Распределение электронов по уровням у металла 2 группы

Обновлено: 16.05.2024

Энергетическое состояние и расположение электронов в оболочках или слоях атомов определяют четырьмя числами, которые называются квантовыми и обычно обозначаются символами n, l, s и j; квантовые числа имеют, прерывный, или дискретный, характер, т. е. могут получать только отдельные, дискретные, значения, целые или полуцелые.

По отношению к квантовым числам п, l, s и j необходимо еще иметь в виду следующее:

1. Квантовое число n называется главным; оно общее для всех электронов, входящих в состав одной и той же электронной оболочки; иначе говоря, каждой из электронных оболочек атома отвечает определенное значение главного квантового числа, а именно: для электронных оболочек К, L, М, N, О, Р и Q главные квантовые числа равны соответственно 1, 2, 3, 4, 5, 6 и 7. В случае одноэлектроиного атома (атом водорода) главное квантовое число служит для определения орбиты электрона и одновременно энергии атома при стационарном состоянии.

2. Квантовое число I называется побочным, или орбитальным, и определяет момент количества движения электрона, вызванного его вращением вокруг атомного ядра. Побочное квантовое число может иметь значения 0, 1, 2, 3, . . . , а в общем виде обозначается символами s, р, d, f, . . . Электроны, имеющие одно и то же побочное квантовое число, образуют подгруппу, или, как часто говорят, находятся на одном и том же энергетическом подуровне.

3. Квантовое число s часто называют спиновым, так как оно определяет момент количества движения электрона, вызванного его собственным вращением (момент спина).

4. Квантовое число j называется внутренним и определяется суммой векторов l и s.

Распределение электронов в атомах (атомных оболочках) следует также некоторым общим положениям, из них необходимо указать:

1. Принцип Паули, согласно которому в атоме не может быть больше одного электрона с одинаковыми значениями всех четырех квантовых чисел, т. е. два электрона в одном и том же атоме должны различаться между собой значением хотя бы одного квантового числа.

2. Принцип энергетический, согласно которому в основном состоянии атома все его электроны должны находиться на наиболее низких энергетических уровнях.

3. Принцип количества (числа) электронов в оболочках, согласно которому предельное число электронов в оболочках не может превышать 2n 2 , где n — главное квантовое число данной оболочки. Если число электронов в некоторой оболочке достигает предельного значения, то оболочка оказывается заполненной и в следующих элементах начинает формироваться новая электронная оболочка.

В соответствии с тем, что было сказано, в таблице ниже даны: 1) буквенные обозначения электронных оболочек; 2) соответствующие значения главных и побочных квантовых чисел; 3) символы подгрупп; 4) теоретически рассчитанное наибольшее число электронов как в отдельных подгруппах, так и в оболочках в целом. Необходимо указать, что в оболочках К, L и М число электронов и их распределение по подгруппам, определенные из опыта, вполне отвечают теоретическим вычислениям, но в следующих оболочках наблюдаются значительные расхождения: число электронов в подгруппе f достигает предельного значения только в оболочке N, в следующей оболочке оно уменьшается, а затем исчезает и вся подгруппа f.

Построение структурно-электронной формулы элементов B-подгрупп

Элементы побочной подгруппы еще называют d-элементами или переходными металлами. Они отличаются тем, что их валентные электроны расположены не только на s-подуровне внешнего энергетического слоя, но и на d-подуровне предвнешнего слоя. Валентными электронами называют те, что способны участвовать в образовании химической связи.

Что бы построить модель атома такого элемента, нам необходимо знать одно важное отличие этих элементов от элементов А-подгрупп: если у элементов главных (А) подгрупп количество электронов на внешнем уровне определяется по номеру группы (например, у лития один электрон на внешнем слое, у бериллия – два, у бора – три и так далее), то у элементов побочных подгрупп это количество не зависит от номера группы.

Для определения количества электронов на внешнем уровне, легче всего просто запомнить несколько распространённых примеров (они выделены красным):

Количество электронов на внешнем уровне

Cu, Ag, Au, Nb, Cr, Mo, Ru, Rh, Pt, Ds

Все остальные элементы B-подгрупп, кроме палладия.

Остальные правила работают как с элементами А-подгрупп, так и с элементами Б-подгрупп. Например, заряд ядра определяется по порядковому номеру элемента, количество энергетических уровней по расположению в определенном периоде.

Рассмотрим конфигурацию нескольких элементов побочных подгрупп:

На рисунке показано, что несмотря на положение элементов в определенных подгруппах, количество электронов у них не равно этой группе.

Для сравнения изучим еще один рисунок, на котором мы можем сравнить элементы А- и Б-подгрупп одной и той же группы:

На этом рисунке мы снова можем убедиться, что элементы, находящиеся в одной и той же группе. В одном и том же периоде, но в разных подгруппах имеют разное строение.

Что бы разобраться, почему эти элементы называются d-элементами, разберем структурно-электронные формулы некоторых из них, например, хрома, железа и марганца, строение которых описывалось выше. Как уже было сказано, у этих элементов валентными являются не только внешний. Но и предвнешний уровень.

3s 2 3p 6 3d 5 4s 1

3s 2 3p 6 3d 6 4s 2

3s 2 3p 6 3d 5 4s 2

d-орбиталь содержит неспаренные электроны, которые могут вступать в химическую связь. Поэтому высшая валентность хрома равна не двум (по количеству электронов на внешнем уровне), а шести – по общему количеству электронов внешнего энергетического уровня и d-электронов предвнешнего уровня.

Вы можете встретить немного измененный порядок заполнения орбиталей, например, у марганца: 3s 2 3p 6 4s 2 3d 5 . s- и d-подуровень поменялись местами, в таких формулах учтен уровень энергии орбиталей: чем меньшей энергией обладает орбиталь, тем быстрее она будет заполняться электронами.

Правильнее будет заполнять электроны в следующем порядке:

1s → 2s → 2p → 3s → 3p → 4s → 3d → 4p → 5s → 4d → 5p…

Тренировочные задания ЕГЭ

Задание 1.

Для выполнения заданий 1 – 3 используйте следующий ряд химических элементов:

Ответом в заданиях 1 – 3 является последовательность цифр, под которыми указаны химические элементы в данном ряду.

Определите, атомы каких из указанных элементов имеют электронную конфигурацию внешнего энергетического уровня ns 2 (n-1) d 10

Решение задания:

Для начала разберемся со страшной формулой ns 2 (n-1) d 10 . Попробуем заменить переменную n на любое число, например, на 4, тогда мы получим 4s 2 (4-1)d 10 или 4s 2 3d 10 . Эта формула отображает порядок распределения электронов согласно их энергии. Если для нас такой порядок непривычен, то мы можем поменять его местами, тогда получим 3d 10 4s 2 . Получившаяся формула приблизительна, вместо нее может быть 4d 10 5s 2 или 5d 10 6s 2 , но по этой формуле мы понимаем, что должны искать элемент с двумя электронами на внешнем энергетическом уровне (это приводит к тому, что медь выбывает из списка претендентов на правильный ответ), и элемент должен иметь d-орбиталь на внешнем уровне (кальций и стронций выпадают)

Верный ответ: 23

Задание 2.

Определите, атомы каких из указанных в ряду элементов не имеют на внешнем энергетическом уровне неспаренных электронов.

Решение: построим электронные конфигурации данных атомов.

Сурьма – Sb, элемент главной подгруппы пятой группы (А), у таких элементов валентные электроны находятся только на внешнем слое: 5s 2 5p 3 , что соответствует структурно-электронной формуле:

Элемент имеет три неспаренных p-электрона.

Последовательность расположения электронов на энергетических уровнях выражается следующим рядом чисел:

Распределение электронов по подуровням. Разбор первого задания ЕГЭ.

Напомню, что любой энергетический уровень можно разделить на орбитали (подуровни) – области вокруг ядра, в которых с наибольшей вероятностью встречаются определенные электроны. Их распределение не случайно, а согласованно с их энергией.

Для начала, определим максимальное количество электронов на подуровнях:

Каждый уровень начинается с s-подуровня, далее, если количество электронов достаточно большое, заполняется p-подуровень, затем d- и f-орбитали.

Для лучшего понимания распределения электронов начните с построения планетарной модели атома. Рассмотрим на примере брома.

Начинаем запись структуры электронной оболочки атома с обозначения номера уровня, к которому принадлежат электроны (на рисунке обозначено красной стрелкой).

Затем называем подуровень (s, p, d, f).

Определяем количество электронов на этом уровне (зеленая стрелка на рисунке).

На первом уровне всего два электрона, оба поместились на s-подуровне, раз больше электронов на внутренней оболочке нет, может приступить с следующим уровням по тому же алгоритму:

Электронно-структурная формула брома может быть записана двумя распространенными методами

Способ 1. Каждый последующий уровень имеет большую энергию и записывается выше:

Способ 2. Более компактный, заключается в записи электронов каждого уровня с новой строки:

По электронно-структурной формуле легко понять, что у брома на внешнем уровне есть один неспаренный р-электрон и ему, до завершения внешнего энергетического уровня, не хватает одного электрона.

Попробуем применить полученные знания в решении первых заданий ЕГЭ по химии:

Задание 1: определите, атомы каких из указанных в ряду элементов имеют три неспаренных электрона в основном состоянии.

Решение: у элементов А-подгрупп неспаренные электроны могут находиться только на внешнем уровне, поэтому далее будем рассматривать только его.

Верный ответ: 14

Обратите внимание на электронно-структурную формулу фтора и мышьяка. Их внешний энергетический уровень можно было записать и другим, к сожалению, неверным способом:

Всё, потому что есть еще одно правило, которым нужно пользоваться при построении структуры атома – правило Гунда (Хунда), которое определяет порядок заполнения электронами внутри орбитали таким образом, чтобы было заполнено как можно больше ячеек.

Рассмотрим еще одно задание:

Задание 2: определите, атомам каких из указанных элементов до завершения внешнего энергетического уровня не хватает одного электрона.

Решение: для решения данного задания нет необходимости составлять структурные формулы, достаточно знать, что большинства элементов на внешнем уровне наиболее выгодным количеством электронов будет восемь (легко запомнить, так как количество электронов на внешнем уровне определяется по номеру группы, всего групп в ПС восемь, значит, максимум электронов на внешнем слое тоже восемь).

Таким образом, калий, находящийся в первой группе, имеет всего один электрон на внешнем уровне, до завершения внешней электронной оболочки ему не хватает целых семь электронов.

Фтор – элемент седьмой подгруппы, у него семь электронов на внешнем уровне, до «идеальной» оболочки ему не хватает одного электрона. Это первый правильный ответ.

Литий, как и калий относится к первой группе. Ему не хватает целых семь электронов.

Хлор, как же как и фтор, относится к седьмой группе, ему не хватает одного электрона до восьмиэлектронного внешнего энергетического уровня. Это наш второй верный ответ.

Алюминий – элемент третьей группы. До завершения внешнего слоя ему не хватает пять электронов.

Верный ответ: 24

Таким образом всем элементам IА-подгруппы не хватает семи электронов, IIА – шести, IIIА – пяти, IVА – четырех и так далее. Это может вам заметно сэкономить время на экзамене.

Решение задания ЕГЭ химия

Задание 3: определите, атомам каких из указанных элементов до завершения внешнего энергетического уровня не хватает трёх электронов.

Решение: исходя из вышенаписанного, трех электронов до завершения внешнего энергетического уровня может не хватать элементам пятой группы Периодической системы. Это мышьяк и висмут.

ТАБЛИЦА МЕНДЕЛЕЕВА - периодическая система химических элементов

Таблица Менделеева (периодическая система химических элементов) - это такая таблица, в которой классифицируются химические элементы по различным свойствам в зависимости от заряда их атомного ядра. Таблица является графическим изображением периодического закона, который открыл Дмитрий Иванович Менделеев в 1869 году. Изначальный вариант этой таблицы 1869 - 1871 гг. и устанавливал зависимость свойств элементов от их атомной массы. На данный момент элементы сводятся в двумерную таблицу, в которой каждый столбец - это группа, определяющая основные физико-химические свойства, а строки - это периоды, схожие друг с другом. Наиболее распространены 2 формы таблицы: короткая и длинная.

ТАБЛИЦА МЕНДЕЛЕЕВА

element

Периодическая таблица Менделеева в классическом варианте (или короткая форма), основана на параллелизме степеней окисления химических элементов главных и побочных подгрупп. В каждой ячейке таблицы указан символ элемента, порядковый номер, относительная атомная масса, и название элемента.

Порядковый номер элемента - это число равное числу протонов в ядре атома и числу электронов, которые вращаются вокруг него.

Чтобы посмотреть все свойства конкретного химического элемента нужно перейти по ссылке нажав на символ элемента в таблице.

Периодическая система химических элементов Д.И. Менделеева

Расшифровка периодической системы химических элементов Д.И. Менделеева:

Номер группы (для большинства элементов) – общее число валентных электронов (электронов внешнего энергетического уровня, а также предпоследнего d-подуровня, если он застроен не полностью).

Число элементов в периоде – максимальная емкость соответствующего энергетического уровня:

2 элемента (1s 2 )

18 элементов (5s 2 4d 10 5p 6 )

8 элементов (2s 2 2p 6 )

32 элемента (6s 2 4f 14 5d 10 6p 6 )

8 элементов (3s 2 3p 6 )

18 элементов (4s 2 3d 10 4p 6 )

Построение периодов – в начале: два s-элемента, в конце: шесть р- элементов. В четвертом и пятом периодах между ними помещается по десять d-элементов, а в шестом и седьмом к ним добавляются четырнадцать f-элементов (формы электронных орбиталей).

В периоде – свойства химических элементов различаются между собой, т.к. электронные конфигурации валентных электронов их атомов различны.

В подгруппе – свойства элементов сходны между собой, т.к. электронные конфигурации валентных электронов их атомов сходны.

Причина периодичности свойств химических элементов заключается в периодической повторяемости сходных электронных конфигураций внешних энергетических уровней.

Формы электронных орбиталей (электронные семейства)

Классификация химических элементов по электронным конфигура­циям их атомов (электронные орбитали)

внешний (n) s-подуровень

внешний (n) р-подуровень

предвнешний (n–1 ) d-подуровень

(n-2)f 1–14 (n-1)d 1–10 ns 1–2

третий снаружи (n–2) f-подуровень

Графическое изображение орбиталей

Свойства элементов таблицы Менделеева

Металлы – элементы главных подгрупп с числом валентных электронов от 1 до 3 (подгруппы IA, IIA, IIIА, кроме элемента бора), а также германий, олово, свинец, сурьма, висмут и полоний.

Неметаллы – бор и элементы главных подгрупп с числом валентных электронов от 4 до 7 (подгруппы IVA, VA, VIA, VIIA) кроме германия, олова, свинца, сурьмы, висмута и полония.

Переходные элементы – элементы побочных подгрупп (IB-VIIB); в виде простых веществ ведут себя как металлы.

Благородные газы – элементы подгруппы VIIIA, полностью застро­енные энергетические подуровни s 2 p 6 , для гелия s 2 .

Галогены – элементы подгруппы VII(a) таблицы Менделеева, реагируют со всеми простыми веществами, кроме некот. неметаллов, являются энергичными окислителями, к ним относят F, Cl, Br, I, At, Ts.

Лантанойды – 15 элементов III группы 6-го периода, металлы с атомными номерами 57–71. Все они имеют стабильные изотопы, кроме прометия.

Актинойды – 15 радиоактивных элементов III группы 7-го периода с атомными номерами 89–103.

Свойства элементов в подгруппах закономерно изменяются сверху вниз:

В периодах с увеличением порядкового номера элемента прослеживается следующая закономерность:

Все элементы таблицы Менделеева, исключая гелий, неон и аргон, образуют кислородные соединения, которые изображены общими формулами под каждой группой в порядке возрастания степени окисления элементов: R2O, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4, где R - обозначает элемент группы.

Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения: RH4, RH3, RH2, RH. Соединения RH4 имеют нейтральный характер; RH3 – слабоосновной; RH2 – слабокислый; RH – сильнокислый характер.

История открытия периодического закона Менделеевым Д.И.

Самый важный вклад в систематизацию химических элементов внёс русский выдающийся химик Дмитрий Иванович Менделеев, автор труда "Основы химии", который в марте 1869 года представил Русскому химическому обществу (РХО) периодический закон химических элементов, изложенный в нескольких основных положениях.

В 1871 году Менделеев в итоговой статье «Периодическая законность химических элементов» дал формулировку Периодического закона: "Свойства элементов, а потому и свойства образуемых ими простых и сложных тел стоят в периодической зависимости от атомного веса". Тогда же Менделеев придал своей периодической таблице классический вид (короткая таблица, смотрите ниже).

таблица Менделеева 1871 года классический вид

В современном изложении периодический закон химических элементов звучит так: "Свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера)."

Периодическая таблица элементов Менделеева длинная форма

Длинная форма таблицы Менделеева (или длиннопериодная форма) состоит из 18 групп с лева на право от щелочных металов до благородных газов. считается официальной версией с 1989 года.

Длинная форма периодической таблицы Менделеева

Таблица Менделеева для печати в хорошем качестве скачать

Вы можете скачать таблицу Менделеева на выбор короткую или длинную форму в цветном и черно-белом цвете, для этого откройте по ссылке ниже изображение и сохраните его себе на компьютер.

____________

Источник информации:

1. Большой химический справочник / А.И.Волков, — М.: 2005.

2. Большая энциклопедия химических элементов. Периодическая таблица Менделеева / И.А.Леенсон. — Москва : 2014.

Читайте также: