ния сварочной ванны в жидком состоя­нии и равновесие реакций раскисления не достигается.

2. Высокая электропроводность ме­ди резко снижается от присутствия легирующих компонентов и поэтому остаточные концентрации элемента раскислителя должны быть минималь­ными.

Для раскисления меди приходится применять раскислители высокой химической активности (А1, Ті, Zr и даже редкоземель­ные металлы).

При введении раскислителей через специальные электродные проволоки удается получить плотные и прочные сварные швы с удельным сопротивлением на уровне основного металла (~ 1,7 мк ОмХсм). Сварка медных сплавов — латуни и брон­зы — не предъявляет таких требований к раскислителям.

При сварке титана и алюминия — металлов очень высокой химической активности — раскисление осаждением невозможно, поэтому их сварку осуществляют с внешней защитой от окру­жающей среды — в инертных газах, в вакууме или под флюсами, не содержащими кислородных соединений.

Большой недостаток процесса раскисления осаждением — образование эндогенных неметаллических (шлаковых) включе­ний, образующихся по реакции:

так как оксиды других элементов обычно не растворяются в ос­новном металле. Эти включения представляют собой концентра­торы напряжений и могут снижать как прочностные, так и плас­тические свойства наплавленного металла, особенно если они будут иметь неправильную форму с малыми радиусами кривизны. Чтобы избежать этого, вводят не один раскислитель, а два или более (например, Мп и Si одновременно), с тем чтобы их оксиды взаимно понижали температуры плавления и включения имели глобулярную форму. Исследования содержания кислорода мето­
дом вакуумной экстракции в наплавленном металле показали, что основная масса кислорода заключена в таких шлаковых вклю­чениях.

Металлургические процессы при дуговой сварке плавлением

Особенности металлургии сварки. Применение при сварке мощных высококонцентрированных и высокотемпературных ис­точников теплоты приводит к местному расплавлению основного и присадочного металлов и образованию сварочной ванны. На­грев основного и присадочного металлов до расплавления, их последующее охлаждение и затвердевание сопровождаются Фазо Выми переходами в веществе. При сварке плавлением имеет ме­сто взаимодействие между жидким и твердым металлами, газом и жидким шлаком.

Высокая температура нагрева расплавленного металла, ма­лый объем сварочной ванны и ее перемешивание, значительная скорость процесса, интенсивный отвод теплоты в околошовную зону и окружающую атмосферу, быстрая кристаллизация сва­рочной ванны усложняют получение сварного шва с заданными физико-механическими свойствами, которые предопределяются химическим составом металла шва и его структурой.

Химический состав металла шва и его свойства зависят от состава и доли участия в формировании шва основного и приса­дочного металлов, покрытия и флюсов, степени защиты от возду­ха, приемов ведения и режимов сварки. Металл шва образуется в результате перемешивания в сварочной ванне основного и при­садочного металлов и реакций взаимодействия нагретого метал­ла с газами атмосферы и защитной средой.

Одной из серьезных задач при сварке плавлением является зашита сварочной ванны ст вредного воздействия воздуха І Предотвращение попадания в металл шва вредных веществ (вла­ги, ржавчины, минеральных масел и других загрязнений) Высо­кая температура источника нагрева и объекта теплового воздей­ствия значительно ускоряет физико-химические процессы в зоне сварки. Кислород, азот и водород переходят в атомарное состояНиє и более интенсивно взаимодействуют с расплавленным ме­таллом Кислород является наиболее вредной примесью, и его повышенное содержание в сварном шве приводит к понижению прочности, пластичности, вязкости и антикоррозионных свойств

С железом кислород образует три вида оксидов: FeO, ЇїегОз И РезС>4. Наиболее отрицательное воздействие оказывает FeO, Который хорошо растворяется в расплавленном металле шва, по­вышая его порог хладноломкости — температуру, при которой металл теряет пластичность. Для швов с повышенным содержа­нием FeO Этот порог составляет —(10. 15) °С.

Азот, попадающий в зону сварки главным образом из возду­ха, растворяется в большинстве конструкционных материалов и со многими элементами образует называемые нитридами соеди­нения, снижающие пластичность и повышающие твердость ме­талла шва.

На степень насыщения металла шва азотом оказывают влия­ние режимы сварки и охлаждения. С увеличением силы тока и дугового промежутка содержание азота уменьшается. Медленное охлаждение шва способствует удалению из него газообразного азота.

Водород поступает в зону сварки из атмосферной влаги, а также из влаги, содержащейся в покрытиях электродов, флю­сах, ржавчине на кромках заготовок; он растворяется в боль­шинстве металлов. Железо, никель, кобальт, медь и некоторые другие металлы не вступают в соединение с водородом, а титан, ванадий, тантал, ниобий и другие образуют с ним химические соединения — гидриды.

Атомарный водород, растворяясь в жидком металле, может оставаться в этом состоянии до тех пор, пока температура дости­гает —200 °С. В интервале температур 200. 20 °С водород пере­ходит из атомарного состояния в молекулярное, вызывая при этом значительные внутренние напряжения и, как следствие, образование флокенов — трещин, представляющих собой в изло­ме светлые скруглые пятна, напоминающие хлопья снега. Гидри­ды и флокены снижают прочность, вязкость и пластичность шва.

Для защиты сварочной ванны от вредного воздействия воз­духа используют флюсы, покрытые электроды, порошковую про­волоку При их расплавлении образуется шлак, который, расте­каясь по поверхности металла, играет роль защитного слоя.

Сера попадает в сварочную ванну из флюсов либо из основ­ного или электродного металла; соединяясь с железом, она обра­зует сульфид железа FeS. Соединение последнего с железом при кристаллизации сварочной ванны приводит к возникновению эвтектики (FeS—Fe) С температурой плавления 988 °С Обладая малой растворимостью в жидкой стали, эвтектика группируется в колонии, располагающиеся между зернами и проходящие цикл кристаллизации значительно позже основного металла шва. П( д воздействием внутренних напряжений происходит образование горячих трещин.

Попадающий в сварочную ванну из флюсов или диффундиру­ющий из основного металла фосфор, растворяясь в зернах фер­рита, подобно оксиду железа FeO, Резко повышает температуру перехода в хрупкое состояние — вызывает хладноломкость стали.

Для уменьшения содержания в шве водорода пользуются рядом практических приемов: электроды и флюсы перед сваркой тщательно прокаливают; кромки свариваемых заготовок и сва­рочную проволоку очищают от влаги, грязи и ржавчины; швы выполняют за минимальное число проходов, так как при наложе­нии последующего шва предыдущий шов в момент вторичного расплавления насыщается водородом; при выполнении сварочны операций на открытой площадке обеспечивают защиту зоны сварки от атмосферных осадков; сварку ответственных конструк­ций выполняют только при положительных температурах.

Раскисление, рафинирование и легирование сварочной ванны

Зашита сварочной ванны шлаками не обеспечивает полного пре дохранения металла от насыщения кислородом и образования оксидов. Раскисление металла сварочной ванны произво­дят с целью удаления из нее химическим путем главным образом оксида железа FeO Осуществляют операцию с помощью марган­ца, кремния, титана либо алюминия, которые специально вводят в состав флюсов или покрытий электродов. Раскислителями яв ляются и чистые металлы, и ферросплавы. В результате раскис ления образуются соединения (MnO, Si02, ТЮ2, А1203), нерас творимые в расплавленном металле шва и переходящие в шлак

FeO + Мп ->■ Fe -F- MnO 2FeO-F Si 2Fe -F- Si02 2FeO + Ті -* 2Fe + Ti02 3FeO + 2A1 3Fe -F A1203 Операцию по удалению сульфитов, фосфидов, нитридов и во­дорода, осуществляемую также химическим путем, называю-' рафинированием. Для уменьшения в шве количества серь в покрытия и флюсы вводят марганец и известь СаО, образую шие прочные практически нерастворимые в жидком металле сульфиты, полностью переходящие в шлак:

FeS — Мп — Fe — MnS FeS -f СаО -> FeO — CaS, FeO - r Mn -> Fe + MnO

Фосфор присутствует в стали в виде фосфидов железа Fe3P И Fe2P, Удаляемых при раскислении:

2Fe3P + 5FeO 1 IFe + Р205 2Fe2P + 5FeO 9Fe + P205 Неметаллические включения удаляют из металла шва флюса­ми-растворителями, специально вводимыми в состав флюсов, по­крытий электродов и сердечников порошковой проволоки. Про­дукты их взаимодействия с включениями образуют легкоплавкую механическую смесь, имеющую невысокую плотность. Наиболее часто в качестве флюса-растворителя используют плавиковый шпат CaF2, Который одновременно позволяет уменьшить содер­жание атомарных азота и водорода, растворенных в металле сварочной ванны.

Атомарный фтор, выделяющийся из фтористого кальция CaF2, При высокой температуре вступает в химическую реакцию с атомарным азотом или водородом, образуя фто­ристый азот (фтористый водород), переходящий из металла в шлак или атмосферу.

Рис. 3.3. Схема кристаллизации ме­талла в сварочной ванне:

Легированием Называется введение спе­циальных, так называе­мых легирующих элемен­тов в основной металл с целью получения заданных служебных свойств последнего. При легировании металла сварочной ванны в элек­тродный или присадоч­ный металл вводят хром, никель, ванадий, молибден, вольфрам, титан, бор и др.

/ — неметаллические шлаковые частицы, 2 — зона сплавления, 3 — зона термичес­кого влияния, 4 — столбчатые кристаллы шва

Кристаллизация металла при сварке. Различают первичную и вторичную кристаллизации. Переход металла сварочной ванны из жидкого состояния в твердое называется первичной кри­сталлизацией. Первичная кристаллизация металла свароч­ной ванны начинается от частично оплавленных зерен основного или ранее наплавленного металла и продолжается по нормали от линии расплавления (рис. 3.3)

Вторичная кристаллизация происходит после за­вершения первичной и характеризуется сменой кристаллических решеток (полиморфные превращения) и изменением структуры.

Вторичная кристаллизация характерна только для металлов, ис­пытывающих полиморфные превращения (железо, кобальт, титан, марганец и др.). Решающее влияние на характер протекания п >. диморфных превращений оказывает скорость охлаждения. Чем тоньше слой шлакового покрытия и ниже температура окружаю­щей среды, тем выше скорость охлаждения и вероятность обр. зования внутренних напряжений и трещин.

Строение сварного соединения.

Соединение, выполняем'Є Сваркой плавлением, состоит из четырех зон: наплавленного талла; сплавления; термического влияния; основного метал а (рис. 3.4).

Металлургические процессы при дуговой сварке плавлением

Рис. 3.4. Схема строения сварного соединения при дуговой сваг

А — зона наплавленного металла Б — зона сплавления. В — зона терм 1 ческого влияния, Г — зона основного металла

Зона наплавленного металла представляет Собої Перемешанный в жидком состоянии с основным металлом мате риал электрод г. или присадочной проволоки.

Зона сплавления — это слой основного металла тог шиной О, К..0,4 мм с частично оплавленными зернами. Перегре металла в этой зоне приводит к образованию игольчатой струк­туры отличающейся хрупкостью и пониженной прочностью, и оказывает значительное влияние на свойства соединения в целом.

Зона термического влияния состоит из четырех участков (1. 4), различающихся структурой. Участок перегрева /—область основного металла, нагретого до 1100. ..1450 °С и имеющего крупнозернистую структуру с площадью поверхности зерна, до 12 раз превышающую площадь исходных зерен. Пере­грев снижает механические свойства металла, главным образом пластичность и вязкость. Разрушение сварного соединения обыч но происходит по этому участку, ширина которого достигает 3. 4 мм.

Участок нормализации 2—область основного металла, на­гретого до 900. 1100 °С. Благодаря мелкозернистой структуре механические свойства металла на этом участке выше по сравне­нию с основным металлом. Ширина участка составляет 1. 4 мм

Участок неполной перекристаллизации 3 — область основно­го металла, нагретого до 725. 900 ЭС; состоит из мелких и круп­ных зерен. Неравномерное кристаллическое строение приводит к снижению механических свойств

Участок рекристаллизации 4 — область основного металла, нагретого до 450. 725 °С. При этих температурах происходит вос­становление формы зерен, деформированных в результате пре­дыдущего механического воздействия (при прокатке, штамповке и др.). Ширина зоны термического влияния зависит от удельной энергии е3, введенной в заготовку, и вида сварки (например, при ручной дуговой сварке качественными электродами она состав­ляет 5. 7 мм).

Зона основного металла условно начинается от границы с температурой 450 °С. Структура при температурах ниже 450 °С не отличается от структуры исходного металла, од­нако сталь, нагретая до температур 200. 400 °С, обладает худши­ми механическими свойствами, что объясняется выпадением по границам зерен оксидов и нитридов, ослабляющим связь между зернами. Это явление, вызывающее понижение пластичности и ударной вязкости при одновременном повышении прочности ме­талла, называется синеломкостью (характерны синие цвета по­бежалости) .

Свариваемость металлов и сплавов.

Под свариваемо­стью понимают способность материалов образовывать соедине­ния, механические и другие эксплуатационные свойства которых находятся на уровне основного материала. Свариваемость может быть оценена конкретными количественными характеристиками. В зависимости от назначения и условий эксплуатации конструк­ции определяют: склонность к образованию горячих и холодных трещин в металле шва и зоне термического влияния; склонность к образованию пор; механические свойства; коррозионную стой - кость; структуру; химический состав и другие свойства. Свари­ваемость определяется не только свойствами материала — она зависит от способа и режима сварки, состава сварочных мате­риалов, конструктивного оформления сварного узла, условий эксплуатации изделия. Различают физическую, технологическ ю и эксплуатационную свариваемость.

Физическая свариваемость определяется процессами, проис­ходящими на границе соприкосновения свариваемых заготовок при различных физико-химических методах соединения металлов (физический контакт, химическое взаимодействие, рекристалли­зация и др.).

Под технологической свариваемостью понимают возмож­ность получения сварного соединения определенным способом сварки. Технологическая свариваемость влияет на выбор пара­метров режима сварки и технологическую последовательность выполнения работ.

Под эксплуатационной свариваемостью понимают условия допустимого применения материалов в сварных конструкциях сварных изделиях.

Трещины в сварных соединениях.

В зависимости от темпера туры, при которой они образуются, трещины условно подразде ляют на горячие и холодные. Горячие трещины в сталях возни­кают при температуре, превышающей 1000 °С, а холодные — при более низкой. Трещины являются самым серьезным дефектом сварного соединения, как правило, не подлежащим устранению

Горячие трещины — это хрупкие межкристаллические разрушения металла шва и околошовной зоны, возникающие в твердо-жидком состоянии в процессе кристаллизации, а такж^ при высоких температурах в твердом состоянии. По современным представлениям горячие трещины вызываются действием дву факторов: наличием жидких прослоек между зернами в процессе кристаллизации и деформациями укорочения. При кристаллиз; ции жидкий металл шва последовательно переходит в жидк-. твердое, твердо-жидкое и твердое состояния.

В интервале температур плавления и полного затвердевани происходит миграция примесей и загрязнений в межзеренны пространства. Наличие между зернами жидкой фазы, примесе и загрязнений снижает деформационную способность шва и ок лошовной зоны. Неравномерность линейной и объемной усадо шва и основного металла при охлаждении приводит к возникно­вению внутренних напряжений, являющихся причиной появление микро- и макроскопических трещин как вдоль, так и поперек шва (рис. 3.5).

Причинами образования горячих трещин при сварке являют­ся следующие: большое количество вредных примесей (особенно серы и фосфора) в металле свариваемых заготовок; наличие в

Металлургические процессы при дуговой сварке плавлением

Рис. 3.5. Топография горячих трещин в сварных соединениях:

Л 2 — продольные в зоне термического вли­яния и шве, 3 — поперечные в зоне термиче­ского влияния

Металле шва элементов, образующих химические соединения с низкой температурой затвердевания (хром, молибден, ванадий, вольфрам, титан), нарушающие связь между зернами; жесткое закрепление свариваемых заготовок или повышенная жесткость самого сварного узла, затрудняющие перемещение заготовок при остывании.

Холодные трещины — это локальные меж - или транс­кристаллические разрушения сварных соединений, образующиеся в металле при остывании до относительно невысоких температур (как правило, ниже 200 ЭС) или при вылеживании готового изде­лия. Наиболее часто они поражают околошовную зону и реже — металл шва.

Для предупреждения образования холодных трещин приме­няют следующие технологические приемы: прокаливание флюсов и электродов перед сваркой; предварительный подогрев свари­ваемых заготовок до 250. 450 °С; ведение процесса сварки в ре­жиме с оптимальными параметрами; наложение швов в правиль­ной последовательности; медленное охлаждение изделия после сварки; проведение непосредственно после сварки смягчающего отжига для снятия остаточных сварочных напряжений

Термическим способом широко пользуются для снятия оста­точных сварочных напряжений в изделиях из углеродистых и ле - 3.3. Температура снятия напряжений в стальных сосудах, работающих под давлением, после сварки плавлением

Вредные примеси в металле при сварке и их удаление

Выше (см. гл. 9) уже рассмотрено поведение отдельных компонентов сплавов и их влияние на качество получаемого металла шва. Однако в заключение надо сделать обобщение влияния на качество сварных соединений, так называемых «вредных» примесей, к которым относятся сера, фосфор, кисло­род, азот, водород, а в некоторых случаях н углерод.

Сера — всегда вредная примесь при сварке металлов, так как она образует относительно легкоплавкие эвтектики Me — — MeS, что создаст возможность образования «горячих» или кристаллизационных трещин в металле шва. Ее содержание в металле и в сварочных материалах всегда следует жестко лими­тировать.

Снижение вредного влияния серы достигается ее переводом из сульфидов железа в сульфиды с более высокой температурой плавления (MnS; Гпл=1883 К; CaS; Г„л= 2273 К), с тем чтобы она не могла участвовать в процессе кристаллизации, образуя неметаллические включения, еще в жидком металле сварочной ванны (Гпл=1800 К).

Это достигается при введении в сварочную ванну достаточно­го количества марганца. Кальций вводят в металл ванны в виде силикокальция через электродные покрытия или порошковую проволоку.

Общее снижение содержания серы в металле при сварке возможно при сильно основных шлаках. Бескислородные фто - ридные флюсы также способствуют удалению серы из металла в результате образования летучих фторидов металла (FeF2, FeF3) и твердых сульфидов:

CaFs + FeS-^CaS + FeFst.

Сера удаляется при электрошлаковой сварке и переплаве металлов.

Фосфор — почти всегда вредная примесь в металлах, снижа­ющая их пластичность. Так, при кристаллизации стали фосфор образует ряд соединений с железом (БезР, Fe2P, FeP и FeP2), отличающихся своей хрупкостью, кристаллы которых могут стать зародышами холодных трещин. Содержание фосфора в металле шва при дуговой сварке понизить практически не удает­ся, так как он удаляется в окислительных шлаках, а сварочные шлаки — восстановительные. Концентрация фосфора в шве снижается только при электрошлаковой сварке.

При сварке медных сплавов фосфор не представляет собой вредную примесь, так как он способен раскислять металл, обра­зуя летучий оксид Р2О5:

5Cu20 + 2Cu3P-> 16Cu + P205f.

Кислород — вредная примесь в металле при сварке, снижаю­щая пластические свойства металла, поэтому при всех видах сварки предусматривается процесс раскисления металла шва до допустимой нормы. При сварке металлов высокой активности (Al, Ti, Zr) следует создавать бескислородную атмосферу — аргон, гелий, вакуум, галидные флюсы, так как раскислителей для таких металлов подобрать нельзя.

Однако при сварке конструкционных сталей следует сохра­нять некоторую окисленность металла для уменьшения раство­римости водорода.

Азот поглощается металлом сварочной ванны из атмосферы дугового промежутка, в котором он находится в основном в атомарном и частично в ионизированном состояниях. Раствори­мость азота в жидком металле выше, чем в твердом, и в процессе кристаллизации металла шва он может выделяться в газообраз­ном состоянии, образуя поры.

При кристаллизации металла сварочной ванны азот образует почти со всеми металлами соединения — нитриды различной степени устойчивости (см. рис. 9.33). Особенно устойчивые нитриды образуют ^-металлы IVB, VB, VIB групп периоди­ческой системы. Нитриды железа Fe4N, Fe2N образуют очень хрупкие игольчатые кристаллы, разрушение которых приводит к зарождению холодных трещин (замедленное разрушение). Из промышленных металлов только медь не дает устойчивых нитридов и поэтому ее можно сваривать в атмосфере азота (см. п. 10 3).

Однако азот не всегда представляет собой вредную примесь и в некоторых сталях аустенитного класса содержание его доводят до 0,3. 0,4%.

Водород при сварке — всегда вредная примесь («водородная хрупкость»).

Источники водорода при сварке металлов: 1) водород, по­глощенный металлом из атмосферы дугового разряда, и 2) водо­род, растворенный в основном металле.

Водород, поглощенный из атмосферы дугового разряда, в которой он находится в атомарном и в ионизированном состоя­ниях, при кристаллизации резко понижает свою растворимость и, выделяясь из металла, вызывает возникновение пор и трещин.

Водород, содержащийся в основном металле, может нахо­диться в состоянии твердого раствора внедрения — диффузион­но-подвижный водород, а также находиться в связанном состоя­нии — гидридный водород. Водород в молекулярном состоянии находится в микронесплошностях металла.

Диффузионно-подвижный водород может перемещаться в ме­талле в результате концентрационной или термической диффу­зии, создающейся вследствие градиента температур. Последний вид диффузии описывается уравнением

Большая Энциклопедия Нефти и Газа

Раскисление металла сварочной ванны осуществляется элементами, обладающими большим сродством с кислородом, чем железо. К ним относятся марганец, титан, молибден, хром, кремний, алюминий и углерод. [1]

Раскисление металла сварочной ванны , несмотря на защиту от окружающей среды продуктами сгорания, проводится извлечением закиси меди флюсами или введением раскис-лителей через присадочную проволоку. [2]

Раскисление металла сварочной ванны достигается за счет введения в состав покрытия ферромарганца, ферросилиция, ферроти-тана, алюминия, а также и за счет имеющихся в сварочной проволоке элементов-раскислителей кремния и марганца. Газовая защита обеспечивается диссоциацией мрамора СаСО3 в процессе нагрева и плавления покрытия. Металл, направленный электродами второго типа, достаточно хорошо раскислен. [3]

Флюс предназначен для раскисления металла сварочной ванны и перевода неметаллических включений в шлак. При сварке на поверхности расплавленного металла образуется шлаковая пленка, которая защищает металл от окисления. [4]

Нормальное пламя способствует раскислению металла сварочной ванны и получению качественного сварного шва. Поэтому большинство металлов и сплавов сваривают нормальным пламенем. [5]

Химический способ борьбы с загрязнениями состоит в раскислении металла сварочной ванны , а также в удалении сульфидов, фосфидов, нитридов и водорода при помощи химических реакций. В результате этих реакций образуются новые химические соединения, нерастворимые в железе и переходящие в сварочный шлак. [6]

В большинстве случаев при сварке применяют нормальное пламя, которое способствует раскислению металла сварочной ванны и получению качественного сварного шва. Окислительным называют пламя, в котором Такое пламя сильно окисляет металл сварочной ванны, способствует получению пористости и низкого качества сварного шва. Пламя с избытком ацетилена имеет желтый цвет и удлиненный коптящий факел. Оно науглероживает металл сварочной ванны. [7]

В большинстве случаев при сварке применяют нормальное пламя, которое способствует раскислению металла сварочной ванны и получению качественного сварного шва. [9]

В большинстве случаев при сварке применяется нормальное пламя, которое способствует раскислению металла сварочной ванны и получению качественного сварного шва. [10]

ЭП-439, при применении которой стабильность дуги обеспечивается церием и цирконием, а раскисление металла сварочной ванны - марганцем, кремнием, алюминием и титаном. [11]

Состав покрытия электродов определяется рядом функций, которые он должен выполнять: защита зоны сварки от кислорода и азота воздуха, раскисление металла сварочной ванны , легирование ее нужными компонентами, стабилизация дугового разряда. Производство электродов сводится к нанесению на стальной стержень электродного покрытия определенного состава. Электродные покрытия состоят из целого ряда компонентов, которые условно можно разделить на ионизирующие, шлакообразующие, газообразующие, рас кис лит ели, легирующие и вяжущие. Некоторые компоненты могут выполнять несколько функций одновременно, например мел, который, разлагаясь, выделяет много газа ( СО2), оксид кальция идет на образование шлака, а пары кальция имеют низкий потенциал ионизации и стабилизируют дуговой разряд, СО2 служит газовой защитой. [13]

Наряду с плавлеными флюсами в некоторых случаях применяются неплавленые ( керамические) флюсы, способствующие легированию наплавленного металла при сварке малоуглеродистой проволокой и обеспечивающие интенсивное раскисление металла сварочной ванны . Сварка под керамическими флюсами может осуществляться на постоянном и переменном токе. [14]

При применении аргоно-дуговой, ручной дуговой угольным электродом и газовой сварки медных трубопроводов на поверхность трубы в зоне стыка и на свариваемые кромки наносится флюс для удаления окислов и раскисления металла сварочной ванны . [15]

Читайте также: