Соединение металлов с металлами сплавы

Обновлено: 04.10.2024

Большинство металлов не растворяются в воде, органических растворителях, но в расплавленном состоянии они могут взаимно растворяться или смешиваться с друг другом, образуя сплавы – продукты сплавления или спекания двух и более компонентов, обладающих свойствами как исходных веществ, так и новыми свойствами. Компонентами сплавов могут быть металлы, металлы и неметаллы, а также только неметаллы. Поэтому различают металлические и неметаллические сплавы (например, керамические материалы – сплавы различных оксидов и солей и стеклообразные). Для металлических сплавов характерен металлический тип химической связи; в неметаллических – связь ковалентная, а также смешанного типа – ионно-ковалентная. Сплавы могут быть стехиометрическими (дальтониды) и нестихиометрическими соединениями (бертоллиды). Следует помнить следующее. Стехиометрическое соотношение компонентов, образующих химическое соединение постоянного состава соблюдается только в парообразном состоянии, в молекулярных кристаллах и жидкостях. Химические соединения, состав которых может меняться в широких пределах называются соединениями переменного состава – бертоллидами, в честь французкого химика Бертолле. Бертоллиды – это кристаллические вещества. Например, известно, что формула оксида железа (II) не FeO, а Fe0,95O. Исходя из вышесказанного, существует развернутое определение, что такое химическое соединение. Химическое соединение – это вещество постоянного или переменного состава, образованное из атомов одного или нескольких химических элементов, с качественно своеобразным химическим и кристаллохимическим строением.

Примеры широко распространенных металлических сплавов:

- дюраль 95%алюминия+4%меди +по 0,5% магния и марганца;

- силумин – алюминий с добавками кремния;

- нейзельбер («немецкое серебро») Ni-Zn-Cu (1:1:2);

- бронза – сплав меди с добавками олова, но могут быть и другие компоненты, и соответствующие названия (бериллиевая бронза – бериллия с медью, никелевая бронза – сплав никеля с медью);

- нихром – сплав никеля с хромом, мельхиор (+медь?);

- сплавы на основе железа - чугун 93%железа +5%углерода, а также кремний, марганец, сера; сталь – менее 0,3% углерода (твердые стали -0,3-2%С).

Есть понятие легирование металла - введение добавок для улучшения свойств металла. Чаще всего легируют сталь. Легированная сталь – это сталь, в которую для улучшения ее механических свойств и коррозионной устойчивости вводят другие металлы. Если количество добавленных металлов не превышает 3%, то такую сталь называют низколегированной. Стали, содержащие от 1-4% никеля и 0,5-2% хрома (высоколегированные) применяются для производства артиллерийских орудий, брони, бронебойных снарядов, оболочек для пуль и пр.

При сплавлении металлов может образоваться твердый раствор – простое растворение одного металла в другом или, что чаще всего происходит, металлы вступают друг с другом во взаимодействие, образуя химическое соединение переменного состава. Твердый раствор – это твердая однородная смесь кристаллических или аморфных (стеклообразных) веществ переменного состава.

В отличие от твердых растворов (общее между растворами и хим. соединениями – однородность и наличие теплового эффекта при образовании), химическое соединение переменного состава характеризуется только ему присущим кристаллохимическим строением, отличающимся от строения исходных компонентов. Химические соединения металлов друг с другом называют интерметаллическими сплавами: Cu5Zn8, MgCuAl2, Al6Mn. Многие металлы образуют несколько различных соединений друг с другом в составе одного сплава, например: AuZn, Au3Zn5, AuZn3, Na4Sn, NaSn, NaSn2. Интерметаллические соединения способны растворяться в жидком аммиаке, образуя проводящие ток растворы. При электролизе таких растворов один металл выделяется на аноде (свинец - в сплавах свинец-натрий), а на катоде – натрий. В растворах интерметаллические соединения могут вступать в реакции обмена, замещения с солями: Ca(NO3)2 + K4Pb = Ca2Pb + 4KNO3.

Таким образом, сплавы представляют собой смеси свободных металлов и их химических соединений, образование которых сопровождается значительным тепловым эффектом. Например, алюминий в расплаве меди раскаляется добела. Свойства сплавов во многом отличаются от свойств металлов, образующих сплавы, не являясь их среднеарифметическим, т.к. идет образование твердых растворов или химических соединений. Температура плавления сплава бываетдаже ниже температуры плавления наиболее легкоплавкого металла. Наоборот, твердость сплавов часто больше с=твердости составляющих их металлов.

Большинство сплавов смешиваются друг с другом в любых пропорциях. Но некоторые металлы растворяются в другом до известного предела. Например, цинк со свинцом при остывании смеси образуют два слоя: нижний свинец, в котором растворено немного цинка и верхний – цинк, в котором растворено немного свинца.

ОБЩИЕ СВЕДЕНИЯ О МЕТАЛЛАХ, СПЛАВАХ МЕТАЛЛОВ И ИХ СВОЙСТВАХ

Металлами являются вещества, характеризующиеся в обычных условиях высокими электро- и теплопроводностью, ковкостью, «металлическим» блеском, непрозрачностью и другими свойствами, об-условленными наличием в их кристаллической решетке большого количества не связанных с атомными ядрами подвижных электронов проводимости.

В технике металлы принято делить на черные (железо и сплавы на его основе) и цветные (все остальные).

Свойства металлов объясняются особенностями их строения:

— расположением и характером движения электронов в атомах;

— расположением атомов, ионов и молекул в пространстве;

— размерами, формой и характером кристаллических образований.

Особенности атомного строения определяют характер взаимодействия металлов, способность их давать различного рода соединения, в которые входят несколько металлов, металлы с неметаллами и т. д.

При разных температурах некоторые химические элементы имеют 2 и более устойчивых типа кристаллических решеток. Существование одного металла в различных кристаллических формах (модификациях) при разных температурах называется полиморфизмом, или аллотропией, а переход из одного строения в другое — полиморфным (аллотропическим) превращением. Аллотропические формы, получающиеся в результате полиморфного превращения, обычно обозначают начальными буквами греческого алфавита α, β, γ, δ.

К таким полиморфным металлам относятся, например, кобальт (Со), олово (Sn), марганец (Мп), железо (Fe). В свою очередь изменение строения кристаллической решетки вызывает изменение свойств — механических, химических и магнитных свойств, электропроводности, теплопроводности, теплоемкости и др.

К металлам, которые имеют только один тип кристаллической решетки и называются изоморфными, относятся алюминий (А1), медь (Си), никель (Ni), хром (Сг), ванадий (W) и др.

Наиболее полную информацию о строении и свойствах металлов получают при использовании комплекса методов исследований:

— структурных (основаны на непосредственном наблюдении строения металла или сплава: макроскопический анализ, микроскопический анализ и пр.);

— физических (основаны на измерении различных физических свойств: тепловых, магнитных и пр.).

Так, например, метод элементного микроанализа изменения поверхности стоматологических сплавов в условиях ротовой полости применяется многими исследователями [Hani H. et al., 1989].

Металлические сплавы — это макроскопически однородные системы, состоящие из двух или более металлов с характерными металлическими свойствами. В широком смысле сплавами называются любые однородные системы, получаемые сплавлением металлов, неметаллов, оксидов, органических веществ.

Структура и свойства чистых металлов существенно отличаются от структуры и свойств сплавов , состоящих из двух и более металлов.

По количеству элементов (компонентов сплава) различают двух-, трех- или многокомпонентные сплавы.

Образование новых однородных веществ при взаимном проникновении атомов называют фазами сплава.

В расплавленном состоянии все компоненты обычно находятся в атомарном состоянии, образуя неограниченный жидкий однородный раствор, в любой точке которого химический состав статистически одинаков. При затвердевании расплава атомы компонентов укладываются в порядке кристаллической решетки, образуя твердое кристаллическое вещество — сплав.

Существуют три типа взаимоотношений компонентов сплава:

1) образование механической смеси, когда каждый элемент кристаллизуется самостоятельно, при этом свойства сплава будут усредненными свойствами элементов, которые его образуют;

2) образование твердого раствора, когда атомы компонентов образуют кристаллическую решетку одного из элементов, являющегося растворителем, при этом тип решетки основного металла сохраняется;

3) образование химических соединений, когда при кристаллизации разнородные атомы могут соединяться в определенной пропорции с образованием нового типа решетки, отличающейся от решеток металлов сплава. Образование химического соединения — сложный процесс, при котором создается новое вещество с новыми качествами, а решетка при этом имеет более сложное строение. Соединение теряет основное свойство металла — способность к пластической деформации, становится хрупким.

Соответственно этому, свойства сплавов будут зависеть от того, какие фазы в них образуются: твердые растворы, химические соединения или смеси чистых металлов. Если атомные объемы двух металлов и их температуры плавления резко отличаются, то в жидком состоянии такие элементы обладают, как правило, ограниченной растворимостью.

В то же время неограниченную растворимость, т.е. способность образовывать твердые растворы в любых пропорциях, имеют только металлы с кристаллической решеткой одного типа. Металлы, расположенные недалеко друг от друга в таблице Менделеева (Си29 и Ni2S; Fe26 и Ni2s; Fe26 и Cr24; Fe26 и Со27; Со27 и Ni2s) или расположенные в одной группе (As33 и Sb5I; Au79 и Ag47; Au79 и Cu29; Bi83 и; Sb51), имеют неограниченную растворимость.

Таким образом, взаимодействие элементов в сплавах и характер образующейся структуры определяются положением элементов в; таблице Менделеева, типом кристаллической решетки, размерами атомов, т. е. физической природой элементов.

Зависимость свойств от состава сплавов:

1) в сплавах, имеющих структуру механических смесей, свойства изменяются в основном прямолинейно. Некоторые свойства механических смесей, в первую очередь твердость и прочность, зависят от размеров частиц (т. е. от степени дисперсности) — значительно, повышаются при измельчении;

2) в сплавах — твердых растворах свойства изменяются по криволинейной зависимости;

3) при образовании химических соединений свойства изменяются скачкообразно.

Многие физические и механические свойства сплавов четко зависят от структуры, однако некоторые технологические свойства, такие, как литейные (т. е. способность обеспечить хорошее качество i отливки) или свариваемость, зависят не столько от структуры, сколько от того, в каких температурных условиях проходило затвердевание сплавов.

Так, например, стоматологические сплавы золота, отлитые в форму и быстро охлажденные в воде, будут иметь вид твердого раствора, отличающегося характерной мягкостью, ковкостью и меньшей прочностью, чем сплавы с упорядоченным расположением атомов [Копейкин В. Н., 1995]. Однако если ту же отливку охлаждать медленно до комнатной температуры, то твердый раствор, превалирующий при температуре больше 424° С, полностью переходит в фазу AuCu путем перераспределения атомов в пространственной кристаллической решетке в более упорядоченную структуру. Это приводит к повышению прочности и твердости при потере ковкости сплава. Сплавы с высоким содержанием золота (выше 88%) не образуют упорядоченной фазы.

Поэтому о зависимости механических и физических свойств однофазных сплавов (а и b) говорят следующие положения, известные из курса металловедения:

— твердость, прочность и электросопротивление твердых растворов выше, чем у чистых металлов;

— электропроводность и температурный коэффициент электросопротивления у твердых растворов ниже, чем у чистых металлов;

— электрохимический потенциал при этом изменяется по плавной кривой.

Помимо свойств металлической матрицы, имеющей определенную кристаллическую решетку и тем самым определяющую основные параметры механических свойств, на последние могут оказывать влияние дополнительное легирование такими элементами, как молибден, вольфрам, ниобий, углерод, азот и др. Присутствие их в сплавах даже в небольших количествах значительно повышает прочность, износостойкость, жаропрочность и другие свойства, необходимые при эксплуатации конструкций.

Добавка небольших количеств (0,005%) иридия и рутения превращает грубую зернистую структуру сплавов золота в мелкозернистую, что дает возможность улучшить на 30% прочность на растяжение и предел прочности при удлинении, не влияя при этом на твердость и предел текучести. Особенно эффективно увеличивается прочность при легировании кобальтохромовых сплавов 4-6% молибденом и дополнительно 1-2% ниобия в присутствии 0,3% углерода. В металлических сплавах образуются различные химические соединения как между двумя или несколькими металлами (их называют интерметаллидами), так и между металлом и неметаллом (карбиды, оксиды и т. д.).

Наличие неметаллических включений в структуре сплава ведет к образованию усталости, трещин, внутренних пор и полостей, коррозионному растрескиванию отливок, что приводит в конечном счете к разрушению. Неметаллические включения играют существенную роль в процессе вязкого и усталостного разрушения.

Основу неметаллических включений в сплаве Виталлиум составляет марганец и кремний. В кобальтохромовом сплаве (КХС) содержатся включения нитридов титана и силикаты.

В связи с усталостью металла появляются микротрещины на границе неметаллических включений, зерен металла, которые в провесе циклического нагружения увеличивают свои размеры, образуя магистральную трещину, приводящую к разрушению металла.

Основной характеристикой, определяемой при испытании на усталость материала, является предел выносливости — наибольшее напряжение, которое может выдержать материал без разрушения при произвольно большом числе перемен (циклов) нагрузки. Максимальное напряжение, не вызывающее разрушения, соответствует пределу выносливости.

Кроме механических испытаний, металлические материалы подвергаются технологическим испытаниям (изгиб, перегиб и др.) с целью определения их пригодности к различным технологическим операциям в процессе использования.

Металлические сплавы, твердые растворы и интерметаллические соединения

Металлические сплавы - это вещества, образовавшиеся в результате затвердевания жидких расплавов, состоящих из двух или нескольких компонентов. К компонентам, образующим сплав, относятся химически индивидуальные вещества или их устойчивые соединения. Металлические сплавы состоят либо только из металлов (например, сплав меди и цинка - латунь), либо из металлов с небольшим содержанием неметаллов (сплавы железа с углеродом - чугун и сталь). Изменяя компоненты и соотношения между ними, получают сплавы с самыми разнообразными физическими, механическими или химическими свойствами. После затвердевания в составе сплавов могут образоваться твердые растворы, химические соединения или механические смеси.

Твердые растворы возникают в результате проникновения в кристаллическую решетку основного металла (растворителя) атомов другого металла или неметалла (растворимого компонента). По типу расположения атомов растворимого компонента в кристаллической решетке растворителя различают твердые растворы замещения и внедрения ().

Твердый раствор замещения возникает в результате замены части атомов в кристаллической решетке основного металла атомами растворяемого компонента. Примерами твердых растворов замещения служат сплавы меди с никелем, железа с никелем, хромом, кремнием, марганцем.

В твердом растворе внедрения атомы растворенного компонента размещаются в свободных промежутках между атомами основного металла. Обычно твердый раствор внедрения возникает в системе, состоящей из металла и неметалла, например в сплаве железа с углеродом. При образовании твердых растворов металлов повышаются прочность, твердость и электрическое сопротивление, но понижается пластичность в сравнении с основным металлом. Твердые растворы составляют основу технических сплавов: конструкционных, нержавеющих и кислотоупорных сталей, латуней, бронз.

Интерметалли́д (интерметаллическое соединение) — химическое соединение из двух или более металлов. Интерметаллиды, как и другие химические соединения, имеют фиксированное соотношение между компонентами. Интерметаллиды обладают, как правило, высокой твёрдостью и высокой химической стойкостью. Очень часто интерметаллиды имеют более высокую температуру плавления, чем исходные металлы. Почти все интерметаллиды хрупки, так как связь между атомами в решётке становится ковалентной или ионной (например, в ауриде цезия CsAu), а не металлической. Некоторые из них имеют полупроводниковые свойства, причём, чем ближе к стехиометрии соотношение элементов, тем выше электрическое сопротивление. Никелид титана, известный под маркой «нитинол», обладает памятью формы - после закалки изделие может быть деформировано механически, но примет исходную форму при небольшом нагреве.

Некоторые из металлов могут реагировать друг с другом очень активно. Например, реакция цинка и никеля при температурах выше 1000 °C носит взрывной характер.

1-основные понятия химии: атом, молекула, атомная и молекулярная массы, простое и сложное вещество, химический эквивалент. Моль.

2-сновные законы химии

3-основные классы неорганических веществ: кислоты, соли, основания, оксиды

4-периодический закон и периодическая система элементов Менделеева, ее структура

5-основные этапы развития представлений о строении атома и ядра. Квантово-механическая модель атома

6-понятие об электронном облаке. Волновая функция.

9-емкость энергетических уровней и подуровней. Строение электронных оболочек атомов и связь периодической системы со строением атомов.

10-энергия ионизации, энергия сродства к электрону, электроотрицательность. Ионизационный потенциал.

11-природа химической связи, теория валентности. Понятие о степени окисления.

13-пи и сигма связи. Длина связи, энергия связи

14-донорно-акцепторный механизм образования ковалентной связи.

17-водородная связь. Механизм образования водородной связи

19-растворы, определение, классификация. понятие о концентрации растворов способы ее выражения

20-теория электролитической диссоциации, степень и константа электролитической диссоциации. Закон разведения Оствальда

21-сильные и слабы электролиты

22-вода, ионное произведение воды. Водородный показатель среды.

23-активность, коэффициент активности. Ионная сила растворов. Связь между коэффициентом активности и ионной силой раствора.

24-гидролиз солей степень и константа гидролиза

25-скорость химической реакции, влияние температуры на скорость хим. Реак. Правило Вант-Гоффа. Уравнение Аррениуса.

26-порядок и молекулярность реакций. Энергия активации, ее физический смысл

27-влияние концентрации реагентов на скорость химической реакции закон действующих масс. Константа скорости химической реакции и ее физический смысл.

29-обратимость хим. Реак. Влияние концентрации. Давления и температуры на химическое равновесие. Принцип ле-шателье. Константа хим. Равновесия

30-определение электрохимических процессов. Понятие об электродном потенциале. Стандартный электродный потенциал. Уравнение нернста для расчета потенциала металлического электрода.

31-ГЭ. ЭДС ГЭ. Концентрационный элемент

32-газовые электроды. Расчет потенциалов водородного и кислородного электродов.

34-кинетика электродных процессов. Концентрационная и электрохимическая поляризация.

35-электролиз, законы Фарадея, электролиз с растворимым и нерастворимым анодом(в расплаве и в растворе). Выход по току.

37-термодинамика и кинетика коррозии.

39-металлические сплавы, твердые растворы и интерметаллические соединения.

Общие сведения о металлах и сплавах

Металлы — кристаллические вещества, характеризующиеся высокими электро- и теплопроводностью, ковкостью, способностью хорошо отражать электромагнитные волны и другими специфическими свойствами. Свойства металлов обусловлены их строением: в их кристаллической решетке есть не связанные с атомами электроны, которые могут свободно перемещаться.

В технике обычно применяют не чистые металлы, а сплавы, что связано с трудностью получения чистых веществ, а также с необходимостью придания металлам требуемых свойств.

Сплавы — это системы, состоящие из нескольких металлов или металлов и неметаллов. Сплавы обладают всеми характерными свойствами металлов. В строительстве применяют сплавы железа с углеродом (сталь, чугун), меди и олова (бронза) и меди и цинка (латунь) и др. На практике термин «металлы» распространяют и на сплавы, поэтому далее он относится и к металлическим сплавам.

Применяемые в строительстве металлы делят на две группы: черные и цветные.

К черным металлам относятся железо и сплавы на его основе (чугун и сталь).

Сталь — сплав железа с углеродом (до 2,14%) и другими элементами. По химическому составу различают стали углеродистые и легированные, а по назначению — конструкционные, инструментальные и специальные.

Чугун — сплав железа с углеродом (более 2,14%), некоторым количеством марганца (до 2%), кремния (до 5%), а иногда и других элементов. В зависимости от строения и состава чугун бывает белый, серый и ковкий.

К цветным металлам относятся все металлы и сплавы на основе алюминия, меди, цинка, титана и др.

Широкое использование металлов в строительстве и других отраслях экономики объясняется сочетанием у них высоких физико-механических свойств с технологичностью.

Металлы обладают высокой прочностью, причем прочность на изгиб и растяжение у них практически такая же, как и на сжатие (у каменных материалов прочность на изгиб и растяжение в 10… 15 раз ниже прочности на сжатие). Так, прочность стали более чем в 10 раз превышает прочность бетона на сжатие и в 100…200 раз прочность на изгиб и растяжение; поэтому, несмотря на то что плотность стали (7850 кг/м ) в 3 раза выше плотности конструкционного бетона (2400 + 50 кг/м ), металлические конструкции при той же несущей способности значительно легче и компактнее бетонных. Этому способствует также высокий модуль упругости стали (в 10 раз выше, чем у бетона и других каменных материалов). Еще более эффективны конструкции из легких сплавов.

Металлы очень технологичны: во-первых, изделия из них можно получать различными индустриальными методами (прокатом, волочением, штамповкой и т. п.), во-вторых, металлические изделия и конструкции легко соединяются друг с другом с помощью болтов, заклепок и сварки.

Однако с точки зрения строителя металлы имеют и недостатки. Высокая теплопроводность металлов требует устройства тепловой изоляции металлоконструкций зданий. Хотя металлы негорючи, но металлические конструкции зданий необходимо специально защищать от действия огня. Это объясняется тем, что при нагревании прочность металлов резко снижается и металлоконструкции теряют устойчивость и деформируются. Большой ущерб экономике наносит коррозия металлов. Металлы широко применяют в других отраслях промышленности, поэтому их использование в строительстве должно быть обосновано экономически.

Наука, изучающая состав, строение и свойства металлов и сплавов, а также зависимость между внутренним строением (структурой) и свойствами металлических сплавов называется металловедением.

Отличительными особенностями металлов являются: блеск, ковкость, непрозрачность, теплопроводность и электропроводность.

Таким образом, под термином «металлы» понимают всю группу металлических материалов — чистые металлы и сплавы. Чистые металлы используют только в тех случаях, когда от материала требуются высокие показатели теплопроводности, электропроводности и высокая температура плавления. Эти свойства у них всегда выше, чем у сплавов.

Основными материалами при монтаже металлоконструкций, трубопроводов и оборудования являются сплавы, имеющие по сравнению с чистыми металлами следующие преимущества: – более высокую прочность; – способность изменять свойства при изменении химического состава; » – способность улучшать свойства под влиянием термической обработки; – более низкую температуру плавлеиия; – большую текучесть в расплавленном состоянии; – меньшую усадку.

Указанные свойства сплавов имеют большое практическое значение, так как позволяют получать всевозможные металлоконструкции с показателями, отвечающими требуемым эксплуатационным условиям.

Применяемые в строительстве сплавы делят на две группы:
I группа — сплавы на основе железа (сталь, чугун);
II группа—сплавы на основе металлов (сплавы на медной, алюминиевой, магниевой и другой основе — бронза, латунь, силумины и др.).

К физическим свойствам металлов относятся: удельный вес, теплопроводность, электропроводность и температура плавления.

Удельный вес — это вес 1 см3 металла, сплава или любого другого вещества, выраженный в граммах. Например, удельный вес железа равен 7,88 г/см3. Удельные веса наиболее распространенных металлов приведены в табл. 1.

Теплопроводность — способность металлов и сплавов проводить тепло. Теплопроводность измеряется количеством тепла, которое проходит по металлическому стержню сечением 1 см2 за 1 мин.

Электропроводность — способность металлов и, сплавов проводить электричество. Это свойство наиболее характерно для чистых металлов. Для сплавов более характерным является свойство, обратное электропроводности — электросопротивление.

Удельным электрическим сопротивлением называется сопротивление проводника сечением 1 мм2 и длиной 1 м, выраженное в омах.

Температура плавления — степень нагрева, при которой металл переходит из твердого состояния в жидкое (табл. 1).

К механическим свойствам металлов и сплавов относят: твердость, прочность, упругость, пластичность.

Эти свойства обычно являются решающими показателями, определяющими способность металлов сопротивляться прилагаемым к детали, узлам и металлоконструкциям внешним нагрузкам, характеризующим пригодность сплава” или изделия к различным условиям эксплуатации.

Твердость — способность металла сопротивляться внедрению в его поверхность другого, более твердого тела. ,

Прочность — способность металла сопротивляться разрушению при действии на него нагрузки.

Упругость—способность металла принимать первоначальную форму и размеры после прекращения действия нагрузки.

Пластичность (вязкость) — способность металла изменять первоначальные формы и размеры под действием нагрузки и сохранять приданные формы и размеры после прекращения ее действия.

К технологическим свойствам относят обрабатываемость резанием, ковкость, жидкотекучесть, усадку, свариваемость и другие свойства, определяющие пригодность материала к обработке тем или иным способом.

Обрабатываемость резанием — способность металла более или менее легко обрабатываться острым режущим инструментом.

Ковкость — способность металла поддаваться обработке давлением, принимать новую форму и размеры под влиянием прилагаемой нагрузки без нарушения целостности.

Жидкотекучесть — способность расплавленного металла или сплава заполнять литейную форму.

Усадка—уменьшение объема отливки при охлаждении сплава.

Свариваемость — способность металлов образовывать прочные соединения отдельных металлических заготовок путем их местного нагрева до расплавленного или пластического состояния.

Химические свойства металлов — это способность металлов вступать в соединения с различными веществами, и в первую очередь с кислородом. Чем легче металл вступает в соединение с другими элементами, тем легче он разрушается. Разрушение металлов и сплавов под действием окружающей среды называется коррозией.

Сплавы металлов

Металлы используются человеком уже много тысячелетий. По именам металлов названы определяющие эпохи развития человечества: Бронзовый Век, Железный Век, Век Чугуна и т.д. Ни одно металлическое изделие из числа окружающих нас не состоит на 100% из железа, меди, золота или другого металла. В любом присутствуют сознательно введенные человеком добавки и попавшие помимо воли человека вредные примеси.

Абсолютно чистый металл можно получить только в космической лаборатории. Все остальные металлы в реальной жизни представляют собой сплавы — твердые соединения двух или более металлов (и неметаллов), полученные целенаправленно в процессе металлургического производства.

Классификация однородности сплавов

Классификация однородности сплавов

Классификация

Металлурги классифицируют сплавы металлов по нескольким критериям:

  1. метод изготовления:
    • литые;
    • порошковые;
  2. технология производства:
    • литейные;
    • деформируемые;
    • порошковые;
  3. однородность структуры:
    • гомогенные;
    • гетерогенные;

Виды сплавов по их основе

Виды сплавов по их основе

  • черные (железо);
  • цветные (цветные металлы);
  • редких металлов (радиоактивные элементы);
  • двойные;
  • тройные;
  • и так далее;
  • тугоплавкие;
  • легкоплавкие;
  • высокопрочные;
  • жаропрочные;
  • твердые;
  • антифрикционные;
  • коррозионностойкие и др.;
  • конструкционные;
  • инструментальные;
  • специальные.

Металлы и сплавы на их основе имеют различные физико-химические характеристики.

Металл, имеющий наибольшую массовую долю, называют основой.

Свойства сплавов

Свойства, которыми обладают металлические сплавы, подразделяются на:

Механические свойства

  • Прочность-характеристика силы противостояния механическим нагрузкам и разрушению.
  • Твердость-способность к сопротивлению внедрению в материал твердых тел.
  • Упругость-возможность восстановить исходную форму тела после деформации, вызванной внешней нагрузкой.
  • Пластичность — свойство, обратное упругости. Определяет способность материала к изменению формы тела без его разрушения под приложенной нагрузкой и сохранения этой новой формы.
  • Вязкость — способность сопротивляться быстро возрастающим (ударным) нагрузкам

Для количественного выражения этих свойств вводят специальные физические величины и константы, такие, как предел упругости, модуль Гука, коэффициент вязкости и другие.

Основные виды сплавов

Самые многочисленные виды сплавов металлов изготавливаются на основе железа. Это стали, чугуны и ферриты.

Сталь — это вещество на основе железа, содержащее не более 2,4% углерода, применяется для изготовления деталей и корпусов промышленных установок и бытовой техники, водного, наземного и воздушного транспорта, инструментов и приспособлений. Стали отличаются широчайшим диапазоном свойств. Общие из них — прочность и упругость. Индивидуальные характеристики отдельных марок стали определяются составом легирующих присадок, вводимых при выплавке. В качестве присадок используется половина таблицы Менделеева, как металлы , так и неметаллы. Самые распространенные из них — хром, ванадий, никель, бор, марганец, фосфор.

Легированная сталь

Если содержание углерода более 2,4% , такое вещество называют чугуном. Чугуны более хрупкие, чем сталь. Они применяются там, где нужно выдерживать большие статические нагрузки при малых динамических. Чугуны используются при производстве станин больших станков и технологического оборудования, оснований для рабочих столов, при отливке оград, решеток и предметов декора. В XIX и в начале XX века чугун широко применялся в строительных конструкциях. До наших дней в Англии сохранились мосты из чугуна.

Чугунные радиаторы

Вещества с большим содержанием углерода, имеющие выраженные магнитные свойства, называют ферритами. Они используются при производстве трансформаторов и катушек индуктивности.

Сплавы металлов на основе меди, содержащие от 5 до 45% цинка, принято называть латунями. Латунь мало подвержена коррозии и широко применяется как конструкционный материал в машиностроении.

Желтая латунь

Если вместо цинка к меди добавить олово, то получится бронза. Это, пожалуй, первый сплав, сознательно полученный нашими предками несколько тысячелетий назад. Бронза намного прочнее и олова, и меди и уступает по прочности только хорошо выкованной стали.

Вещества на основе свинца широко применяются для пайки проводов и труб, а также в электрохимических изделиях, прежде всего, батарейках и аккумуляторах.

Двухкомпонентные материалы на основе алюминия, в состав которых вводят кремний, магний или медь, отличаются малым удельным весом и высокой обрабатываемостью. Они используются в двигателестроении, аэрокосмической промышленности и производстве электрокомпонентов и бытовой техники.

Цинковые сплавы

Сплавы на основе цинка отличаются низкими температурами плавления, стойкостью к коррозии и отличной обрабатываемостью. Они применяются в машиностроении, производстве вычислительной и бытовой техники, в издательском деле. Хорошие антифрикционные свойства позволяют использовать цинковые сплавы для вкладышей подшипников.

Титановые сплавы

Титан не самый доступный металл, он сложен в производстве и тяжело обрабатывается. Эти недостатки искупаются его уникальными свойствами титановых сплавов: высокой прочностью, малым удельным весом, стойкостью к высоким температурам и агрессивным средам. Эти материалы плохо поддаются механической обработке, но зато их свойства можно улучшить с помощью термической обработки.

Легирование алюминием и небольшими количествами других металлов позволяет повысить прочность и жаростойкость. Для улучшения износостойкости в материал добавляют азот или цементируют его.

Область применения титановых сплавов

Область применения титановых сплавов

Металлические сплавы на основе титана используются в следующих областях:

      • аэрокосмическая;
      • химическая;
      • атомная;
      • криогенная;
      • судостроительная;
      • протезирование.

    Алюминиевые сплавы

    Если первая половина XX века была веком стали, то вторая по праву назвалась веком алюминия.

    Трудно назвать отрасль человеческой жизнедеятельности, в которой бы не встречались изделия или детали из этого легкого металла.

    Алюминиевые сплавы подразделяют на:

        • Литейные (с кремнием). Применяются для получения обычных отливок.
        • Для литья под давлением (с марганцем).
        • Увеличенной прочности, обладающие способностью к самозакаливанию (с медью).

        Основные преимущества соединений алюминия:

            • Доступность.
            • Малый удельный вес.
            • Долговечность.
            • Устойчивость к холоду.
            • Хорошая обрабатываемость.
            • Электропроводность.

            Основным недостатком сплавных материалов является низкая термостойкость. При достижении 175°С происходит резкое ухудшение механических свойств.

            Еще одна сфера применения — производство вооружений. Вещества на основе алюминия не искрят при сильном трении и соударениях. Их применяют для выпуска облегченной брони для колесной и летающей военной техники.

            Весьма широко применяются алюминиевые сплавные материалы в электротехнике и электронике. Высокая проводимость и очень низкие показатели намагничиваемости делают их идеальными для производства корпусов различных радиотехнических устройств и средств связи, компьютеров и смартфонов.

            Слитки из алюминиевых сплавов

            Слитки из алюминиевых сплавов

            Присутствие даже небольшой доли железа существенно повышает прочность материала, но также снижает его коррозионную устойчивость и пластичность. Компромисс по содержанию железа находят в зависимости от требований к материалу. Отрицательное влияние железа скомпенсируют добавлением в состав лигатуры таких металлов, как кобальт, марганец или хром.

            Конкурентом алюминиевым сплавам выступают материалы на основе магния, но ввиду более высокой цены их применяют лишь в наиболее ответственных изделиях.

            Медные сплавы

            Обычно под медными сплавами понимают различные марки латуни. При содержании цинка в 5-45% латунь считается красной (томпак), а при содержании в 20-35%- желтой.

            Благодаря отличной обрабатываемости резанием, литьем и штамповкой латунь — идеальный материал для изготовления мелких деталей, требующих высокой точности. Шестеренки многих знаменитых швейцарских хронометров сделаны из латуни.

            Латунь — смесь меди и цинка Медь и ее сплавы

            Малоизвестный сплав меди и кремния называют кремнистой бронзой. Он отличается высокой прочностью. По некоторым источникам, из кремнистой бронзы ковали свои мечи легендарные спартанцы. Если вместо кремния добавить фосфор, то получится отличный материал для производства мембран и листовых пружин.

            Твердые сплавы

            Это устойчивые к износу и обладающие высокой твердостью материалы на основе железа, к тому же сохраняющие свои свойства при высоких температурах до 1100 о С.

            В качестве основной присадки применяются карбиды хрома, титана, вольфрама, вспомогательными являются никель, кобальт, рубидий, рутений или молибден.

            Читайте также: