Щелочные металлы реферат по химии

Обновлено: 19.05.2024

В группу самых распространенных органических веществ, входят такие металлы, как щелочные. Все они имеют схожее строение атомов, и даже определенные одинаковые свойства. К группе таких металлов относится литий, калий, цезий, натрий, рубидий и франций. Все они находятся в природе, вот только франций был искусственно созданный человеком. Благодаря своей особенности, которая позволяет после взаимодействия с водой образовывать щелочи, эти металлы стали называться щелочными. Щелочные металлы могут быть в составе других минералов. Это может быть морская вода, каменная соль, полевой шпат и даже селитра. Щелочные металлы достаточно мягкие материалы. Они поддаются резке и сгибанию. Внешние их особенности так же индивидуальны. Почти все имеют блестящий белый цвет, отличается только цезий. У него по сравнению с остальными, наблюдается золотистый оттенок. Щелочные металлы достаточно легкие. Некоторые из них легче воды и керосина. Многие из них играют важную роль в организме человека и его процессах. Натрий и калий способствуют поддержке кислотно-щелочного баланса. Кроме этого в природе так же нельзя обойтись без применения калия, он способствует развитию растений. Если не брать во внимание натрий и калий, то организм человека богат на такой металл как рубидий. Он есть в легких, в крови, костях и даже мозге человека. Именно рубидий отвечает за противовоспалительный и противоаллергический процесс в организме. Рубидий способствует укреплению иммунитета, а кроме этого, несет положительное влияние на состав крови.

При исследовании и работе со всеми щелочными материалами следует помнить о самых главных мерах предосторожности. Они легко воспламеняемы и взрывоопасны. Только пройдя специальный инструктаж по технике безопасности, человека могут допустить к работе со щелочными металлами. Для этого выдается специальная маска и очки. Контакт многих щелочей может вызвать непредсказуемые последствия. Щелочь вызывает не только ожоги на коже, но иногда и слепоту. Люди научились хранить щелочные металлы в специальных герметических емкостях. Обязательно разместив их под хорошим слоем вазелина или керосина. Огромной и кропотливой работы заслуживает утилизация щелочей, которая требует к своему выполнению огромных сил и знаний. Где же применяют и используют щелочные металлы. В первую очередь они нашли хорошее применение в фотоэлементах, в источниках тока, изготовления снотворного, и даже лекарства. Можно сказать, что все эти материалы, так или иначе, используются человеком для своих целей. Они стали незаменимым помощником не только в промышленной сфере, но еще и в быту. Самый яркий пример использования человеком щелочного металла - является поваренная соль и селитра.

Наверное, каждому известно, что в периодической таблице преобладают больше металлы. Кроме этого один металл очень сильно отличается от другого по разным причинам. И хотя у каждого из них имеются свои различия, но все они имеют одну большую семью. Каждый из них может легко и просто отдать все свои наружные электроны и при этом они превращаются в положительные ионы.
Некоторые щелочные металлы могут образовывать щелочь, если происходит взаимодействие с водой. Именно поэтому их лучше всего хранить либо в керосине, либо в минеральном масле. Самая большая радиоактивность имеется у франция.

Каждое вещество щелочных металлов имеет серебристый цвет. Они могут кипеть или плавиться даже при самых низких температурах. Кроме этого у них имеется высокая электропроводимость.

Также данные вещества являются сильными восстановителями. Если у них увеличивается масса, то и восстановительная способность тоже увеличивается.

Рубиний

Даже при небольшом нагревании они могут воспламениться. Некоторые оксиды могут легко и просто взаимодействовать с водой, различными кислотами, кислородом и другими оксидами. Данные свойства могут иметься у каждого оксида и поэтому носят ярко выраженный характер.

Практически все соли могут хорошо растворяться в воде. Все щелочные соединения могут изменять цвет пламени. И это видно при химическом анализе.

Кроме этого все щелочные металлы являются сильными восстановителями. И получить эти металлы можно при взаимодействии электролиза или расплава различных солей.

Каждый элемент может быть применен даже в повседневной жизни человека. Для разработки фотоэлементов применяется цезий. А вот для починки подшипника можно применить литий. Для использования газовых ламп или ядерных реакторов лучше всего использовать натрий.

Для детей 9 класс по химии

Щелочные металлы

Щелочные металлы

Пешков Алексей Максимович, известный всем под псевдонимом Максима Горького, запомнился не только как автор различных литературных произведений – от небольших рассказов,

Вяз относится к деревьям семейства Ильмовые. Родиной дерева считается Азия. Откуда оно и распространилось в Сибирь и Поволжье, на Урал и Кавказ, и в некоторые страны Европы. Встречается в смешанных лесах,

Человек по своей природе является первооткрывателем. Его всегда манило то, что далёко, чуждо, и даже то, что неестественно, например плавание по поверхности воды и погружения на глубины. Одним из таких человеческих влечений всегда была высота.

На наших улицах очень много бродячих собак и кошек, а как же их жалко, каждого хочется забрать домой. Почему же это происходит? Как помочь животным выжить в городских условиях и зачем на некоторых животных цепляют на ухо жёлтую бирку?

Родом дымковская игрушка из заречной слободы Дымково близ города Вятки (современного Кирова). Этот старинный промысел зародился в 15 веке. Происхождение промысла, по преданию, связано с вятским народным праздником "Свистопляской"

Доклад на тему Щелочные металлы 9 класс по химии

Щелочные металлы представляют собой группу неорганических веществ, которая состоит из 6 элементов – литий, натрий, калий, цезий, рубидий, которые встречаются в природе, и франций, искусственно синтезированный. А вот своим названием описываемые металлы обязаны щелочи, которая образуется вследствие реакции с водой.

Из щелочных металлов, встречающихся в природе, самыми распространенными являются калий и натрий. Рубидий, литий и цезий встречаются очень редко и их относят к редкоземельным химическим элементам. Вместе с тем, все щелочные металлы проявляют повышенную химическую активность, вследствие чего в природе их можно встретить только в составе соединений. Одним из самых распространенных соединений на планете является соединение натрия – каменная соль.

Щелочные металлы обладают общими металлическими свойствами – блеском, ковкостью, пластичностью, электро- и теплопроводимостью. Это мягкие (можно сгибать руками и резать ножом) и легкие (всплывают в воде) металлы, характеризуются отличной проводимостью, при горении окрашивают пламя характерными оттенками. Кроме того, щелочные металлы относятся к легкоплавким металлам, к примеру, цезий тает даже в руках.

Все щелочные металлы, за исключением лития, взрываются при взаимодействии с водой. Также бурную реакцию вызывают кислород и различные кислоты, в следствие чего выделяется не менее взрывоопасный водород.

Следует отметить, что натрий и калий играют важнейшую роль в функционировании организма человека – для нормального функционирования энзимов и циркуляции крови эти металлы поддерживают кислотно-щелочной и водно-солевой баланс. А вот рубидий, который также обнаружили во внутренних органах человека, оказывает положительное воздействие на состав крови – вызывает противоаллергическое и противовоспалительное действие, повышает иммунитет.

Применение щелочных металлов очень разнообразно. Их используют в фотоэлементах, источниках тока и аккумуляторах, космической отрасли и военно-промышленном комплексе, различных оптических устройствах, пищевой, атомной промышленности и медицине, при производстве лекарств.

При работе с щелочными металлами следует соблюдать осторожность. Многие элементы при контакте с воздухом или водой способны взрываться, а щелочные растворы при попадании на кожу или слизистую вызывают ожоги. В чистом виде щелочные металлы хранят в герметичных емкостях с керосином, а утилизируют после полной нейтрализации элементов.

Щелочные металлы — это химические элементы, которые расположены в 1А группе таблицы Менделеева. К данным металлам относятся: калий, рубидий, натрий, цезий, а также франций, литий.

Все элементы данной группы имеют лишь один электорн на своем внешнем энергетическом уровне. Следовательно, степень окисления у них будет +1. Все щелочные металлы очень похожи, так как для каждого из них характерна способность к:

  • усилению восстановительных и металлических свойств
  • уменьшению электропроницаемости
  • увеличению радиуса атомов

Растворенные в воде (H2O) щелочные металлы образуют так называемые растворимые гидроксиды, которые называют щелочами.

Щелочные металлы в природе

Самыми распространенными элементами группы 1А являются калий и натрий. Однако, эти щелочные металлы обладают довольно высокой химической активностью, отчего встретить их в природе возможно исключительно в виде соединений. Наиболее богатыми источниками Na и K является каменная (NaCL) и некоторые другие соли. Соединения прочих металлов из данной группы встречаются крайне редко.

Калий — щелочной металл серебристого цвета. Этот элемент с легкостью вступает в реакцию с водой, в результате чего образуется щелочь. Это довольно легкий, быстроплавящийся металл. Известно, что люди с глубокой древности использовали соединения калия. Для этого они собирали золу и смачивали водой. Затем получившийся раствор фильтровали и выпаривали. В результате получался поташ — уникальное для своего времени моющее средство, содержащее калий.

Натрий — элемент, по своим химическим свойствам очень похожий на калий. Этот элемент шестой по распространенности в земной коре. В Древнем мире люди использовали соединения натрия. К примеру египтяне добывали соду(Na2CO3) в озерах Египта. С её помощью они бальзамировали трупы, готовили пищу, изготавливали краски и т. д.

Литий, рубидий, цезий — чрезвычайно редкие и рассеянные щелочные металлы серебристого цвета. Каждый из этих металлов очень легко плавится.

Франций — один из самых редких металлов на земле(реже встречается лишь астат). В земной коре содержится лишь 300-350 грамм этого радиогенного элемента.

При работе с щелочными металлами необходимо соблюдать технику безопасности, так как при взаимодействии с водой происходят реакция образования едких щелочей, что может вызвать огненную вспышку либо даже взрыв. Поэтому, важно надеть латексные перчатки и очки.

Щелочные металлы

Популярные сегодня темы

Африка является большим и уникальным континентом, поэтому многие ученые и деятели науки считают ее полноценным и большим заповедником. Благодаря расположению материка

Стрелец – крупное созвездие южного полушария, расположенное по соседству с созвездиями Козерога, Змееносца, Южной короной, Скорпиона и другими. Площадь созвездия около 867 квадратных градуса

Знаменитость – это то, к чему многие стремятся. Люди хотят, чтобы их узнавали на улицах, просили автографы, фотографировались, обсуждали в журналах, Интернете, просто на кухне

Рождение русского человека, который навсегда вошёл в историю, произошло примерно с 1510 по 1530 года. Точная дата так и осталась неизвестной. Предположительно это случилось в Калужской губерн

В жизни практически каждый второй человек читал или смотрел «Войну и мир», одна из гениальных работ, созданная талантливым писателем Л.Н.Толстым. К нему в Ясную Поляну приезжали люди с разных

С самого зарождения жизни на нашей планете, развивалось огромнейшое количество разновидностей этих самых видов, что в итоге и создало то многообразие живых существ, которое мы имеем на данный

Студенческий проект на тему «Щелочные металлы.»

Щелочны́е мета́ллы — это элементы 1-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы главной подгруппы I группы): литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr, унуненний Uue. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щелочами.


Общая характеристика щелочных металлов

В Периодической системе они следуют сразу за инертными газами, поэтому особенность строения атомов щелочных металлов заключается в том, что они содержат один электрон на внешнем энергетическом уровне: их электронная конфигурация ns1. Очевидно, что валентные электроны щелочных металлов могут быть легко удалены, потому что атому энергетически выгодно отдать электрон и приобрести конфигурацию инертного газа. Поэтому для всех щелочных металлов характерны восстановительные свойства. Это подтверждают низкие значения их потенциалов ионизации (потенциал ионизации атома цезия — самый низкий) и электроотрицательности (ЭО). Как следствие, в большинстве соединений щелочные металлы присутствуют в виде однозарядных катионов. Однако существуют и соединения, где щелочные металлы представлены анионами.

ГЛАВА 2. Кто открыл щелочные металлы.

Литий, Lithium, Li (3)

Когда Дави производил свои знаменитые опыты по электролизу щелочных земель, о существовании лития никто и не подозревал. Литиевая щелочная земля была открыта лишь в 1817 г. талантливым химиком-аналитиком, одним из учеников Берцелиуса Арфведсоном.

В 1800 г. бразильский минералог де Андрада е Сильва, совершая научное путешествие по Европе, нашел в Швеции два новых минерала, названных им петалитом и сподуменом, причём первый из них через несколько лет был вновь открыт на острове Уте.

Арфведсон заинтересовался петалитом, произвёл полный его анализ и обнаружил необъяснимую вначале потерю около 4% вещества. Повторяя анализы более тщательно, он установил, что в петалите содержится "огнепостоянная щелочь до сих пор неизвестной природы".

Берцелиус предложил назвать ее литионом (Lithion), поскольку эта щелочь в отличие от кали и натра впервые была найдена в "царстве минералов" (камней); название это произведено от греч.- камень.

Позднее Арфведсон обнаружил литиевую землю, или литину, и в некоторых других минералах, однако его попытки выделить свободный металл не увенчались успехом. Очень небольшое количество металлического лития было получено Дэви и Бранде путем электролиза щелочи.

В 1855 г. Бунзен и Маттессен разработали промышленный способ получения металлического лития электролизом хлорида лития. В русской химической литературе начала XIX в. встречаются названия: литион, литин (Двигубский, 1826) и литий (Гесс); литиевую землю (щёлочь) называли иногда литина.

Натрий, Natrium, Na (11)

Название "натрий" (англ. и франц. Sodium, нем. Natrium) происходит от древнего слова, распространенного в Египте, у древних греков (vixpov) и римлян. Оно встречается у Плиния (Nitron), у других древних авторов и соответствует древнееврейскому нетер (neter).

В древнем Египте натроном, или нитроном, называли вообще щелочь, получаемую не только из природных содовых озер, но и из золы растений. Ее употребляли для мытья, изготовления глазурей, при мумификации трупов. В средние века название нитрон (nitron, natron, nataron), а также борах (baurach), относилось и к селитре (Nitrum).

Арабские алхимики называли щелочи alkali. С открытием пороха в Европе селитру (Sal Petrae) стали строго отличать от щелочей, и в XVII в. уже различали нелетучие, или фиксированные щелочи, и летучую щелочь (Alkali volatile).

Вместе с тем было установлено различие между растительной (Alkali fixum vegetabile - поташ) и минеральной щелочью (Alkali fixum minerale - сода). В конце XVIII в. Клапрот ввел для минеральной щелочи название натрон (Natron), или натр и для растительной - кали (Kali), Лавуазье не поместил щелочи в "Таблицу простых тел", указав в примечании к ней, что это, вероятно, сложные вещества, которые когда-нибудь будут разложены.

Действительно, в 1807 г. Дэви путем электролиза слегка увлажненных твердых щелочей получил свободные металлы - калий и натрий, назвав их потассий (Potassium) и содий (Sodium).

В следующем году Гильберт, издатель известных "Анналов физики", предложил именовать новые металлы калием и натронием (Natronium); Берцелиус сократил последнее название до "натрий" (Natrium). В начале XIX в. в России натрий называли содием (Двигубский, 182i; Соловьев, 1824); Страхов предлагал название содь (1825). Соли натрия назывались, например, сернокислая сода, гидрохлоровая сода и одновременно уксусный натр (Двигубский, 1828). Гесс, по примеру Берцелиуса, ввел название натрий.

Калий, Kalium, К (19)

Калий (англ. Potassium, франц. Potassium, нем. Kalium) открыл в 1807 г. Дэви, производивший электролиз твердого, слегка увлажненного едкого кали. Дэви именовал новый металл потассием (Potassium), но это название не прижилось. Крестным отцом металла оказался Гильберт, известный издатель журнала "Annalen deг Physik", предложивший название "калий"; оно было принято в Германии и России.

Оба названия произошли от терминов, применявшихся задолго до открытия металлического калия. Слово потассий образовано от слова поташ, появившегося, вероятно, в XVI в. Оно встречается у Ван Гельмонта и во второй половине XVII в. находит широкое применение в качестве названия товарного продукта - поташа - в России, Англии и Голландии.

В переводе на русский язык слово potashe означает "горшечная зола или зола, вываренная в горшке"; в XVI - XVII вв. поташ получали в огромных количествах из древесной золы, которую вываривали в больших котлах. Из поташа приготавливали главным образом литрованную (очищенную) селитру, которая шла на изготовление пороха.

Особенно много поташа производилось в России, в лесах вблизи Арзамаса и Ардатова на передвижных заводах (майданах), принадлежавших родственнику царя Алексея Михайловича, ближнему боярину Б.И.Морозову. Что касается слова калий, то оно происходит от арабского термина алкали (щелочные вещества).

В средние века щелочи, или, как тогда говорили, щелочные соли, почти не отличали друг от друга и называли их именами, имевшими одинаковое значение: натрон, боракс, варек т. д.

Слово кали (qila) встречается приблизительно в 850 г. у арабских писателей, затем начинает употребляться слово Qali (al-Qali), которое обозначало продукт, получаемый из золы некоторых растений, с этими словами связаны арабские qiljin или qaljan (зола) и qalaj (обжигать).

В эпоху иатрохимии щелочи стали подразделять на "фиксированные" и "летучие". В XVII в. встречаются названия alkali fixum minerale (минеральная фиксированная щелочь или едкий натр), alkali fixum. vegetabile (растительная фиксированная щелочь или поташ и едкое кали), а также alkali volatile (летучая щелочь или NН3).

Блэк установил различие между едкими (caustic) и мягкими, или углекислыми, щелочами. В "Таблице простых тел" щелочи не фигурируют, но в примечании к таблице Лавуазье указывает, что фиксированные щелочи (поташ и сода), вероятно, представляют собой сложные вещества, хотя природа их составных частей еще не изучена.

В русской химической литературе первой четверти XIX в. калий назывался потассий (Соловьев, 1824), поташ (Страховй, 1825), поташий (Щеглов, 1830); в "Магазине Двигубского" уже в 1828 г. наряду с названием поташ (сернокислый поташ) встречается название кали (едкое кали, кали соляный и др.). Название калий стало общепринятым после выхода в свет учебника Гесса.

Рубидий, Rubidium, Rb (37)

Авторы открытия спектрального анализа (1859) - Бунзен и Кирхгофф -немедленно применили его в качестве вспомогательного метода при химическом анализе минералов и уже через год сообщили об открытии ими цезия. Продолжая исследования, они заинтересовались минералом лепидолитом (фторсиликат лития и алюминия) и, переработав 150 кг саксонского лепидолита, из фракции, содержащей щелочные металлы, выделили с помощью хлорплатиновой кислоты (H2PtCl6) двойные хлорплатинаты калия, цезия и рубидия.

То обстоятельство, что калийные соли лучше растворяются в воде, чем рубидиевые и цезиевые, помогло исследователям отделить последние от калиевых солей. При спектроскопическом анализе остатка после удаления калия обнаружились две новые красные линии в красной части спектра.

Эти линии Бунзен и Кирхгофф правильно отнесли к новому металлу, который назвали рубидием (лат. rubidus - красный) из-за цвета его спектральных линий. Получить рубидий в виде металла Бунзену удалось в 1863 г.

Цезий, Cesium, Сs (55)

Цезий (англ. Cesium, франц. Cesium, нем. Caesium) - первый элемент, открытый с помощью спектрального анализа. Открытие цезия послужило свидетельством широких возможностей этого метода, до применения которого о существовании цезия могли только подозревать.

Так, в 1846 г. немецкий химик Платтнер, произведя анализ минерала поллукса, получил сумму содержавшихся в нем компонентов, на 7% меньшую, чем можно было ожидать. В 1864 г., уже после того, как Бунзен открыл цезий, итальянец Пизани обнаружил его в поллуксе.

Оказывается, Платтнер, получив хлорплатинат, посчитал, что в его составе содержится калий, в то время как это был силикат цезия и алюминия. Бунзен нашел цезий с помощью спектрального анализа.

В 1860 г., изучая спектры щелочных металлов лития, натрия и калия, он пришел к выводу, что, по всей вероятности, должен существовать четвертый металл этой группы, имеющий такой же характерный спектр, что и литий. И действительно, в скором времени он обнаружил спектральные линии нового элемента: одну слабо-голубую, почти совпадающую с delta - линией стронция, и другую ярко-голубую в области фиолетовой части спектра, почти рядом с красной линией лития.

Бунзен назвал вновь открытый металл цезием (Casium) от лат. caesius - голубой, светло-серый; в древности этим словом обозначали голубизну ясного неба. Чистый металлический цезий получен электролитическим путем в 1882 г.

Франций, Francium, Fr (87)

Франций - один из четырех элементов периодической системы элементов Менделеева, которые были открыты "в последнюю очередь". Действительно, к 1925 г. заполнились все клетки таблицы элементов, за исключением 43, 61, 85 и 87.

Многочисленные попытки открыть эти не достающие элементы долгое время оставались безуспешными. Элемент 87 (эка-цезий Менделеева) искали главным образом в цезиевых минералах, надеясь обнаружить его в качестве спутника цезия.

Однако все эти открытия были ошибочными. В 1939 г. Перей из института Кюри в Париже занималась очисткой препарата актиния (Ас-227) от разнообразных продуктов радиоактивного распада. Проводя тщательно контролируемые операции, она обнаружила beta-излучение, которое не могло принадлежать ни одному из известных в то время изотопов актиниевого ряда распада.

Однако более глубокое изучение распада актиния показало, что распад происходит не только по основной цепи Ас- RаАс- АсХ, но и по боковой Ас- АсК-АсХ с образованием неизвестного изотопа с периодом полураспада 21 мин. Изотоп получил временное обозначение АсК. Когда его подвергли химическому исследованию, оказалось, что его свойства соответствуют свойствам эка-цезия.

После второй мировой войны, прервавшей работу Перей, ее выводы были полностью подтверждены. В 1946 г. Перей предложила назвать элемент 87 францием в честь ее родины, а обозначение АсК осталось за соответствующим изотопом в ряду радиоактивного распада актиния.

Некоторое время считалось, что франций образуется только при alfa-распаде актиния. Однако после того как был открыт нептуний и изучен ряд его радиоактивного распада, было доказано образование изотопа франция-221 с периодом полураспада 5 мин. при alfa-распаде изотопа актиния-225. Франций, как и астат, весьма редкий элемент; первоначально он имел символ не Fr, а Fa.

ГЛАВА 3. Электронное строение

Электронное строение щелочных металлов характеризуется наличием на внешней электронной оболочке одного электрона, относительно слабо связанного с ядром. С каждого щелочного металла начинается новый период в периодической таблице. Щелочной металл способен отдавать свой внешний электрон легче, чем любой другой элемент этого периода. Разрез щелочного металла в инертной среде имеет яркий серебристый блеск.

Электронное строение щелочных металлов сведено в табличную информационную модель типа «объекты-свойства». В качестве объектов взяты названия щелочных металлов, справа указаны свойства этих объектов - схематическое электронное строение и электронная формула.

http://festival.1september.ru/articles/584890/presentation/4.JPG

ГЛАВА 4. Физические и химические свойства

4.1 Физические свойства

Литий, натрий, калий, рубидий в свободном состоянии серебристо-белые металлы, цезий имеет золотисто-желтый цвет. Все металлы очень мягкие и пластичные. Наибольшей твердостью обладает литий, остальные металлы легко режутся ножом и могут быть раскатаны в фольгу.

В кристаллическом состоянии все они имеют объёмно-центрированную кристаллическую решётку с металлическим типом химической связи, что обуславливает их высокую тепло- и электропроводность.

Все щелочные металлы имеют небольшую плотность, самый легкий металл – литий, его плотность составляет всего 0,53 г/см3.

Металлы имеют достаточно низкие температуры плавления и кипения, причем с увеличением порядкового номера элемента температура плавления металла понижается.

Все металлы очень активны, поэтому их хранят в запаянных ампулах, под слоем вазелинового масла или керосина.

Щелочные металлы. Химия щелочных металлов и их соединений


Щелочные металлы расположены в главной подгруппе первой группы периодической системы химических элементов Д.И. Менделеева (или просто в 1 группе в длиннопериодной форме ПСХЭ). Это литий Li, натрий Na, калий K, цезий Cs, рубидий Rb и франций Fr.

Электронное строение щелочных металлов и основные свойства

Электронная конфигурация внешнего энергетического уровня щелочных металлов: ns 1 , на внешнем энергетическом уровне находится 1 s-электрон. Следовательно, типичная степень окисления щелочных металлов в соединениях +1.

Рассмотрим некоторые закономерности изменения свойств щелочных металлов.

В ряду Li-Na-K-Rb-Cs-Fr, в соответствии с Периодическим законом, увеличивается атомный радиус , усиливаются металлические свойства , ослабевают неметаллические свойства , уменьшается электроотрица-тельность .


Физические свойства

Все щелочные металлы — вещества мягкие, серебристого цвета. Свежесрезанная поверхность их обладает характерным блеском.


Кристаллическая решетка щелочных металлов в твёрдом состоянии — металлическая. Следовательно, щелочные металлы обладают высокой тепло- и электропроводимостью. Кипят и плавятся при низких температурах. Они имеют также небольшую плотность.


Нахождение в природе

Как правило, щелочные металлы в природе присутствуют в виде минеральных солей: хлоридов, бромидов, йодидов, карбонатов, нитратов и др. Основные минералы , в которых присутствуют щелочные металлы:

Поваренная соль, каменная соль, галит — NaCl — хлорид натрия


Сильвин KCl — хлорид калия


Сильвинит NaCl · KCl


Глауберова соль Na2SO4⋅10Н2О – декагидрат сульфата натрия


Едкое кали KOH — гидроксид калия

Поташ K2CO3 – карбонат калия

Поллуцит — алюмосиликат сложного состава с высоким содержанием цезия:


Способы получения

Литий получают в промышленности электролизом расплава хлорида лития в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси):

2LiCl = 2Li + Cl2

Натрий получают электролизом расплава хлорида натрия с добавками хлорида кальция:

2NaCl (расплав) → 2Na + Cl2

Электролитом обычно служит смесь NaCl с NaF и КСl (что позволяет проводить процесс при 610–650°С).

Калий получают также электролизом расплавов солей или расплава гидроксида калия. Также распространены методы термохимического восстановления: восстановление калия из расплавов хлоридов или гидроксидов. В качестве восстановителей используют пары натрия, карбид кальция, алюминий, кремний:

KCl + Na = K↑ + NaCl

KOH + Na = K↑ + NaOH

Цезий можно получить нагреванием смеси хлорида цезия и специально подготовленного кальция:

Са + 2CsCl → 2Cs + CaCl2

В промышленности используют преимущественно физико-химические методы выделения чистого цезия: многократную ректификацию в вакууме.

Качественные реакции

Качественная реакция на щелочные металлы — окрашивание пламени солями щелочных металлов .


Цвет пламени:
Li — карминно-красный
Na — жѐлтый
K — фиолетовый
Rb — буро-красный
Cs — фиолетово-красный

Химические свойства

1. Щелочные металлы — сильные восстановители . Поэтому они реагируют почти со всеми неметаллами .

1.1. Щелочные металлы легко реагируют с галогенами с образованием галогенидов:

2K + I2 = 2KI

1.2. Щелочные металлы реагируют с серой с образованием сульфидов:

2Na + S = Na2S

1.3. Щелочные металлы активно реагируют с фосфором и водородом (очень активно). При этом образуются бинарные соединения — фосфиды и гидриды:

3K + P = K3P

2Na + H2 = 2NaH

1.4. С азотом литий реагирует при комнатной температуре с образованием нитрида:

Остальные щелочные металлы реагируют с азотом при нагревании.

1.5. Щелочные металлы реагируют с углеродом с образованием карбидов, преимущественно ацетиленидов:

1.6. При взаимодействии с кислородом каждый щелочной металл проявляет свою индивидуальность: при горении на воздухе литий образует оксид, натрий – преимущественно пероксид, калий и остальные металлы – надпероксид.

Цезий самовозгорается на воздухе, поэтому его хранят в запаянных ампулах. Видеоопыт самовозгорания цезия на воздухе можно посмотреть здесь.

2. Щелочные металлы активно взаимодействуют со сложными веществами:

2.1. Щелочные металлы бурно (со взрывом) реагируют с водой . Взаимодействие щелочных металлов с водой приводит к образованию щелочи и водорода. Литий реагирует бурно, но без взрыва.

Например , калий реагирует с водой очень бурно:

2K 0 + H2 + O = 2 K + OH + H2 0


Видеоопыт: взаимодействие щелочных металлов с водой можно посмотреть здесь.

2.2. Щелочные металлы взаимодействуют с минеральными кислотами (с соляной, фосфорной и разбавленной серной кислотой) со взрывом. При этом образуются соль и водород.

Например , натрий бурно реагирует с соляной кислотой :

2Na + 2HCl = 2NaCl + H2

2.3. При взаимодействии щелочных металлов с концентрированной серной кислотой выделяется сероводород.

Например , при взаимодействии натрия с концентрированной серной кислотой образуется сульфат натрия, сероводород и вода:

2.4. Щелочные металлы реагируют с азотной кислотой. При взаимодействии с концентрированной азотной кислотой образуется оксид азота (I):

С разбавленной азотной кислотой образуется молекулярный азот:

При взаимодействии щелочных металлов с очень разбавленной азотной кислотой образуется нитрат аммония:

2.5. Щелочные металлы могут реагировать даже с веществами, которые проявляют очень слабые кислотные свойства . Например, с аммиаком, ацетиленом (и прочими терминальными алкинами), спиртами , фенолом и органическими кислотами .

Например , при взаимодействии лития с аммиаком образуются амиды и водород:

Ацетилен с натрием образует ацетиленид натрия и также водород:

Н ─ C ≡ С ─ Н + 2Na → Na ─ C≡C ─ Na + H2

Фенол с натрием реагирует с образованием фенолята натрия и водорода:

Метанол с натрием образуют метилат натрия и водород:

Уксусная кислота с литием образует ацетат лития и водород:

2СH3COOH + 2Li → 2CH3COOLi + H2

Щелочные металлы реагируют с галогеналканами (реакция Вюрца).

Например , хлорметан с натрием образует этан и хлорид натрия:

2.6. В расплаве щелочные металлы могут взаимодействовать с некоторыми солями . Обратите внимание! В растворе щелочные металлы будут взаимодействовать с водой, а не с солями других металлов.

Например , натрий взаимодействует в расплаве с хлоридом алюминия :

3Na + AlCl3 → 3NaCl + Al

Оксиды щелочных металлов

Оксиды щелочных металлов (кроме лития) можно получить только к освенными методами : взаимодействием натрия с окислителями в расплаве:

1. О ксид натрия можно получить взаимодействием натрия с нитратом натрия в расплаве:

2. Взаимодействием натрия с пероксидом натрия :

3. Взаимодействием натрия с расплавом щелочи :

2Na + 2NaOН → 2Na2O + Н2

4. Оксид лития можно получить разложением гидроксида лития :

2LiOН → Li2O + Н2O

Химические свойства

Оксиды щелочных металлов — типичные основные оксиды . Вступают в реакции с кислотными и амфотерными оксидами, кислотами, водой.

1. Оксиды щелочных металлов взаимодействуют с кислотными и амфотерными оксидами :

Например , оксид натрия взаимодействует с оксидом фосфора (V):

Оксид натрия взаимодействует с амфотерным оксидом алюминия:

2. Оксиды щелочных металлов взаимодействуют с кислотами с образованием средних и кислых солей (с многоосновными кислотами).

Например , оксид калия взаимодействует с соляной кислотой с образованием хлорида калия и воды:

K2O + 2HCl → 2KCl + H2O

3. Оксиды щелочных металлов активно взаимодействуют с водой с образованием щелочей.

Например , оксид лития взаимодействует с водой с образованием гидроксида лития:

Li2O + H2O → 2LiOH

4. Оксиды щелочных металлов окисляются кислородом (кроме оксида лития): оксид натрия — до пероксида, оксиды калия, рубидия и цезия – до надпероксида.

Пероксиды щелочных металлов

Свойства пероксидов очень похожи на свойства оксидов. Однако пероксиды щелочных металлов, в отличие от оксидов, содержат атомы кислорода со степенью окисления -1. Поэтому они могут могут проявлять как окислительные , так и восстановительные свойства.

1. Пероксиды щелочных металлов взаимодействуют с водой . При этом на холоде протекает обменная реакция, образуются щелочь и пероксид водорода:

При нагревании пероксиды диспропорционируют в воде, образуются щелочь и кислород:

2. Пероксиды диспропорционируют при взаимодействии с кислотными оксидами .

Например , пероксид натрия реагирует с углекислым газом с образованием карбоната натрия и кислорода:

3. При взаимодействии с минеральными кислотами на холоде пероксиды вступают в обменную реакцию. При этом образуются соль и перекись водорода:

При нагревании пероксиды, опять-таки, диспропорционируют:

4. Пероксиды щелочных металлов разлагаются при нагревании, с образованием оксида и кислорода:

5. При взаимодействии с восстановителями пероксиды проявляют окислительные свойства.

Например , пероксид натрия с угарным газом реагирует с образованием карбоната натрия:

Пероксид натрия с сернистым газом также вступает в ОВР с образованием сульфата натрия:

6. При взаимодействии с сильными окислителями пероксиды проявляют свойства восстановителей и окисляются, как правило, до молекулярного кислорода.

Например , при взаимодействии с подкисленным раствором перманганата калия пероксид натрия образует соль и молекулярный кислород:

Гидроксиды щелочных металлов (щелочи)

1. Щелочи получают электролизом растворов хлоридов щелочных метал-лов:

2NaCl + 2H2O → 2NaOH + H2 + Cl2

2. При взаимодействии щелочных металлов, их оксидов, пероксидов, гидридов и некоторых других бинарных соединений с водой также образуются щелочи.

Например , натрий, оксид натрия, гидрид натрия и пероксид натрия при растворении в воде образуют щелочи:

2Na + 2H2O → 2NaOH + H2

Na2O + H2O → 2NaOH

2NaH + 2H2O → 2NaOH + H2

3. Некоторые соли щелочных металлов (карбонаты, сульфаты и др.) при взаимодействии с гидроксидами кальция и бария также образуют щелочи.

Например , карбонат калия с гидроксидом кальция образует карбонат кальция и гидроксид калия:

1. Гидроксиды щелочных металлов реагируют со всеми кислотами (и сильными, и слабыми, и растворимыми, и нерастворимыми). При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например , гидроксид калия с фосфорной кислотой реагирует с образованием фосфатов, гидрофосфатов или дигидрофосфатов:

2. Гидроксиды щелочных металлов реагируют с кислотными оксидами . При этом образуются средние или кислые соли, в зависимости от соотношения реагентов.

Например , гидроксид натрия с углекислым газом реагирует с образованием карбонатов или гидрокарбонатов:

Необычно ведет себя оксид азота (IV) при взаимодействии с щелочами. Дело в том, что этому оксиду соответствуют две кислоты — азотная (HNO3) и азотистая (HNO2). «Своей» одной кислоты у него нет. Поэтому при взаимодействии оксида азота (IV) с щелочами образуются две соли- нитрит и нитрат:

А вот в присутствии окислителя, например, молекулярного кислорода, образуется только одна соль — нитрат, т.к. азот +4 только повышает степень окисления:

3. Гидроксиды щелочных металлов реагируют с амфотерными оксидами и гидроксидами . При этом в расплаве образуются средние соли, а в растворе комплексные соли.

Например , гидроксид натрия с оксидом алюминия реагирует в расплаве с образованием алюминатов:

в растворе образуется комплексная соль — тетрагидроксоалюминат:

Еще пример : гидроксид натрия с гидроксидом алюминия в расплаве образут также комплексную соль:

4. Щелочи также взаимодействуют с кислыми солями. При этом образуются средние соли, или менее кислые соли.

Например : гидроксид калия реагирует с гидрокарбонатом калия с образованием карбоната калия:

5. Щелочи взаимодействуют с простыми веществами-неметаллами (кроме инертных газов, азота, кислорода, водорода и углерода).

При этом кремний окисляется щелочами до силиката и водорода:

Фтор окисляет щелочи. При этом выделяется молекулярный кислород:

Другие галогены, сера и фосфор — диспропорционируют в щелочах:

Сера взаимодействует с щелочами только при нагревании:

6. Щелочи взаимодействуют с амфотерными металлами , кроме железа и хрома . При этом в расплаве образуются соль и водород:

В растворе образуются комплексная соль и водород:

2NaOH + 2Al + 6Н2О = 2Na[Al(OH)4] + 3Н2

7. Гидроксиды щелочных металлов вступают в обменные реакции с растворимыми солями .

С щелочами взаимодействуют соли тяжелых металлов.

Например , хлорид меди (II) реагирует с гидроксидом натрия с образованием хлорида натрия и осадка гидроксида меди (II):

2NaOH + CuCl2 = Cu(OH)2↓+ 2NaCl

Также с щелочами взаимодействуют соли аммония.

Например , при взаимодействии хлорида аммония и гидроксида натрия образуются хлорид натрия, аммиак и вода:

NH4Cl + NaOH = NH3 + H2O + NaCl

8. Гидроксиды всех щелочных металлов плавятся без разложения , гидроксид лития разлагается при нагревании до температуры 600°С:

2LiOH → Li2O + H2O

9. Все гидроксиды щелочных металлов проявляют свойства сильных оснований . В воде практически нацело диссоциируют , образуя щелочную среду и меняя окраску индикаторов.

NaOH ↔ Na + + OH —

10. Гидроксиды щелочных металлов в расплаве подвергаются электролизу . При этом на катоде восстанавливаются сами металлы, а на аноде выделяется молекулярный кислород:

4NaOH → 4Na + O2 + 2H2O

Соли щелочных металлов

Нитраты и нитриты щелочных металлов

Нитраты щелочных металлов при нагревании разлагаются на нитриты и кислород. Исключение — нитрат лития. Он разлагается на оксид лития, оксид азота (IV) и кислород.

Например , нитрат натрия разлагается при нагревании на нитрит натрия и молекулярный кислород:

Нитраты щелочных металлов в реакциях могут выступать в качестве окислителей.

Нитриты щелочных металлов могут быть окислителями или восстановителями.

В щелочной среде нитраты и нитриты — очень мощные окислители.

Например , нитрат натрия с цинком в щелочной среде восстанавливается до аммиака:

Сильные окислители окисляют нитриты до нитратов.

Например , перманганат калия в кислой среде окисляет нитрит натрия до нитрата натрия:

Характеристика щелочных металлов, их биологическая роль, распространение в природе и применение. Химические и физические свойства металлических элементов. Литий, рубидий, франций и цезий в природе. Натрий и калий как необходимые для организма элементы.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 06.11.2014
Размер файла 14,3 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Реферат на тему:

Щелочные металлы - химические элементы главной подгруппы 1 группы периодической системы элементов Д. И. Менделеева: Li - литий, Na - натрий, K - калий, Rb - рубидий , Сs- цезий, Fr - франций. Получили свое название от гидроокисей щелочных металлов, названные едкими щелочами. Атомы щелочных металлов имеют на внешней оболочке по 1 s - электрону, а на предшествующей - 2 s и 6 р- электронов ( кроме лития). Степень окисления щелочных металлов в соединениях всегда равна + 1.Щелочные металлы в химических соединениях очень активны - быстро окисляются кислородом воздуха, бурно реагируют с водой, образуя щёлочи. Активность возрастает от Li к Fr. металл химический литий калий

ЛИТИЙ - (лат. Lithium), Li - был открыт в 1817 году шведским химиком. А. Арфведсоном в минерале петалите. Название происходит от греческого lithos - камень. Металлический литий впервые получен в 1818 году английским химиком Г. Дэви. Литий - серебристо-белый металл, быстро покрывающийся тёмно-серым налетом. Литий - типичный представитель земной коры, он накапливается в наиболее поздних продуктах дифференциации магмы - пегматитах. В пегматитах и биосфере известно 28 самостоятельных минералов лития (силикаты, фосфаты и др.). Все они редкие. В биосфере литий мигрирует сравнительно слабо, роль его в живом веществе меньше, чем остальных щелочных металлов. Из вод он легко извлекается глинами, его относительно мало в Мировом океане Промышленные месторождения лития связаны как с магматическими породами, так и с биосферой (солёные озёра). Литий соединяется с галогенами, образуя галогениды. При нагревании с серой даёт сульфид, с водородом - лития гидрид. Реагирует с азотом. В специальных условиях могут быть получены фосфиды. Нагревание лития с углеродом приводит к получению карбида, с кремнием - силицида. Литий образует многочисленные литийорганические соединения, что определяет его большую роль в органическом синтезе. Литий компонент многих сплавов. С некоторыми металлами (Mn, Zn, Al) образует твёрдые растворы. Литий постоянно входит в состав живых организмов, однако его биологическая роль выяснена недостаточно.

НАТРИЙ - ( Natrium) Na. Серебристо-белый мягкий металл, на воздухе быстро окисляется с поверхности. Название "натрий", происходящее от арабского натрун, первоначально относилось к природной соде. Уже в 18 веке химики знали много других соединений натрия. Однако сам металл был получен лишь в 1807 году Г. Дэви электролизом едкого натра. В Великобритании, США,

Франции элемент назван Sodium, в Италии -Sodio. Натрий - типичный элемент верхней части земной коры. В биосфере происходит резкая дифференциация натрия: в осадочные породы в среднем обеднены, мало его в большинстве почв.

При испарении в прибрежно-морских лагунах, а также в континентальных озёрах степей и пустынь осаждаются соли натрия, формирующие толщи соленосных пород. Химическая активность очень велика: реагирует с кислородом, водородом, хлором, фтором, с серой, с бромом ( при нагревании).

Натрий входит в состав практически важных сплавов. Вследствие большой химической активности натрия, обращение с ним требует большой осторожности. Особенно опасно попадание на натрий воды, которое может привести к пожару или взрыву. Глаза должны быть защищены очками, руки - толстыми перчатками; соприкосновение с влажной кожей или -2- одеждой может вызвать тяжёлые ожоги. Натрий - один из основных элементов, участвующих в минеральном обмене животных и человека. Содержится во внеклеточных жидкостях, участвует в поддержании осмотического давления и кислотно-щелочного равновесия, в проведении нервных импульсов. Суточная потребность человека в хлористом натрии колеблется от 2 до 10 гр и зависит от количества этой соли, теряемой потом. В медицине наиболее часто применяют препараты из натрия при кровопотерях, потерях жидкости, рвоте, как антисептическое средство, отхаркивающее средство, для промываний и полосканий при ринитах и т.д. Искусственно полученные радиоактивные изотопы применяют для определения скорости кровотока в отдельных участках кровеносной системы.

КАЛИЙ -Kalium, серебряно-белый, очень легкий, мягкий и легкоплавкий метал. Некоторые соединения калия (например поташ, добывающийся из древесной золы) были известны уже в древности; однако их не отличали от соединений натрия. Только в 18 веке было показано различие между "растительной щелочью" (поташем) и "минеральной щелочью (содой). В 1807 году Г. Дэви электролизом слегка увлажненных твердых едких калим и натри выделил калий и натрий и назвал их потассием и содием. В 1809 г. Л.

Гильберт предложил название Калий ( от арабского кали - поташ). Названия "потассий" сохранилось в Великобритании, США. Франции. Калий - распространенный элемент, входит в состав полевых шпатов и слюд. На земной поверхности мигрирует слабо. При выветривании горных пород калий частично переходит в воды, но оттуда его быстро захватывают организмы и поглощают глины, поэтому воды рек бедны калием и в океан его поступает меньше, чем натрия. В океане калий поглощается организмами и донными илами. В большинстве почв растворимых соединений мало, и культурные растения нуждаются в калийных удобрениях. На воздухе, особенно влажном, калий быстро окисляется , поэтому его хранят в бензине, керосине или минеральном масле.

При комнатной температуре взаимодействует с галогенами, при слабом нагревании с серой, с селеном и теллуром. Взаимодействует с водородом. С азотом взаимодействует только под влиянием электрического разряда. Калий весьма энергично (иногда со взрывом) взаимодействует с водой, выделяя водород. Основное применение металлического калия - приготовление перекиси калия, служащей для регенерации кислорода (в подводных лодках и др.). Калий - один из биогенных элементов, постоянная составная часть растений и животных. Суточная потребность покрывается за счет мяса и растительных продуктов. В отличии от натрия, калий сосредоточен главным образом в клетках, во внеклеточной среде его меньше. В клетке калий распределён неравномерно.

Подобные документы

Характеристика щелочных металлов, их биологическая роль, распространение в природе и применение. Химические и физические свойства щелочных металлов. Литий, рубидий и цезий в составе живых организмов. Натрий и калий как необходимые для организма элементы.

курсовая работа [75,4 K], добавлен 27.05.2013

Общая характеристика щелочных металлов и их соединений, применение в промышленности. Формы металлов, встречающиеся в природе, и способы их получения. Химические свойства щелочных металлов и их взаимодействие с водой, с кислородом, с другими веществами.

презентация [3,9 M], добавлен 22.09.2015

Периодическая система химических элементов. История открытия Арфведсоном лития, Дэвием натрия и калия, Бунзеном и Кирхгоффом рубидия и цезия, Маргаритой Пере франция. Методы качественного определения щелочных металлов. Описание областей их применения.

презентация [906,5 K], добавлен 28.10.2011

Общая характеристика элементов І группы, их химические и физические свойства, история открытия и особенности способов получения. Литий и его соединения. Закономерности в строении атомов щелочных металлов. Правила хранения некоторых элементов этой группы.

презентация [1,2 M], добавлен 30.11.2012

Общая характеристика металлов. Элементы I группы Li, Na, K, Rb, Cs, Fr. Оксиды и пероксиды щелочных металлов. Гидроксиды. Элементы главной II группы: Be, Mg, Ca, Sr, Ba, Ra. Переходные металлы. Хром, железо, цынк, медь и их соединения.

Читайте также: