Соли металлов окрашивают пламя

Обновлено: 19.05.2024

Занятие 11.
Демонстрационный эксперимент по теме
«s- и p-металлы»

♣ Окрашивание пламени солями металлов

Соли некоторых элементов-металлов (* каких?) при внесении в пламя окрашивают его. Это свойство можно использовать в качественном анализе для обнаружения катионов этих элементов в исследуемом образце.

Для проведения эксперимента требуется нихромовая проволоч­ка. Ее следует промыть в конц. HCl и прокалить в пламени горелки. Если пламя при внесении проволочки окрашено, повторить обра­ботку HCl.

Погрузить проволочку в раствор исследуемой соли и внести в пламя. Отметить окраску. После каждого опыта промывать и прока­ливать проволочку до исчезновения окраски пламени.

♥ Опыты по теме «Металлы I и II групп»

1. Окрашивание пламени

Проделать опыт по окрашиванию пламени хлоридами щелочных и щелочноземельных металлов. * Почему берут хлориды, а не другие соли?

Окрашивание пламени солями (слева направо): лития, натрия, калия, рубидия, цезия, кальция, стронция, бария.

(фото пламени калия – В.В. Загорский)

2. Горение магния на воздухе

Кусочек ленты магния взять тигельными щипцами и сжечь над фарфоровой чашкой. Доказать, что представляет собой продукт. * Как это сделать?

3. Взаимодействие магния с водой и кислотами

А) Налить в пробирку немного воды, добавить фенолфталеин и всыпать немного порошка магния. При необходимости нагреть пробирку. * Вспомните, как кальций взаимодействует с водой.

Б) Налить в одну пробирку 1 мл конц. HCl, а во вторую – 1 мл конц. HNO3. Поместить в каждую пробирку по кусочку ленты магния. * Какие продукты образуются? Как это можно доказать?

♥ Опыты по теме «Алюминий»

1. Взаимодействие алюминия с кислотами и щелочами

Изучить в пробирках взаимодействие гранул алюминия с растворами:

Наблюдения оформить в виде таблицы.

* Вспомните, как алюминий реагирует с NaOH.

2. Гидроксид алюминия

Получить гидроксид алюминия в трех пробирках прикапывани­ем 1 М раствора аммиака к 1 мл раствора соли алюминия. Подейство­вать на гидроксид в первой пробирке избытком раствора аммиака, во второй – раствором HCl, в третьей – раствором NaOH. В раствор, полученный в третьей пробирке (* что представляет собой этот раствор?), пропустить СО2. * Как и в каком приборе его получить?

3. Гидролиз солей алюминия

А) Определить рН раствора хлорида алюминия. * Объяснить результат с привлечением константы соответствующего процесса.

Б) К раствору хлорида алюминия прилить 1 М раствор карбона­та натрия.

4. Алюминотермия (один из опытов, на выбор, проводится под тягой, в присутствии преподавателя)

А) Алюминотермическое получение хрома

В шамотовый тигель (или фунтик, сделанный из асбеста) поместить сухую однородную смесь 3 г порошка фторида кальция (* для чего он нужен?), порошков 1 г Cr2O3 и 0,8 г дихромата калия, 0,5 г свеженапиленного порошка алюминия. Сделать посредине ямку, насыпать в нее смесь порошка магния с пероксидом ба­рия, в которую вставить длинную ленту магния. Тигель поместить в песчаную баню так, чтобы он весь находился в песке. Горящей лучиной, вставленной в длинную стеклянную трубку, поджечь ленту магния. По окончании реакции дать тиглю остыть, разбить его и извлечь «королек» хрома.

(фото В. Богданова)

Б) Алюминотермическое получение железа

В шамотовый тигель (или фунтик, сделанный из асбеста) поместить сухую однородную смесь 1,8 г оксида железа (III) и 0,5 г свеженапиленного порошка алюминия. Сделать посредине ямку, насыпать в нее 0,8 г перманганата калия. В середине кучки перманганата сделать с помощью пустой пробирки еще одну ямку. Тигель поместить в песчаную баню так, чтобы он весь находился в песке. Налить сверху немного глицерина так, чтобы он соприкасался только с перманганатом, но не с поверхностью реакционной смеси. По окончании реакции дать тиглю остыть, разбить его и извлечь «королек» железа.

Цвет пламени при горении соединений, содержащих металлы - стронций, литий, кальций, натрий, железо, молибден, барий, медь, бор, теллур, таллий, селен, мышьяк, индий, цезий, рубидий, калий, свинец, сурьма, цинк. Цвет пламени спирта.

Цвет пламени при горении соединений, содержащих металлы - стронций, литий, кальций, натрий, железо, молибден, барий, медь, бор, теллур, таллий, селен, мышьяк, индий, цезий, рубидий, калий, свинец, сурьма, цинк. Цвет пламени спирта.

Про спирт: хотя чистый этиловый спирт горит синим пламенем, а метиловый спирт горит зелёным пламенем - технические присадки поменяют цвет в соответствии с таблицей ниже, что не позволяет достоверно отличить метиловый спирт от этилового по цвету пламени, да и остальные способы малонадежны. Не пейте неизвестно какой спирт - вероятность умереть, если это метанол, выше 80%.

Металл, входящий в соединение Цвет пламени Цвет пламени при горении соединений, содержащих металлы - стронций, литий, кальций, натрий, железо, молибден, барий, медь, бор, теллур, таллий, селен, мышьяк, индий, цезий, рубидий, калий, свинец, сурьма, цинк.
Стронций Sr Темно-красный
Литий Li Малиновый
Кальций Ca Кирпично-красный
Натрий Na Желтый
Железо Fe Светло-желтый
Молибден Mb Желто-зеленоватый
Барий Ba Желтовато-зеленый
Медь Cu Ярко-зеленый или сине-зеленый
Бор B Бледно-зеленый
Теллур Te Зеленый
Таллий Tl Изумрудный
Селен Se Голубой
Мышьяк As Бледно-синий
Индий in Сине-фиолетовый
Цезий Cs Розово-фиолетовый
Рубидий Rb Красно-фиолетовый
Калий K Фиолетовый
Свинец Pb Голубой
Сурьма Sb Зелено-синий
Цинк Zn Бледно сине-зеленый

Дополнительная информация от Инженерного cправочника DPVA, а именно - другие подразделы данного раздела:

Если Вы не обнаружили себя в списке поставщиков, заметили ошибку, или у Вас есть дополнительные численные данные для коллег по теме, сообщите , пожалуйста.
Вложите в письмо ссылку на страницу с ошибкой, пожалуйста.

Окрашивание пламени как один из методов аналитической химии.

Светлана Гуркина

Пламя может иметь разный цвет, все зависит лишь от соли металла, которую в нее добаляют.

ВложениеРазмер
analiticheskaya_himiya_dyldina_yu.docx 437.99 КБ

Предварительный просмотр:

Окрашивание пламени как один из методов аналитической химии.

9г кл., МАОУ СОШ № 40

Гуркина Светлана Михайловна,

Учитель биологии и химии.

  1. Введение.
  2. Глава 1 Аналитическая химия.
  3. Глава 2 Методы аналитической химии.
  4. Глава 3 Реакции окрашивания пламени.
  5. Заключение.

С самого раннего детства меня завораживала работа ученых-химиков. Они казались волшебниками, которые познав какие-то скрытые законы природы, творили неведомое. В руках этих волшебников вещества меняли цвет, загорались, нагревали или охлаждались, взрывались. Когда я пришла на уроки химии, то занавеса начала приподниматься, и я начала понимать, как происходят химические процессы. Пройденного курса химии мне оказалось мало, поэтому я решила поработать над проектом. Хотелось, чтобы тема, над которой я работаю, была содержательной, помогла лучше подготовиться к экзамену по химии и удовлетворила мою тягу к красивым и ярким реакциям.

Окрашивание пламени ионами металлов в разные цвета мы изучаем еще на уроках химии, когда проходим щелочные металлы. Когда я заинтересовалась этой темой, оказалось, что в данном случае, она не раскрыта до конца. Я решила изучить ее более подробно.

Цель: с помощью данной работы я хочу научиться определять качественный состав некоторых солей.

  1. Познакомиться с аналитической химией.
  2. Изучить методы аналитической химии и выбрать наиболее приемлемый для моей работы.
  3. С помощью эксперимента определить какой металл входит в состав соли.

Аналитическая химия — раздел химии, изучающий химический состав и отчасти структуру веществ.

Цель данной науки заключается в определении химических элементов или групп элементов, входящих в состав веществ.

Предмет её изучения является совершенствование существующих и разработка новых методов анализа, поиск возможностей их практического применения, исследование теоретических основ аналитических методов.

В зависимости от задачи методов различают качественный и количественный анализ.

  1. Качественный анализ — совокупность химических, физико-химических и физических методов, применяемых для обнаружения элементов, радикалов и соединений, входящих в состав анализируемого вещества или смеси веществ. В качественном анализе можно использовать легко выполнимые, характерные химические реакции, при которых наблюдается появление или исчезновение окрашивания, выделение или растворение осадка, образование газа и др. Такие реакции называют качественными и с помощью них можно с легкостью проверить состав вещества.

Качественный анализ чаще всего проводят в водных растворах. Он основан на ионных реакциях и позволяет обнаружить катионы или анионы веществ, которые там содержатся. Основоположником такого анализа считается Роберт Бойль. Он ввёл это представление о химических элементах как о не разлагаемых основных частях сложных веществ, после чего он систематизировал все известные в его время качественные реакции.

  1. Количественный анализ - совокупность химических, физико-химических и физических методов определения соотношения компонентов, входящих в состав

анализируемого вещества. По результатам этого можно определить константы равновесия, произведения растворимости, молекулярные и атомные массы. Такой анализ выполнять сложнее, так как он требует аккуратного и более кропотливого подхода, в ином случае результаты могут давать высокие погрешности и работа будет сведена к нулю.

Количественному анализу обычно предшествует качественный анализ.

Методы химического анализа.

Методы химического анализа делят на 3 группы.

  1. Химические методы основаны на химических реакциях.

В данном случае для анализа можно использовать только такие реакции, которые сопровождаются наглядным внешним эффектом, например изменением окраски раствора, выделением газов, выпадением или растворением осадков и т. п. Эти внешние эффекты и послужат в данном случае аналитическими сигналами. Происходящие химические изменения называют аналитическими реакциями, а вещества, вызывающие эти реакции — химическими реагентами.

Все химические методы делят на две группы:

  1. Реакцию проводят в растворе, так называемым «мокрым путем».
  2. Способ выполнения анализа с твердыми веществами без использования растворителей, такой способ называют «сухим путем». Он делится на пирохимический анализ и анализ методом растирания. При пирохимическом анализе и сследуемое вещество нагревают в пламени газовой горелки. При этом летучие соли (хлориды, нитраты, карбонаты) ряда металлов придают пламени определенную окраску. Другой прием пиротехнического анализа—получение окрашенных перлов (стекол). Для получения перлов соли и оксиды металлов сплавляют с тетраборатом натрия (Na2 В4О7' 10Н2О) или гидрофосфатом натрия-аммония (NaNH4HP04 • 4Н20) и наблюдают окраску образующихся стекол (перлов).
  3. Метод растирания был предложен в 1898 г. Ф. М. Флавицким. Твердое исследуемое вещество растирают с твердым реагентом, при этом наблюдают внешний эффект. Например, соли кобальта с тиоцианатом аммония могут дать синее окрашивание.
  1. При анализе физическими методами изучают физические свойства вещества с помощью приборов, не прибегая к химическим реакциям. К физическим методам можно отнести спектральный анализ, люминесцентный, рентгеноструктурный и другие способы анализов.
  2. С помощью физико-химических методов изучают физические явления, которые происходят в химических реакциях. Например, при колориметрическом методе измеряют интенсивность окраски в зависимости от концентрации вещества, в кондуктометрическом анализе измеряют изменение электрической проводимости растворов .

Реакции окрашивания пламени.

Цель: Изучить окрашивания пламени спиртовки ионами металлов .

В своей работе я решила воспользоваться методом пиротехнического анализа окрашивания пламени ионами металлов.

Исследуемые вещества: соли металлов (фторид натрия, хлорид лития, сульфат меди, хлорид бария, хлорид кальция, сульфат стронция, хлорид магния, сульфат свинца).

Оборудование: фарфоровые чашки, этиловый спирт, стеклянная палочка, концентрированная соляная кислота.

Для проведения работы, я делала раствор соли в этиловом спирте, а затем поджигала. Свой опыт я провела несколько раз, на последнем этапе были отобраны наилучшие образцы, поле чего мы сделали видео.

Летучие соли многих металлов окрашивают пламя в различные цвета, характерные для этих металлов. Окраска зависит от раскаленных паров свободных металлов, которые получаются в результате термического разложения солей при внесении их в пламя горелки. В моем случае к таким солям относились, фторид натрия и хлорид лития, они дали яркие насыщенные цвета.

  1. Реакции окрашивания пламени удаются хорошо как правило только с летучими солями, например с хлоридами, карбонатами и нитратами, а нелетучие соли, такие как бораты, силикаты или фосфаты, перед горением следует смочить концентрированной соляной кислотой для перевода их в летучие хлориды. В моем случае это оказался сульфат меди смоченный концентрированной соляной кислотой, он дал ярко зеленое пламя.
  2. Многие соли металлов дают окрашивание пламени в различные цвета, но иногда, это окрашивание не является ярким и насыщенным.

Химический анализ используется человеком в очень многих областях, на уроках же химии мы знакомимся лишь с небольшой областью этой сложной науки. Приемы, которые используются в пирохимическом анализе, используются в качественном анализе как предварительное испытание при анализе смеси сухих веществ или как проверочные реакции. В качественном анализе реакции «сухим» путем играют только вспомогательную роль, их используют обычно в качестве первичных испытаний и проведения проверочных реакций.

Кроме того, данные реакции используются человеком и в других отраслях, к примеру в фейерверках. Как мы знаем, фейерверк это декоративные огни разнообразных цветов и форм, получаемые при сжигании пиротехнических составов. Так вот в состав фейерверка пиротехники добавляют разнообразные горючие вещества, среди которых широко представлены неметаллические элементы (кремний, бор, сера). В процессе окисления бора и кремния выделяется большое количество энергии, но не образуются газовые продукты, поэтому эти вещества применяются для изготовления взрывателей замедленного действия (чтобы воспламенить другие составы в определенное время). Многие смеси включают органические углеродсодержащие материалы. Например, древесный уголь (применяется в дымном порохе, снарядах для фейерверков) или сахар (дымовые гранаты). Используются химически активные металлы (алюминий, титан, магний), чье горение при высокой температуре дает яркий свет. Это их свойство стали использовать для запуска фейерверков.

В процессе работы, я поняла насколько сложно и важно работать с веществами, не все удалось в полной мере, как бы хотелось. Как правило, на уроках химии не хватает практикой работы, благодаря которой отрабатываются теоретические навыки. Проект помог мне развить этот навык. Кроме того, я с большим удовольствием познакомила, своих одноклассников с результатами своей работы. Это помогло им закрепить теоретический знания.

Соли металлов окрашивают пламя



Цветная химия. Причины окраски соединений и ионов d-элементов

1 Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №112» Авиастроительного района г. Казани.

1 Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа №112» Авиастроительного района г. Казани


Автор работы награжден дипломом победителя III степени

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

«Изучая, экспериментируя, наблюдая,

старайтесь не оставаться у поверхности фактов.

Пытайтесь проникнуть в тайну их возникновения,

настойчиво ищите законы ими управляющие»

Введение

Электроны- это устойчивые элементарные частицы с отрицательным электрическим зарядом, являющиеся составной частью атомов веществ. Движущиеся вокруг ядер атомов электроны образуют энергетические уровни, которые определяют электрические, оптические, химические свойства атомов, ионов и молекул. Важную роль играют электроны, которые принимают участие в образовании химических связей: у атомов элементов главных подгрупп- это электроны внешнего энергетического уровня, у элементов побочных подгрупп- как правило, электроны внешнего и предвнешнего энергетических уровней [1, 5].

С помощью световой, тепловой или иной энергии внешние и частично предвнешние электроны можно привести в возбужденное состояние и тогда происходят настоящие чудеса- вещество или раствор приобретают окраску, излучает видимый свет или другие лучи.

Цель настоящей работы заключалась в изучении некоторых причин существования цвета растворов веществ, испускания видимого света некоторыми веществами и практического использования этих феноменов.

Задачами исследования стали:

1.определение энергии возбуждения электронов у металлов разных групп периодической системы Д.И.Менделеева;

2. изучение проявления явления возбуждения электронов в природе;

3. изучение использования явления возбуждения электронов в науке и практике.

Объектами исследования являлись некоторые соли щелочных, щелочно - земельных, переходных металлов и их растворы; поделочные камни.

Метод исследования- определение энергии возбуждения электронов по цвету пламени.

Установленная в работе связь в ряду: величина энергии возбуждения электронов- строение атома- применение вещества, позволяет

-глубоко изучить причины распространенных свойств и явлений (цвет, свет),

- увидеть межпредметные связи химии, физики, минералогии, искусства.

Таблицы, модели, схемы, которые составлены для работы, могут быть использованы на уроках химии, физики, географии, искусства.

Работа изложена на 14 страницах, содержит 3 рисунка, 2 таблицы, приложение.

Глава 1.

Литературный обзор

Цвета радуги, цветная палитра, цветовое решение интерьера, цветная репродукция - эти словосочетания мы слышим очень часто в повседневной жизни. А цвета есть и в химии!

Словосочетание «цветная химия» - ассоциируется с цветными реакциями, качественными реакциями, реакциями, происходящими с изменением цвета вещества. Наряду с агрегатным состоянием, запахом, прозрачностью, тепло- и электропроводностью, плотностью, температурами плавления и кипения - цвет важное физическое свойство любого вещества.

Изучая в курсе химии 9-го класса раздел «Металлы» [4], я задалась вопросом: «Почему поверенная соль и ее раствор - бесцветные, а медный купорос и его раствор имеют голубой цвет?».

Итак, проблема, которую я планирую решить в ходе исследования - почему одни вещества или растворы имеют цвет, а другие -бесцветные или другими словами: в чем причина существования цвета?

Передо мной растворы веществ, чьи формулы- NaCl , LiClO4, ZnSO 4, FeSO 4, CuSO 4, K 2 Cr 2 O 7, KCrO 4, KMnO 4. Это соли, т.к. - это вещества, которые в воде диссоциируют на катионы металлов и анионы кислотных остатков [2]. Невооруженным глазом заметно, что растворы NaCl , LiClO4, ZnSO 4, бесцветные; FeSO 4 – грязно-желтый, CuSO 4 – голубой, K 2 Cr 2 O 7 - оранжевый, KCrO 4 - ярко-желтый, KMnO4 -фиолетовый. Приведу уравнения диссоциации этих солей:

Можно сделать вывод о том, что если соли диссоциируют в воде на ионы, то они являются материальными носителями окраски растворов окрашенных солей- FeSO 4, CuSO 4, K 2 Cr 2 O 7, KCrO 4, KMnO4.

В дополнительной литературе прочитала [7, 9], что существуют ионы, которые в гидратированном состоянии бесцветны- Na + , K + , Zn 2- Cl -, NO 3 - , SO 4 2- и ионы, которые в гидратированном виде окрашены – Cu 2+ , Fe 2+ , MnO 4 - , Cr 2 O 7 2- , Co 2+ , Ni 2+ .

Таким образом,первая причина существования окрашенных веществ- ионный состав вещества.

Однако, при некоторых условиях цвет вещества или раствора не проявляется. Когда это бывает? В темноте! С чем это связано? Видимо, цвет вещества - это результат взаимодействия вещества и света. Обратимся к рисунку № 1

Рис.№1 Причина существования окраски веществ

Когда свет солнца падает на вещество, он может полностью отразится от вещества - в этом случае вещество кажется нам белым. Если свет полностью поглощается веществом - мы видим его черным! Но если свет с определенной длиной волны отражается, а свет с другой длиной волны поглощается, то мы видим вещество окрашенным. Окраска вещества определяется длинами волн отраженного от него света.

Поглощение света ионами металлов обусловлено наличием неспаренных d-электронов в этих ионах. Неспаренные электроны поглощают порцию световой энергии и переходят на более высокий энергетический подуровень в пределах уровня (рис.2) [8]. Переход электрона на более высокий подуровень называют возбуждением электрона. Затем электрон спускается на низкий энергетический подуровень и при этом спускает энергию в виде окрашенного света, его мы видим, как цвет вещества.

Рис.2 Возбуждение d -электрона светом

Таким образом, вторая причина существования окраски вещества кроется в строении атома элемента.

А может ли быть другой источник энергии, кроме световой, для возбуждения электронов? Да! Тепловая!

При нагревании вещество также испускает лучи. В 1900 году М.Планк (Германия) высказал предположение, что вещества испускают и поглощают энергию дискретными порциями, названными квантами.

При квантовом переходе из одного энергетического состояния в другое выделяется или поглощается энергия, что объясняет происхождение атомных спектров. Спектр служит одной из важнейших характеристик атома и отражает его внутреннее строение.

Например, при внесении металла или его соли в пламя горелки образующийся пар взятого вещества, состоящий из атомов или ионов металлов, поглощает и испускает фотоны (кванты излучения) с определенной длинной волны λ. Если λ соответствует видимой области спектра, то пламя окрашивается в определенный цвет.

Рис.3 Длина волны λ видимогосвета спектра испускания.

По цвету пламени, сравнивая его со спектром видимой области (рис.3), определяем λ и рассчитываем энергию активации Еа электронов в атомах или ионах исследуемого металла по формуле Планка:

Еа = hν = h ( c / λ), где

h =6,6 · 10 -34 Дж с –постоянная Планка;

c = 3 · 10 8 м/с –скорость света.

Глава 2.

Объекты и методы исследования

2.1 Характеристика объектов.

2.1.1. Соли щелочных, щелочноземельного и переходных металлов.

Исследуемые объекты приведены в таблице №1.

Соли щелочных металлов

Соль щелочноземельного металла

Соли d -элементов

LiClO 4 - хлорат лития, соль белого цвета

NaCl - хлорид натрия, соль белого цвета

SrCl 2-хлорид стронция, соль белого цвета

CuSO 4-сульфат меди ( II ), соль белого цвета

NiCl 2-хлорид никеля ( II ), соль зеленого цвета

ZnSO 4-сульфат цинка, соль белого цвета

Таб. 1 Соли щелочных, щелочноземельного металла, соли d -элементов.

2.2 Методика исследования энергии возбуждения электронов в атомах или ионах металлов

Чистую и предварительно прокаленную стальную проволоку погрузить в соль металла, а затем внести в не коптящее пламя спиртовки. Отметить цвет пламени (Приложение, фото 1-5). Пользуясь рисунком 3 (спектром видимой области), определить длину волн испускаемых фотонов и рассчитать энергию активации электронов атома исследуемого металла [10].

2.3. Полученные результаты и расчеты.

Результаты наблюдений и расчетов занесли в таблицу №2 «Длина волны испускаемых фотонов и энергия активации электронов атомов»

Энергия активации электронов Еа, Дж

3,046 . 10 -19

3,41 . 10 -19

3,09 . 10 -19

3,96 . 10 -19

Таб.2 Длина волны испускаемых фотонов и энергия активации электронов атомов

Из таблицы видно, что самая низкая энергия возбуждения электронов у атомов щелочных металлов, причем среди щелочных металлов уменьшение происходит от лития к натрию. Это закономерно, т. к. в пределах подгруппы щелочных металлов наблюдается рост радиуса атомов и легкость отдачи единственного внешнего электрона.

Энергия возбуждения электронов щелочноземельного металла стронция должна быть больше энергии возбуждения электронов щелочных металлов, т.к. происходит компактизация атомов в пределах периода и увеличение числа внешних электронов до двух.

Самая высокая энергия возбуждения электронов в атомах переходных элементов или d - элементов. Это объясняется особенностью строения атомов: происходит застройка d -подуровней предвнешнего уровня, т.к. s -подуровень их внешнего уровня обычно уже заполнен до того, как начинается заполнение d -подуровней в предшествующем энергетическом уровне. Свойства (например, химические) этих элементов определяются участие электронов обоих указанных энергетических уровней.

Глава 3.

Явление возбуждения электронов и его практическое использование

Каждый элемент имеет характерное только для него распределение электронов в атомах, а, следовательно, и совершенно специфическое расположение электронных энергетических уровней. Отсюда следует, что длины волн и частоты излучения, поглощаемого или испускаемого при перескоках электронов с одного энергетического подуровня на другие, тоже совершенно индивидуальны для каждого элемента.

Это явление используется на практике в фотоэлементах, атомной спектроскопии, люминесцентном освещении, лазере и др. Когда мы любуемся произведениями искусства- поделками из малахита, украшениями из бирюзы-мы в конечном счете любуется результатом возбуждения электронов в ионах металлов.

Фотоэлемент

Малое значение энергии возбуждения электронов щелочных металлов, в частности цезия, широко используется человеком [3]. У цезия внешний электрон может совсем «уйти» с поверхности металла. Работа выхода электрона- энергия ионизации («труд», который затрачивает световой луч, чтобы отнять у атома электрон) у цезия минимальна, а это значит, что он –самый подходящий материал для фотоэлементов – приборов, превращающих лучи света в электрический ток.

Все, кто пользуется услугами метрополитена, каждый день проходят мимо фотоэлементов. Они вмонтированы в конт­рольные турникеты, устроенные очень просто: с одной сто­роны— фотоэлемент, с другой — источник света, направляю­щий луч на своего «визави». Стоит нам, не опустив предвари­тельно жетона или монеты, пересечь луч, фотоэлемент включит механизм рычагов, и они преградят нам путь.

Фотоэлемент — прибор несложный и выполняет разную работу: включает фонари, останавливает станки, открывает двери, сортирует мелкие предметы, подсчитывает число деталей, проплывающих мимо него на конвейере, про­веряет, достаточно ли хорошо отшлифована поверхность шари­ков для подшипников, читает запись на звуковой дорожке киноленты.

Без фотоэлементов немыслима была бы сама идея передачи изображения на сотни и тысячи километров и копирование обрат­ной стороны Луны.

Фотоэлектрические свойства цезия позволили создать интроскоп — прибор, позволяющий заглянуть внутрь непрозрач­ных тел и заметить в них возможные дефекты. Чувствитель­ность цезия к инфракрасным лучам лежит в основе конструк­ции «ночезрительных труб» — так М. В. Ломоносов называл приборы, о которых он мог только мечтать. А сегодня оптический «глаз», способный видеть в темноте, помогает чело­веку ночью вести автомобиль, прицельно стрелять, обнару­живать различные объекты.

Спектроскопия.

При спектроскопии на образец вещества направляют соответствующее излучение (инфракрасное, ультрафиолетовое и др.). Различные химические вещества по-разному поглощают излучение в зависимости от их атомно-молекулярного строения. Это позволяет делать выводы об особенностях химического строения исследуемого вещества на основе анализа его спектра.

Люминесцентное освещение.

Некоторые вещества при возбуждении ультрафиолетовым светом или другими видами излучения испускают видимый свет. Это явление называется люминесценцией. Возбуждающее излучение заставляет электроны в атомах, ионах или молекулах вещества переходить в возбужденные состояния. Когда электроны возвращаются в основной состояние, они испускают видимый свет.

Если возврат в основное состояние происходит сразу же после возбуждения, то такое явление называется флуоресценцией. Однако, еслиэлектроны остаются в возбужденном состоянии и испускают свет только спустя некоторый период времени, явление называется фосфоресценцией.

Простейший лазер состоит из трех частей: рубиновою стержня, лампы-вспышки и пары зеркал, между которыми находится рубиновый стержень; роль этих зеркал выполняют отражающие металлические покрытия, нанесенные на горцы стержня. Одно из покрытий сделано полупрозрачным.

Вспышка импульсной ультрафиолетовой лампы возбуждает электроны в рубиновом стержне. Некоторые из возбужденных электронов немедленно и самопроиз­вольно возвращаются на более низкие энергетические уровни. При этом они испускают фотоны. Эти фотоны отражаются внутрь рубинового стержня зеркальными покры­тиями на его концах и стимулируют испускание фотонов другими возбужденными атомами. Возникает цепная реакция, которая приводит к тому, что все остающиеся возбужденными электроны практически одновременно возвращаются на свои низшие энергетические уровни. Это приводит к появлению чрезвычайно интенсивного им­пульса света, имеющего строго определенное направление и частоту. Поскольку одно из зеркальных покрытий стержня полупрозрачно, оно позволяет световому импульсу выйти наружу.

Поделочные камни.

Многие поделочные, полудрагоценные и драгоценные камни обязаны своей привлекательной окраской ионам, входящим в их состав [6].

Малахит (рис. 4) -ювелирно-поделочный камень, своим темно-зеленым цветом обязан ионам меди, т.к. малахит- это основный карбонат меди. Название камня произошло от греческого «маляхэ»-мальва, за сходство рисунка на срезе камней с формой листа растения. В России малахит-любимый поделочный камень. Вспомним «Малахитовую шкатулку» П.Бажова: «Под землей у нее палаты каменные, а стены из дорогих самоцветов. Деревья в горы каменные, каменные листья и сучки постукивают. На кустах зеленые колокольца малахитовые и в каждом - сурьмяная звездочка». Из малахита изготавливают художественно-декоративные предметы - например, шкатулки, «малахитовый зал» зал в Эрмитаже.

Бирюза - небесно-голубой цвет камня происходит от входящих в его состав фосфатов меди и алюминия. Название камня происходит от персидского «Фирюза» - победа. Бирюза была известна еще ацтекам и древним египтянам. Особым почетом бирюза пользовалась на мусульманском Востоке. Во времена Булгарского государства и Казанского ханства украшениями из бирюзы были бусы, серьги, броши, браслеты (рис. 5). Эти украшения широко представлены в экспозициях музеев г. Казани [11].

Рис.4 Срез малахитового камня Рис. 5 Украшения из бирюзы

Заключение (выводы)

1.Рассчитаны значения энергии возбуждения электронов в атомах разных металлов.

2.Проанализировано влияние строения атома на величину энергии возбуждения электронов в атомах разных металлов.

3.Показано проявление (цвет и свет) в природе и практическое использование явления возбуждения электронов атомов.

Список использованной литературы

1. Ахметов Н.С. Актуальные вопросы курса неорганической химии. -М.: просвещение, 1991г.

2. Бусев А.И., Ефимов И.П. Определения, понятия, термины в химии. -М.: Просвещение, 1981г.

4. Габриелян О.С. Химия, 9 класс. -М.: Дрофа, 2008г., с12-14, 27-68

5. Глинка Н.Л. Общая химия. 30-е изд., испр. - М.: Просвещение, 2003г.

6. Минералы. Из серии «Экскурсии в природу». -М.: Планета, 1978г.

7.Попова А.Ф. Щелочные и щелочно - земельные металлы. -М.: Просвещение. 1966г.

8. Фримантл М. Химия в действии. -М.: Мир, 1991г., т 1 с29-31, т 2 с82, 132, 140, 333.

9. Я познаю мир. Детская энциклопедия: химия. -М.: Астрель, 2002г.

Приложение 1.

Соли металлов окрашивают пламя в различные цвета:

Фото 1. Хлорат лития окрашивает пламя в красный цвет.

Фото 2. Хлорид натрия окрашивает пламя в желтый цвет

Фото 3. Хлорид стронция окрашивает пламя в темно-красный цвет

Фото 4. Сульфат меди ( II ) окрашивает пламя в ярко-зеленый цвет (изумрудный)

Опыты: Цветное пламя

Очень красивый научный эксперимент от профессора Николя "Цветное пламя" позволяет получить пламя четырех разных цветов, используя для этого законы химии.


Набор интереснейший, мы действительно на пламя насмотрелись, удивительное зрелище! Интересно всем: и взрослым, и детям, так что очень рекомендую! Плюс в том, что этот опыт с огнём можно провести и дома, не обязательно выходить на улицу. В наборе есть чашки-плошки, в которых горит таблетка сухого горючего, всё безопасно, и на деревянном полу (или столе) можно поставить. Из серии опытов профессора Николя.

Лучше, конечно, под присмотром взрослых опыт проводить. Даже если дети уже немаленькие. Огонь всё же - штука опасная, но при этом . жутко (тут именно это слово подходит очень точно!) интересная!



Фото упаковки набора смотрите в галерее в конце статьи.

Набор 'Цветное пламя' содержит все необходимое для проведения эксперимента. В набор входят:

  • иодид калия,
  • хлорид кальция,
  • раствор соляной кислоты 10%,
  • сульфат меди,
  • нихромовая проволока,
  • медная проволока,
  • хлорид натрия,
  • сухое горючее, чашка для выпаривания.


Единственное, есть у меня некоторые претензии к производителю - я ожидала найти в коробочке мини-брошюру с описанием химического процесса, который мы здесь наблюдаем, и объяснение, почему пламя становится цветным. Такого описания здесь не оказалось, так что придётся обратиться к энциклопедии по химии (обзор книг по химии здесь). Если, конечно, будет такое желание. А желание у старших детей, конечно, возникает! Младшим детям, конечно, никакие объяснения не нужны: им просто очень интересно смотреть, как меняется цвет пламени.

На обратной стороне коробки-упаковки написано, что нужно делать, чтобы пламя стало цветным. Сначала делали по инструкции, а потом стали просто пламя разными порошками из баночек посыпать (когда убедились, что всё безопасно) - эффект потрясающий. Всполохи красного пламени в жёлтом, ярко-салатовое пламя, зелёное, фиолетовое. зрелище просто завораживает.


Очень здорово покупать на какой-нибудь праздник, это гораздо интереснее любой петарды. И на новый год будет очень здорово. Мы жгли днём, в темноте было бы ещё эффектнее.

Реактивы у нас после сжигания одной таблетки ещё остались, так что, если взять другую таблетку (купить отдельно), можно повторить опыт. Глиняная чашка отмылась довольно хорошо, так что её на много опытов хватит. А если вы на даче, то порошок можно посыпать и на огонь в костре - он тогда, конечно, быстро кончится, но зрелище будет фантастическое!

Добавляю краткую информацию о реактивах, которые идут в комплекте с опытом. Для любознательных детишек, которым интересно узнать больше.

Окрашивание пламени


Стандартный способ окрашивания слабосветящегося газового пламени - введение в него соединений металлов в форме легколетучих солей (обычно, нитратов или хлоридов):

желтое - натрия,

красное - стронция, кальция,

зеленое - цезия (или бора, в виде борноэтилового или борнометилового эфира),

голубое - меди (в виде хлорида).

В синий окрашивает пламя селен, а в сине-зеленый - бор.

Температура внутри пламени различна и с течение времени она меняется (зависит от притока кислорода и горючего вещества). Синий цвет означает что температура очень высокая до 1400 С, желтый - температура чуть меньше, чем когда синее пламя. Цвет пламени может меняться в зависимости от химических примесей.

Цвет пламени определяется только его температурой, если не учитывать его химический (точнее, элементный) состав. Некоторые химические элементы способны окрашивать пламя в характерный для этого элемента цвет.


В лабораторных условиях можно добиться совершенно бесцветного огня, который можно определить лишь по колебанию воздуха в области горения. Бытовой же огонь всегда "цветной". Цвет огня определяется температурой пламени и тем, какие химические вещества в нём сгорают. Высокая температура пламени дает возможность атомам перескакивать на некоторое время в более высокое энергетическое состояние. Когда атомы возвращаются в исходное состояние, они излучают свет с определённой длиной волны. Она соответствует структуре электронных оболочек данного элемента.

Голубой огонек, например, который можно видеть при горении природного газа, обусловлен угарным газом, который и придаёт пламени этот оттенок. Угарный газ, молекула которого состоит из одного атома кислорода и одного атома углерода, является побочным продуктом горения природного газа.

Калий - фиолетовое пламя


Калий (нем. Kalium, франц. и англ. Potassium) — один из важнейших представителей группы щелочных металлов.

Калий — металл наиболее электроположительный после рубидия и цезия. В чистом сухом воздухе при обыкновенной температуре он не изменяется, в обычном — покрывается слоем едкого калия и углекислой его соли; в свежем разрезе в темноте светится, а в тонких пластинках окисляется столь быстро, что может загореться; расплавленный и нагретый, он также горит; пламя его обладает фиолетовым цветом. Вследствие такой склонности к окислению и является необходимым сохранять его под нефтью.

Открывают присутствие калия по фиолетовой окраске газового беcцветного пламени, которая получается при внесении в пламя его соединений, особенно галоидных, на ушке платиновой проволоки (вот почему в опыте нужно вносить калий в пламя на проволоке - эффект изменения цвета пламени тогда заметнее); в присутствии солей натрия окраску наблюдают через синее кобальтовое стекло или через раствор индиго, помещенный в призматический стеклянный сосуд. Спектр пламени характеризуется двумя линиями - красной и фиолетовой.

Кальций хлористый - красное пламя


При нагревании на воздухе или в кислороде кальций воспламеняется и горит красным пламенем с оранжевым оттенком. С менее активными неметаллами (водородом, бором, углеродом, кремнием, азотом, фосфором и другими) кальций вступает во взаимодействие при нагревании.

При внесении в пламя растворимых солей кальция пламя окрашивается в кирпично-красный цвет.

При нагревании в кислороде и на воздухе кальций воспламеняется, сгорая ярко-красным пламенем, при этом образуется основной оксид СаО, который представляет собой белое, весьма огнестойкое вещество, температура плавления которого примерно 2 600 °C. Оксид кальция также известен в технике как негашеная или жженая известь.

Соляная кислота и медь - зелёное пламя

Медь придает пламени зеленый оттенок. При высоком содержании меди в сгораемом веществе пламя имеет яркий зеленый цвет, практически идентичный белому. В зеленый цвет пламя окрашивает борная кислота или медная (латунная) проволока, смоченная в соляной кислоте.

При смачивании соляной кислотой пламя окрашивается в голубой цвет с зеленоватым оттенком.


1) В зеленый цвет пламя окрашивает борная кислота или медная (латунная) проволока, смоченная в соляной кислоте.

2) В красный цвет пламя окрашивает мел, смоченный в той же соляной кислоте.

При сильном прокаливании в тонких осколках Ва-содержащие (Барий-содержащие) минералы окрашивают пламя в желто-зеленый цвет. Окрашивание пламени можно усилить, если после предварительного прокаливания смачивать минерал в крепкой соляной кислоте.

Окислы меди (в опыте для зелёного пламени используются соляная кислота и кристаллики меди) дают изумрудно-зеленое окрашивание. Прокаленные Cu-содержащие соединения, смоченные НС1, окрашивают пламя в лазурно-голубой цвет CuС12). Реакция очень чувствительна.

Зеленый цвет и его оттенки огню придают также барий, молибден, фосфор, сурьма.

Азотнокислый и солянокислый растворы меди имеют голубой или зеленый цвет; при прибавлении аммиака цвет раствора изменяется в темно-синий.

Жёлтое пламя - соль


Для желтого пламени требуется добавка поваренной соли, нитрата натрия или хромата натрия.

Попробуйте посыпать на конфорку газовой плиты с прозрачно-голубым пламенем чуть-чуть поваренныой соли - в пламени появятся жёлтые язычки. Такое жёлто-оранжевое пламя дают соли натрия (а поваренная соль, напомним, это хлорид натрия).

Жёлтый цвет - это цвет натрия в пламени. Натрий есть в любом природном органическом материале, поэтому пламя мы обычно и видим жёлтым. А желтый цвет способен заглушить другие цвета - такова особенность человеческого зрения.

Желтые язычки пламени появляются при распадении солей натрия. Такими солями очень богата древесина, поэтому обычный лесной костер или бытовые спички горят желтым пламенем.

Секреты сумасшедшего профессора Николя
Цветное пламя

Фото упаковки - сбоку. Набор для экспериментов.


Серия химических опытов с профессором Николя.

Цветное пламя - состав набора.


Обратная сторона упаковки - как добиться цветного пламени.

Весь состав набора - чашки (глиняная и стеклянная, потом и для других опытов пригодятся), проволока, реактивы.

Рядом с куклой ростом 18 см для размера.

Химические реактивы для опыта Цветное пламя - на каждой коробочке подписано, что это такое.

Читайте также: