Соли тяжелых металлов определение

Обновлено: 05.10.2024

Методы определения примеси тяжелых металлов

Reagents. Methods for determination of heavy metals

Дата введения 2020-06-01

Предисловие

Цели, основные принципы и общие правила проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН Федеральным государственным унитарным предприятием "Научно-исследовательский институт химических реактивов и особо чистых химических веществ" Национального исследовательского центра "Курчатовский институт" (ФГУП НИЦ "Курчатовский институт" - ИРЕА)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 60 "Химия"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 30 июля 2019 г. N 120-П)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Госстандарт Республики Беларусь

Госстандарт Республики Казахстан

4 Приказом Федерального агентства по техническому регулированию и метрологии от 8 августа 2019 г. N 465-ст межгосударственный стандарт ГОСТ 17319-2019 введен в действие в качестве национального стандарта Российской Федерации с 1 июня 2020 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему на территории указанных выше государств публикуется в указателях национальных стандартов, издаваемых в этих государствах, а также в сети Интернет на сайтах соответствующих национальных органов по стандартизации.

В случае пересмотра, изменения или отмены настоящего стандарта соответствующая информация будет опубликована на официальном интернет-сайте Межгосударственного совета по стандартизации, метрологии и сертификации в каталоге "Межгосударственные стандарты"

ВНЕСЕНА поправка, опубликованная в ИУС N 8, 2020 год

Поправка внесена изготовителем базы данных

1 Область применения

Настоящий стандарт распространяется на реактивы и устанавливает сероводородный и тиоацетамидный методы определения примеси тяжелых металлов в неорганических и органических реактивах, основное вещество которых не реагирует с сероводородом и тиоацетамидом.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 12.1.004 Система стандартов безопасности труда. Пожарная безопасность. Общие требования

ГОСТ 12.1.007 Система стандартов безопасности труда. Вредные вещества. Классификация и общие требования безопасности

ГОСТ 12.4.009 Система стандартов безопасности труда. Пожарная техника для защиты объектов. Основные виды. Размещение и оборудование

ГОСТ 12.4.021 Система стандартов безопасности труда. Системы вентиляционные. Общие требования

ГОСТ 61 Реактивы. Кислота уксусная. Технические условия

ГОСТ 2053 Реактивы. Натрий сернистый 9-водный. Технические условия

ГОСТ 3117 Реактивы. Аммоний уксуснокислый. Технические условия

ГОСТ 3118 Реактивы. Кислота соляная. Технические условия

ГОСТ 3760 Реактивы. Аммиак водный. Технические условия

ГОСТ 4171 Реактивы. Натрия сульфат 10-водный. Технические условия

ГОСТ 4204 Реактивы. Кислота серная. Технические условия

ГОСТ 4212 Реактивы. Методы приготовления растворов для колориметрического и нефелометрического анализа

ГОСТ 4328 Реактивы. Натрия гидроокись. Технические условия

ГОСТ 4461 Реактивы. Кислота азотная. Технические условия

ГОСТ 4517 Реактивы. Методы приготовления вспомогательных реактивов и растворов, применяемых при анализе

ГОСТ 5845 Реактивы. Калий-натрий виннокислый 4-водный. Технические условия

ГОСТ 6709 Вода дистиллированная. Технические условия

ГОСТ 9147 Посуда и оборудование лабораторные фарфоровые. Технические условия

ГОСТ 24104 Весы лабораторные. Общие технические требования*

ГОСТ 25336 Посуда и оборудование лабораторные стеклянные. Типы, основные параметры и размеры

ГОСТ 27025 Реактивы. Общие указания по проведению испытаний

ГОСТ 29227 (ИСО 835-1-81) Посуда лабораторная стеклянная. Пипетки градуированные. Часть 1. Общие требования

3 Общие требования

3.1 Общие указания по проведению анализа - по ГОСТ 27025.

При выполнении операций взвешивания применяют весы лабораторные по ГОСТ 24104 высокого класса точности (II) с ценой деления (дискретностью отсчета) не более 0,01 г с наибольшим пределом взвешивания 800 г.

3.2 Навеску анализируемого реактива, в зависимости от содержания в нем тяжелых металлов, и предельно допустимую массу тяжелых металлов в миллиграммах, а также предварительную обработку навески (нейтрализация, удаление газообразных продуктов с помощью кислот, упаривание и т.д.) указывают в документе по стандартизации на анализируемый реактив.

3.3 Масса тяжелых металлов (в пересчете на свинец) в навеске анализируемого реактива должна быть:

от 0,01 до 0,1 мг - при определении сероводородным методом;

от 0,005 до 0,1 мг - при определении тиоацетамидным методом, при этом в растворах сравнения для построения градуировочного графика масса свинца должна быть: 0,005, 0,010, 0,020, 0,030, 0,050, 0,075 и 0,100 мг.

3.4 Навеску анализируемого реактива, а также навески реактивов для приготовления необходимых растворов, применяемых для определения содержания тяжелых металлов, взвешивают, результат взвешивания в граммах записывают с точностью до второго десятичного знака.

3.5 Содержание примеси тяжелых металлов определяют не менее чем в двух параллельных навесках; за окончательный результат анализа принимают среднеарифметическое значение параллельных определений.

3.6 Для приготовления растворов реактивов, применяемых для анализа, используют реактивы квалификации "химически чистый" или "чистый для анализа".

Допускается использовать реактивы более высокой квалификации или импортные аналоги, по качеству не уступающие указанным в настоящем стандарте, если в документе по стандартизации на анализируемый реактив нет других указаний.

3.7 Раствор с концентрацией свинца 1 мг/см готовят по ГОСТ 4212.

3.8 Если при растворении или разложении навески анализируемого реактива применяют реактивы, содержащие примесь тяжелых металлов, в результат вводят поправку на содержание тяжелых металлов в применяемых реактивах, определяемую контрольными опытами (не менее двух).

3.9 При проведении анализа после прибавления каждого реактива растворы перемешивают.

3.10 Если при визуальном сравнении окраски анализируемого раствора и растворов сравнения имеют разные оттенки, в раствор сравнения вводят часть (от 1/5 до 1/2 навески) анализируемого реактива и соответственно увеличивают навеску для анализируемого раствора.

3.11 При определении тяжелых металлов в реактивах, растворимых в воде, имеющих нейтральную реакцию раствора и не реагирующих с сероводородом (для сероводородного метода) или с тиоацетамидом и гидроокисью натрия (для тиоацетамидного метода), определение проводят непосредственно в водных растворах анализируемых реактивов.

3.12 Применяемые для нейтрализации реактив и индикатор указывают в документе по стандартизации на анализируемый реактив.

3.13 При определении тяжелых металлов в реактивах, нерастворимых в воде, определение проводят после растворения реактива в соляной кислоте. Избыток соляной кислоты удаляют нейтрализацией или выпариванием.

3.14 При невозможности непосредственного определения тяжелых металлов, а также в реактивах, нерастворимых в соляной кислоте или реагирующих с сероводородом или тиоацетамидом, проводят предварительную подготовку к анализу согласно указаниям в документе по стандартизации на анализируемый реактив или по одному из способов, описанных в разделе 6.

3.15 Все работы, связанные с нагреванием препаратов и их растворов, проводят в вытяжном шкафу.

3.16 Допускается использование других средств измерений, оборудования, вспомогательных устройств и лабораторной посуды с аналогичными или более высокими техническими и метрологическими характеристиками.

4 Требования безопасности

4.1 Работающие в лаборатории должны соблюдать требования инструкций по охране труда, правил безопасности и проходить предварительные и периодические медицинские осмотры в соответствии с порядком и сроками, установленными органами здравоохранения. Лица моложе 18 лет и беременные женщины к работе не допускаются.

4.2 Вновь поступающие на работу допускаются к исполнению своих обязанностей после прохождения вводного инструктажа о соблюдении мер безопасности, инструктажа на рабочем месте и собеседования по вопросам техники безопасности.

Полный текст этого документа доступен на портале с 20 до 24 часов по московскому времени 7 дней в неделю .

Также этот документ или информация о нем всегда доступны в профессиональных справочных системах «Техэксперт» и «Кодекс».

ОФС.1.2.2.2.0012.15 Тяжелые металлы

Описанные ниже методы определения содержания примесей тяжелых металлов (свинец, ртуть, висмут, сурьма, олово, кадмий, серебро, медь, молибден, ванадий, рутений, платина, палладий) в лекарственных средствах основаны на образовании окрашенных сульфидов.

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ОБЩАЯ ФАРМАКОПЕЙНАЯ СТАТЬЯ

Тяжелые металлы ОФС.1.2.2.2.0012.15
Взамен ГФ XII, ч. 1, ОФС 42-0059-07

Описанные ниже методы определения содержания примесей тяжелых металлов (свинец, ртуть, висмут, сурьма, олово, кадмий, серебро, медь, молибден, ванадий, рутений, платина, палладий) в лекарственных средствах основаны на образовании окрашенных сульфидов. Кроме указанных элементов окрашенные сульфиды образуют железо в количестве более 0,05 % и мышьяк.

В качестве источника сульфидов используют раствор натрия сульфида (метод 1) или тиоацетамидный реактив (метод 2).

После проведения реакции интенсивность окраски испытуемого раствора сравнивают с окраской эталонного раствора. Окраска, появившаяся в испытуемом растворе, не должна превышать окраску эталонного раствора.

Определение считается достоверным, если в эталонном растворе наблюдается слабое коричневое окрашивание по сравнению с контрольным раствором.

Определение тяжелых металлов в растворах лекарственных средств возможно для субстанций, образующих прозрачные, бесцветные растворы и не влияющих на взаимодействие ионов металлов с сульфид-ионом вследствие наличия комплексообразующих свойств. В остальных случаях определение проводят из сульфатной золы или после другого способа минерализации испытуемого лекарственного средства.

Предельно допустимое содержание тяжелых металлов, метод испытания и условия подготовки испытуемого образца должны быть указаны в фармакопейной статье.

Определение тяжелых металлов в растворах лекарственных средств

Испытуемый раствор. 10 мл раствора испытуемого образца, приготовленного, как указано в фармакопейной статье.

Эталонный раствор. К 2 мл стандартного раствора свинец-иона (5 мкг/мл) прибавляют 8 мл воды.

Контрольный раствор. 10 мл воды.

Примечание. Если при приготовлении испытуемого раствора используется органический растворитель, то эталонный, контрольный и стандартный раствор свинец-иона готовят с использованием того же растворителя.

Метод 1.

К полученным растворам прибавляют по 1 мл уксусной кислоты разведенной 30 %, 2 капли 2 % раствора натрия сульфида, перемешивают и через 1 мин сравнивают окраску растворов.

В сравниваемых растворах допустима слабая опалесценция от выделившейся серы.

Метод 2.


К полученным растворам прибавляют по 2 мл ацетатного буферного раствора рН 3,5, перемешивают, прибавляют по 1 мл тиоацетамидного реактива, перемешивают и через 2 мин сравнивают окраску растворов.

Определение тяжелых металлов в зольном остатке органических лекарственных средств

Испытуемый раствор. Зольный остаток, полученный после сжигания 1,0 г (если не указано иначе в фармакопейной статье) испытуемого образца в присутствии серной кислоты концентрированной, обрабатывают при нагревании на сетке 2 мл насыщенного раствора аммония ацетата, нейтрализованного раствором натрия гидроксида, прибавляют 3 мл воды и фильтруют в пробирку через беззольный фильтр, предварительно промытый 1 % раствором уксусной кислоты, а затем горячей водой. Тигель и фильтр промывают 5 мл воды, пропуская её через тот же фильтр в ту же пробирку.

Эталонный раствор. В тигель помещают серную кислоту концентрированную в количестве, взятом для сжигания испытуемого образца, и далее поступают как с испытуемым образцом, но промывание тигля и фильтра производят лишь 3 мл воды, после чего к фильтрату прибавляют 2 мл стандартного раствора свинец-иона (5 мкг/мл).

Контрольный раствор. Готовят так же, как и испытуемый раствор, но без испытуемого образца.

Далее определение проводят любым из описанных выше методов определения тяжелых металлов в растворах лекарственных средств.

Примечание. Определению тяжелых металлов из зольного остатка наличие солей железа в препаратах не мешает.

Стандартные растворы свинец-иона

Стандартный раствор 100 мкг/мл свинец-иона. 0,0799 г свинца нитрата помещают в мерную колбу вместимостью 500 мл и растворяют в 50 мл воды с добавлением 0,5 мл азотной кислоты концентрированной, доводят объем раствора водой до метки и перемешивают.

Стандартный раствор 5 мкг/мл свинец-иона. 5,0 мл стандартного раствора свинец-иона (100 мкг/мл свинец-иона) помещают в мерную колбу вместимостью 100 мл, доводят объем раствора водой до метки и перемешивают. Срок хранения 1 сут.

Приведенные выше методы не являются селективными и могут быть использованы только для определения предельного суммарного содержания перечисленных тяжелых металлов в лекарственных средствах.

Для количественного определения отдельных ионов следует использовать следующие методы:

  • атомно-абсорбционную спектрометрию;
  • атомно-эмиссионную спектрометрию с индуктивно связанной плазмой;
  • масс-спектрометрию с индуктивно связанной плазмой.

Методики количественного определения тяжелых металлов в лекарственных средствах должны быть валидированы и описаны в фармакопейной статье.

Методика определения солей тяжелых металлов в домашних условиях

Нажмите, чтобы узнать подробности

Данная методика позволяет быстро определять наличие солей тяжелых мелаллов в грибах. Рассматривается костратирующий эксперимент.

Просмотр содержимого документа
«Методика определения солей тяжелых металлов в домашних условиях»

Содержание ионов тяжёлых металлов в грибах и их влияние на здоровье человека Научный руководитель: Истомина Елена Анатольевна

Содержание ионов тяжёлых металлов в грибах и их влияние на здоровье человека

Научный руководитель: Истомина Елена Анатольевна

Введение Гипотеза исследования: грибы, находящиеся в свободной продаже, могут содержать ионы тяжёлых металлов. Объект исследования: грибы и грибная продукция Методы исследования: анализ литературы по теме исследования и лабораторное исследование грибов и грибной продукции на наличие в них ионов тяжёлых металлов.

Гипотеза исследования: грибы, находящиеся в свободной продаже, могут содержать ионы тяжёлых металлов.

Объект исследования: грибы и грибная продукция

Методы исследования: анализ литературы по теме исследования и лабораторное исследование грибов и грибной продукции на наличие в них ионов тяжёлых металлов.

Цель и задачи Цель работы: понять, грибы каких производителей безопасны для здоровья, и создать рекомендации для грибников. Задачи работы:

Цель и задачи

Цель работы: понять, грибы каких производителей безопасны для здоровья, и создать рекомендации для грибников.

Задачи работы:

  • Изучить теоретический материал о вреде тяжёлых металлов и о их влиянии на организм человека, о биологических особенностях грибов.
  • Проверить самые популярные бренды, продающие грибы, на наличие в этих грибах ионов некоторых тяжёлых металлов и проанализировать результаты.
  • Дать рекомендации по сбору грибов для людей, которые любят «тихую охоту».

Тяжёлые металлы

- металлы, - тяжёлые металлы, - полуметаллы

Металл Токсичность Таллий Кадмий Кумуляция Токсичен Токсичен Ртуть В волосах, ногтях, почках, мышцах Влияние на организм Угнетение нервной и пищеварительной систем, почек Токсичен В быстро-размножающихся клетках Свинец Смертельная доза Нарушение работы ферментов, повреждение ЦНС, печени, почек Токсичен В крови, печени, почках, мозге Мышьяк 600 мг Противоядие В костях, печени, почках Токсичен Возникновение одышки, озноба, высокой температуры, воспаления лёгких Берлинская лазурь, тиосульфат натрия 50-60 мг В щитовидной железе Появление боли в животе, суставах, судороги, обморок 2,5 г паров Альбумин с карбонатом натрия Нарушение работы ЦНС, рвота Раствор диэтилового соединения 3 г 50-170 мг Унитиол Тиосульфат натрия

Токсичность

В волосах, ногтях, почках, мышцах

Влияние на организм

Угнетение нервной и пищеварительной систем, почек

В быстро-размножающихся клетках

Смертельная доза

Нарушение работы ферментов, повреждение ЦНС, печени, почек

В крови, печени, почках, мозге

Противоядие

В костях, печени, почках

Возникновение одышки, озноба, высокой температуры, воспаления лёгких

Берлинская лазурь, тиосульфат натрия

В щитовидной железе

Появление боли в животе, суставах, судороги, обморок

Альбумин с карбонатом натрия

Нарушение работы ЦНС, рвота

Раствор диэтилового соединения

Грибы – природные адсорбенты Период удаления половины от начальной концентрации для разных металлов: Цинк: 70-510 лет Кадмий: 13-110 лет Медь: 310-1500 лет Свинец: 740-5900 лет. Рекордсмены по накоплению: белый гриб (кадмий, серебро), вёшенки (хром)

Грибы – природные адсорбенты

половины от начальной

Кадмий: 13-110 лет

Медь: 310-1500 лет

Свинец: 740-5900 лет.

Рекордсмены по накоплению: белый гриб (кадмий, серебро), вёшенки (хром)

Сравнение

Лабораторные методы обнаружения ионов тяжёлых металлов Метод Основан на Колориметрический метод Химических свойствах определяемых веществ Прибор Спектральный анализ Нейтронно-активационный анализ Изучении взаимодействия различных химических элементов со световыми, звуковыми, электромагнитными волнами различной длины Колориметр Метод качественных реакций Бомбардировке образца нейтронами, что превращает его в радиоактивный изотоп Масс-спектрометр На смешении реагентов, создании определённых условий для протекания химической реакции и наблюдении за произошедшими изменениями Фузор Фарнсуорта - Хирша, реактор на быстрых нейтронах Пробирки, бюретка

Лабораторные методы обнаружения ионов тяжёлых металлов

Колориметрический метод

Химических свойствах определяемых веществ

Спектральный анализ

Нейтронно-активационный анализ

Изучении взаимодействия различных химических элементов со световыми, звуковыми, электромагнитными волнами различной длины

Метод качественных реакций

Бомбардировке образца нейтронами, что превращает его в радиоактивный изотоп

На смешении реагентов, создании определённых условий для протекания химической реакции и наблюдении за произошедшими изменениями

Фузор Фарнсуорта - Хирша, реактор на быстрых нейтронах

Практическая работа Приборы и материалы: бюретка, пробирки, стеклянная палочка, фильтровальная бумага, марля, керамическая ступка с пестиком, грибы, реактивы, соли тяжёлых металлов. Ион Fe 3+ Реактив Реакция Жёлтая кровяная соль, Роданид калия Fe 2+ Ag + Fe 3+ +K 4 [Fe(CN) 6 ] = Fe 4 [Fe(CN 6 )] (тёмно-синий) Fe 3+ + KSCN = Fe(CNS) 3 (красный) Красная кровяная соль Pb 2+ Fe 2+ + K 3 [Fe(CN) 6 ] = Fe 4 [Fe(CN) 6 ] (тёмно-синий) Хлорид натрия Cu 2+ Ag + + NaCl = AgCl (белый) Йодид натрия Сульфид натрия Pb 2+ + NaI = PbI 2 (золотой) Pb 2+ + Na 2 S = PbS (чёрный) Гидроксид натрия Cr 3+ Cu 2+ + NaOH = Cu(OH) 2 (голубой) Гидроксид натрия Cr 3+ + NaOH = Cr(OH) 3 (сине-зелёный)

Практическая работа

Приборы и материалы: бюретка, пробирки, стеклянная палочка, фильтровальная бумага, марля, керамическая ступка с пестиком, грибы, реактивы, соли тяжёлых металлов.

Жёлтая кровяная соль, Роданид калия

Fe 3+ +K 4 [Fe(CN) 6 ] = Fe 4 [Fe(CN 6 )] (тёмно-синий) Fe 3+ + KSCN = Fe(CNS) 3 (красный)

Красная кровяная соль

Fe 2+ + K 3 [Fe(CN) 6 ] = Fe 4 [Fe(CN) 6 ] (тёмно-синий)

Ag + + NaCl = AgCl (белый)

Йодид натрия Сульфид натрия

Pb 2+ + NaI = PbI 2 (золотой) Pb 2+ + Na 2 S = PbS (чёрный)

Cu 2+ + NaOH = Cu(OH) 2 (голубой)

Cr 3+ + NaOH = Cr(OH) 3 (сине-зелёный)

Грибная продукция и подготовка к лабораторной работе

Грибная продукция и подготовка к лабораторной работе

Реактивы Жёлтая кровяная соль Красная кровяная соль Роданид калия Йодид калия Йодид натрия

Первые результаты

Первые результаты

Проверка результатов m воды =100г m вещества =0,01г ω = m вещества /m раствора *100%

Проверка результатов

m вещества =0,01г

ω = m вещества /m раствора *100%

Рекомендации для грибников МОЖНО НЕЛЬЗЯ Можно собирать только знакомые грибы, в которых вы уверены. Не покупайте грибы, если на упаковке отсутствует информация о месте изготовления грибов или вы знаете, что это грязный район. Собирать грибы можно только в корзину. Нельзя использовать металлическую или пластиковую тару для хранения и переноски грибов. Лучше собирать молодые грибы. Нельзя собирать червивые грибы. Стоит отдать предпочтение грибам-сапротрофам, то есть грибам, растущим на мёртвых органических остатках, например, на поваленных деревьях. Нельзя собирать грибы рядом с дорогой, промышленными предприятиями*, крупными городами, загрязнёнными местами. Стоит отойти от этих мест примерно на километр, а лучше вообще избегать сбора грибов в таких местах. Все грибы, кроме груздя настоящего, белого гриба, рыжика обыкновенного, надо отваривать перед приготовлением. Грибы нельзя есть сырыми. Перед приготовлением обязательно промывать Готовить грибы лучше в день сбора. Грибы - скоропортящийся продукт.

Рекомендации для грибников

Можно собирать только знакомые грибы, в которых вы уверены.

Не покупайте грибы, если на упаковке отсутствует информация о месте изготовления грибов или вы знаете, что это грязный район.

Собирать грибы можно только в корзину.

Нельзя использовать металлическую или пластиковую тару для хранения и переноски грибов.

Лучше собирать молодые грибы.

Нельзя собирать червивые грибы.

Стоит отдать предпочтение грибам-сапротрофам, то есть грибам, растущим на мёртвых органических остатках, например, на поваленных деревьях.

Нельзя собирать грибы рядом с дорогой, промышленными предприятиями*, крупными городами, загрязнёнными местами. Стоит отойти от этих мест примерно на километр, а лучше вообще избегать сбора грибов в таких местах.

Все грибы, кроме груздя настоящего, белого гриба, рыжика обыкновенного, надо отваривать перед приготовлением.

Соли тяжелых металлов определение

Reagents. Methods for the determination of heavy metals

Дата введения 1977-07-01

1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности СССР

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 06.08.76 N 1897

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

5. Ограничение срока действия снято по протоколу N 7-95 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-95)

6. ИЗДАНИЕ с Изменениями N 1, 2, утвержденными в декабре 1979 г., феврале 1987 г. (ИУС 1-80, 5-87)

Настоящий стандарт устанавливает сероводородный и тиоацетамидный методы определения примеси тяжелых металлов в неорганических и органических реактивах, основное вещество которых не реагирует с сероводородом и тиоацетамидом.

Стандарт полностью соответствует СТ СЭВ 806-77.

(Измененная редакция, Изм. N 1, 2).

1. ОБЩИЕ УКАЗАНИЯ

1.1а. Общие указания по проведению анализа - по ГОСТ 27025.

При выполнении операций взвешивания применяют лабораторные весы по ГОСТ 24104* 3-го класса точности с наибольшим пределом взвешивания 500 г или 1 кг.

* С 1 июля 2002 г. введен в действие ГОСТ 24104-2001.

Допускается применение импортной лабораторной посуды и реактивов по качеству не ниже отечественных.

(Введен дополнительно, Изм. N 2).

1.1. Навеску анализируемого реактива, в зависимости от содержания в нем тяжелых металлов, и предельно допустимую массу тяжелых металлов в миллиграммах, а также предварительную обработку навески (нейтрализация, удаление газообразных продуктов с помощью кислот, упаривание и т.д.) указывают в нормативно-технической документации на анализируемый реактив.

(Измененная редакция, Изм. N 2).

1.2. Масса тяжелых металлов (в пересчете на свинец) в навеске анализируемого реактива должна быть:

0,01-0,1 мг - при определении сероводородным методом;

0,005-0,1 мг - при определении тиоацетамидным методом, при этом в растворах сравнения для построения градуировочного графика масса свинца должна быть: 0,005, 0,010, 0,020, 0,030, 0,050, 0,075 и 0,100 мг.

1.3. Навеску анализируемого реактива, а также навески реактивов для приготовления необходимых растворов, применяемых для определения содержания тяжелых металлов, взвешивают, результат взвешивания в граммах записывают с точностью до второго десятичного знака.

1.4. Содержание примеси тяжелых металлов определяют не менее чем в двух параллельных навесках; за окончательный результат анализа принимают среднее арифметическое значение параллельных определений.

1.5. Для приготовления растворов реактивов, применяемых для анализа, используют реактивы квалификации химически чистый или чистый для анализа, если нет других указаний в нормативно технической документации на анализируемый реактив.

1.6. Раствор с концентрацией свинца 1 мг/см готовят по ГОСТ 4212.

(Измененная редакция, Изм. N 2).

1.7. Если при растворении или разложении навески анализируемого реактива применяют реактивы, содержащие примесь тяжелых металлов, в результат вводят поправку на содержание тяжелых металлов в применяемых реактивах, определяемую контрольными опытами (не менее двух).

1.8. При проведении анализа после прибавления каждого реактива растворы перемешивают.

1.9. Если при визуальном сравнении окраски анализируемого раствора и растворов сравнения имеют разные оттенки, в раствор сравнения вводят часть (от до навески) анализируемого реактива и соответственно увеличивают навеску для анализируемого раствора.

1.10. При определении тяжелых металлов в реактивах, растворимых в воде, имеющих нейтральную реакцию раствора и не реагирующих с сероводородом (для сероводородного метода) или с тиоацетамидом и гидроокисью натрия (для тиоацетамидного метода), определение проводят непосредственно в водных растворах анализируемых реактивов.

Соли тяжелых металлов

Известно более 40 элементов, которые относят к тяжелым металлам. Они имеют атомную массу больше 50 а.е. Как не странно именно эти элементы обладают большой токсичностью даже при малой кумуляции для живых организмов. V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo. Pb, Hg, U, Th. все они входят в эту категорию. Даже при их токсичности, многие из них являются важными микроэлементами, кроме кадмия, ртути, свинца и висмута для которых не нашли биологическую роль.

Откуда же поступают тяжелые металлы в нашу среду обитания? Причины присутствия таких элементов могут быть сточные воды с разных промышленных объектов занимающийся черной и цветной металлургией, машиностроением, гальванизацией. Некоторые химические элементы входят в состав пестицидов и удобрений и таким образом могут быть источником загрязнения местных прудов.

Многие тяжелые металлы, такие как железо, медь, цинк, молибден, участвуют в биологических процессах и в определенных количествах являются необходимыми для функционирования растений, животных и человека микроэлементами. С другой стороны, тяжёлые металлы и их соединения могут оказывать вредное воздействие на организм человека, способны накапливаться в тканях, вызывая ряд заболеваний. Не имеющие полезной роли в биологических процессах металлы, такие как свинец и ртуть, определяются как токсичные металлы. Некоторые элементы, такие как ванадий или кадмий, обычно имеющие токсичное влияние на живые организмы, могут быть полезны для некоторых видов.

Ртуть, свинец, кадмий входят в общий перечень наиболее важных загрязняющих веществ окружающей среды, согласованный странами, входящими в ООН.

Кадмий является относительно редким и рассеянным элементом, в природе концентрируется в минералах цинка. Поступает в природные воды в результате смыва почв, выветривания полиметаллических и медных руд, и со сточными водами рудообогатительных, металлургических и химических производств. Кадмий в норме присутствует в организме человека в микроскопических количествах. Загрязнение кадмием может возникнуть во время выщелачивания почв, при разложения разных микроорганизмов которые его накапливают, а также из-за миграции из медных и полиметаллических руд.

Уровень кадмия в чистых реках и озерах колеблется на уровне меньше микрограмма на литр, в загрязнённых водах уровень этого элемента доходит до нескольких микрограммов на литр.

Некоторые исследователи считают, что кадмий, в малых количествах, может быть важным для нормального развития животных и человека. Повышенные концентрации кадмия очень опасных для живых организмов. При накоплении организмом соединений кадмия поражается нервная система, нарушается фосфорно-кальциевый обмен. Хроническое отравление приводит к анемии и разрушению костей. Хроническое отравление кадмием разрушает печень и почки, приводя к сильнейшему нарушению функции почек. Избыток кадмия нарушает метаболизм металлов, нарушает синтез ДНК.

Загрязнены мышьяком в основном районы, которые находятся близко к минеральным рудников с высоким содержанием этого элемента (вольфрамовые, медно-кобальтовые, полиметаллические руды). Очень малое количество мышьяка может произойти при разложении живых организмов. Благодаря водным организмам, он может усваиваться этими. Интенсивное усваивание мышьяка из раствора замечается в период бурного развития планктона.

В реках, как правило, содержание мышьяка очень низкое (на уровне мкг/л), а в морях - в среднем 3 мкг/л. Некоторые минеральные воды могут содержать большие количества мышьяка (до несколько миллиграммов на литр).

Больше всего мышьяка могут, содержат подземные водохранилища - до несколько десяток миллиграммов на литр.

Его соединения очень токсичны для всех животных и для человека. В больших количествах, нарушаются процессы окисления и транспорт кислорода к клеткам.

Мышьяк относится к числу наиболее сильных и опасных ядов. В присутствии кислорода быстро образует очень ядовитый мышьяковистый ангидрид. При пероральном отравлении высокая концентрация мышьяка наблюдается в желудке, кишечнике, печени, почках и поджелудочной железе, при хроническом отравлении постепенно накапливается в коже, волосах и ногтях. Процессе отравления приводит к периферическойнейропатии и параличу конечностей. Мышьяк считается канцерогенным для человека.

Ртуть переносится в океан с материковым стоком (прежде всего — из стока промышленных вод) и через атмосферу. В составе атмосферной пыли содержится около 12 тыс. т. ртути. До трети от этого количества образуется при выветривании пород, содержащих ртуть. Ртуть антропогенного происхождения попадает в атмосферу в первую очередь при сжигании угля на электростанциях. Около половины годового промышленного производства этого металла (910 тыс. тонн) попадает в океан. Некоторые бактерии переводят токсичные хлориды ртутив ещё более токсичную метилртуть. Соединения ртути накапливается многими морскими и пресноводными организмами в концентрациях, во много раз превышающих содержание её в воде.

Употребление в пищу рыбы и морепродуктов неоднократно приводило к ртутному отравлению населения. Так, к 1977 году насчитывалось 2800 жертв болезни Минамата, причиной которой послужило поступление в залив со сточными водами отходов предприятий, на которых в качестве катализатора использовалась хлористая ртуть. Соединения ртути высокотоксичны для человека.

Ртуть поступает в окружающую среду при производстве и использовании ртути в химической и электрохимической промышленности. Металлическая ртуть попадает в комнатный воздух из разбитых градусников и люминесцентных ламп.

Ртуть токсична в любой своей форме. Ртуть в природных условиях довольно быстро превращается в летучее токсическое соединение — хлорид метилртути. В организме ионы метилртути быстро попадают в эритроциты, печень и почки, оседают в мозге, вызывая серьезные необратимые кумулятивные нарушения ЦНС. Это приводит, к конце концов, к общему и церебральному параличу, деформации конечностей, особенно пальцев, затрудненному глотанию, конвульсиям и смерти.

Свинец— рассеянный элемент, содержащийся во всех компонентах окружающей среды: в горных породах, почвах, природных водах, атмосфере, живых организмах. Помимо того, свинец поступает в окружающую среду в результате хозяйственной деятельности человека. До запрета на использование в топливе в качестве антидетонатора тетраэтилсвинца в начале XXI века, выхлопные газы транспорта были заметным источником свинца в атмосфере. С континентальной пылью в атмосфере океан получает 20-30 тысяч тонн свинца в год.

В организм человека свинец попадает как с пищей и водой, так и из воздуха. Свинец может выводиться из организма, однако малая скорость выведения может приводить к накоплению в костях, печени и почках.

Свинец известен как токсическое вещество почти 5 тысяч лет среди греческих и арабских ученыхХроническое отравление свинцом постепенно приводит к нарушениям функций почек, нервной системы, анемии. Токсичность свинца увеличивается при недостатке в организме кальция и железа.

Наиболее восприимчива к свинцу гематопоэтическая система, особенно у детей. Для женщин свинец представляет особую опасность, так как этот элемент обладает способностью проникать через плаценту и накапливаться в грудном молоке. Свинец вызывает обширные патологические изменения в нервной системе, крови, сосудах, активно влияет на синтез белка, энергетический обмен клетки и ее генетический аппарат. Он угнетает окисление жирных кислот, нарушает белковый, липидный и углеводный обмены, способен занимать кальций в костях. Свинец нарушает деятельность сердечно-сосудистой системы, вызывая изменения электрической и механической активности сердечной мышцы. Воздействие свинца нарушает женскую и мужскую репродуктивную систему.

Исследователи изучили процесс накопления свинца в почве. Из атмосферы в почву свинец попадает чаще всего в форме оксидов, где постепенно растворяется, переходя в гидроксиды, карбонаты или форму катионов.

Установлено, что в слое глубиной до 5 см свинец накапливается более интенсивно, чем медь, молибден, железо, никель и хром. И это плохо, поскольку из всего этого ряда свинец – самый ядовитый. Отмечена интересная особенность растений – различных своих частях накоплять различное количество свинца. Например, салат и сельдерей в листьях накапливают значительно больше свинца, чем в корнях, а морковь и одуванчик – наоборот.

Отмечено активное накопление свинца в капусте и корнеплодах, причем именно в тех, которые повсеместно употребляются в пищу; например, отмечают большое содержание свинца в картофеле.

Но рекордсменом среди растений по стойкости к соединениям свинца являются дрожжи. Биологи утверждают, что дрожжи могут поглощать огромные количества свинца в виде уксуснокислой соли – до 15 тысяч частей на миллион частей веса дрожжей – без всякого угнетения обмена веществ. Так может быть дрожжи помогут в борьбе с загрязнением солями свинца? Хлористый и йодистый свинец угнетают брожение. Но - нет, дрожжи – рекордсмен по «свинцовостойкости». Этим замечательным свойством обладают не все растения.

Тяжелые металлы относятся к приоритетным загрязняющим веществам, контроль за содержанием которых является обязательным для объектов окружающей среды (вода, воздух, почва, отходы), промышленной продукции, пищевых продуктов и сырья.

Заведующая санитарно-гигиенической лабораторией филиала Центра гигиены и эпидемиологии в Республике Марий Эл в Советском районе

Читайте также: