Стойкость металлов к кислотам

Обновлено: 28.09.2024

Поверхностное разрушение металла под действием внешней среды называется коррозией.

Чистое железо и низколегированные стали неустойчивы против коррозии в атмосфере, в воде и многих других средах, так как образующаяся пленка окислов недостаточно плотна и не изолирует металл от химического воздействия среды. Некоторые элементы повышают устойчивость стали против коррозии, и таким образом можно подобрать сталь, практически не подвергающуюся разрушению в данной среде.

При введении таких легирующих элементов происходит скачкообразное повышение коррозионной стойкости. К примеру, введение в сталь более 12% хрома (Cr) делает ее коррозионностойкой в атмосфере и во многих других промышленных средах. Стали содержащие менее 12% Cr, практически в столь же большой степени подвержены коррозии, как и железо. Стали содержащие 12-14% Cr, ведут себя как благородные металлы: обладая положительным электрохимическим потенциалом, они не ржавеют и не окисляются на воздухе, в воде, в ряде кислот, солей и щелочей.

Хромистые нержавеющие стали

Хромистые нержавеющие стали применяют трех типов: 13, 17 и 27% Cr в зависимости от требований имеют различное содержание углерода.

Стали с более 17% Cr имеют иногда небольшие добавки титана и никеля, которые вводят для улучшения механических свойств. Помимо этого стали с таким содержанием хрома обладают высокой коррозионной стойкостью вплоть до температуры 900 ºС.

Стали с содержанием хрома 13% более распространенные и наименее дорогостоящие, их применяют для бытовых назначений и в технике. Эти стали хорошо поддаются сварке. Сплавы с низким содержанием углерода пластичны, с высоким - обладают высокой твердостью и повышенной прочностью, из них изготавливают детали повышенной прочности и износоустойчивости (хирургический инструмент, подшипники, пружины и другие детали, работающие в активной коррозионной среде).

Аустенитные стали

Введение достаточного количества никеля (Ni) в хромистую сталь обеспечивает лучшую механическую прочность, делает сталь более коррозионностойкой и не хладноломкой. Нержавеющие стали с 18% Cr и 10% Ni получили наиболее широкое распространение в машиностроении.

Для того, чтобы повысить сопротивление коррозии в кислотах в сталь вводят молибден и медь, особенно молибден с медью при одновременном увеличении содержания никеля. При необходимости, чтобы иметь еще и высокие механические свойства вводят титан и алюминий.

Более высокую коррозионную стойкость имеют никеливые сплавы типа хастеллой 80% Ni и 20% Mo (сплавы НИМО) с дополнительным легированием.

Титан

Титан (Ti) имеет высокую удельную прочность, благодаря чему сплавы на его основе получили широкое применение в технике, особенно в тех областях, где важное значение имеет масса (авиация, ракетостроение и др.). Титан обладает высокой коррозионной стойкостью в большом количестве агрессивных сред, превосходя зачастую в этом отношении нержавеющую сталь. Поэтому проще перечислить среды, в которых титан растворяется: например, плавиковая, соляная, серная, ортофосфорная, щавелевая и уксусная кислоты.

Высокая коррозионная стойкость титана обусловлена образованием на поверхности плотной защитной оксидной пленки. Если эта пленка не растворяется в окружающей среде, то можно считать, что титан в ней абсолютно стоек. Например, морская вода за 4000 лет растворит слой титана толщиной 30 - 40 микрон (1 микрон равен 10-4 см). Если же оксидная пленка растворима в данной среде, то применение в ней титана недопустимо.

Тугоплавкие металлы

К тугоплавким относят металлы: ванадий, вольфрам, гафний, молибден, ниобий, тантал, технеций, титан, хром, цирконий, - температура плавления которых выше температуры плавления железа (1539 ºС), кроме металлов платиновой и урановой групп и некоторых редкоземельных.

Следует отметить, что при высоких температурах все тугоплавкие металлы являются кислотостойкими. При этом наиболее сильно выделяется тантал. Ниобий и молибден по коррозионной стойкости превосходят сплавы на основе железа или никеля, однако уступают танталу.

Применение таких материалов целесообразно в средах, в которых другие материалы не обладают коррозионной стойкостью. К таким средам относятся неорганические крепкие кислоты при повышенных температурах, а так же некоторые промышленные среды.

Несмотря на высокую стоимость металлов по сравнению с такими коррозионностойкимиматериалами, как высоколегированная нержавеющая сталь или хастеллой, применение сплавов тугоплавких металлов оправдано, так как вследствие высокой стойкости возможно эксплуатировать химические установки практически весь срок без замены приборов.Коррозионная стойкость нержавеющих сталей в некоторых кислотах.Прии комнатной температуре высокой стойкостью в этой кислоте обладают все

Коррозионная стойкость нержавеющих сталей в некоторых кислотах

Серная кислота

При 70ºС хромоникелевые стали нестойки даже в кислотах слабой концентрации, но примерно до 5% H2SO4 могут работать стали с добавлением молибдена и меди.

Однако последние разрушаются в кипящей серной кислоте до концентрации 30%. В этих случаях следует применять сплавы типа хастеллой, а при концентрации выше 30% в кипящей серной кислоте могут работать лишь тугоплавкие металлы.

Фосфорная кислота

При комнатной температуре любой концентрации устойчивы аустенитные стали, хромистые нет. В горячей кислоте устойчивы стали с добавками молибдена и меди до концентрации 25%, в кипящей - хастеллой до 50%, а при более высокой устойчивы лишь тугоплавкие металлы.

В соляной кислоте устойчивы стали с добавлением молибдена или меди при комнатной температуре и до концентрации 5%.

Коррозионная стойкость металлов и сплавов при нормальных условиях

Данная таблица коррозионной стойкости предназначена для составления общего представления о том, как различные металлы и сплавы реагируют с определенными средами.
Рекомендации не являются абсолютными, поскольку концентрация среды, ее температура, давление и другие параметры могут влиять на применимость конкретного металла и сплава.
На выбор металла или сплава также могут оказывать влияние экономические соображения.

Условные обозначения:

А - обычно не корродирует,
В - коррозия от минимальной до незначительной,
С - не подходит

Коррозия металлов в кислотах

Коррозия металла в кислотах – это его разрушение при взаимодействии с концентрированными или разведенными кислотами. Часто такие разрушения встречаются на химических производствах и других сферах деятельности человека. Слабые кислотные растворы могут создавать даже некоторые продукты питания, и непокрытый металл, соприкасающийся с ними, будет коррозировать. То, как себя поведет металлический предмет при контакте с кислотой, зависит от его способности пассивироваться. Процесс коррозии металлов в кислотах проходит с выделением водорода.

Рассмотрим более подробно случаи коррозии металла в кислотах разного происхождения.

Коррозия металлов в соляной кислоте

Соляная кислота является очень агрессивной по отношению к металлам. В большей степени это обуславливается содержанием в ней ионов Cl - . Даже коррозионно-стойкие стали подвергаются разрушению, когда концентрация кислоты выше среднего. Если же раствор достаточно сильно разбавлен, такие стали коррозии не подвергаются.

Коррозия никеля в серной кислоте не протекает даже в случаях, когда достигается температура кипения. В присутствии трехвалентного железа, хлоридов, других окислителей никель и его сплавы начинают разрушаться.

Низколегированная аустенитная сталь при комнатной температуре и концентрации соляной кислоты в 0,2 – 1% подвергается коррозии со скоростью 24 г/(м 2 •сут).

Коррозия металлов в органических кислотах

Самой сильной среди органических кислот является уксусная. В яблочной, бензойной, пикриновой, олеиновой, винной, стеариновой кислотах даже при больших температурах (выше 100°С) коррозионно-стойкие стали отличаются высокой устойчивостью. При контакте металлов с муравьиной кислотой образуются питтинги (особенно при увеличении температуры). Глубина их даже больше, чем в уксусной кислоте.

В органических кислотах высокой устойчивостью обладает алюминий, т.к. на его поверхности присутствует защитная пленка труднорастворимых окислов.

Щавелевая, себациновая, лимонная и молочная кислоты вызывают коррозию сталей только при больших концентрациях. В них устойчивы хромистые стали с добавками молибдена.

Коррозия металлов в азотной кислоте

Азотная кислота обладает агрессивным воздействием по отношению ко многим металлам. Малоуглеродистые стали не обладают достаточной устойчивостью в растворах азотной кислоты. Кроме того, при повышении концентрации HNO3 до 35 – 40% (при данных концентрациях сталь переходит в пассивное состояние) коррозия малоуглеродистых сталей в азотной кислоте увеличивается. При концентрации азотной кислоты близкой к 100% пассивное состояние нарушается. Азотная кислота является окислителем. При коррозии железа катодными деполяризаторами являются молекулы азотной кислоты и нитрат-ионы. Устойчивость в азотной кислоте хромистых сталей повышается, если в их состав вводить никель и молибден. Коррозионное разрушение сталей в азотной кислоте происходит по границам зерен. На алюминий слабое влияние оказывают пары азотной кислоты или растворы с концентрацией более 80%. При нормальной температуре алюминий обладает высокой коррозионной стойкостью в азотной кислоте. Скорость коррозии алюминия в азотной кислоте возрастает при постоянном перемешивании и присутствии в растворе хлорид-ионов.

Коррозия металлов в серной кислоте

При концентрации серной кислоты около 50 – 55% поверхность железа переходит в пассивное состояние. Далее с повышением температуры и концентрации серной кислоты поверхность железа становится активной (наблюдается коррозия железа в серной кислоте).

В растворах серной кислоты, как и в других кислотах, на скорость коррозии железа большое влияние оказывает природа анионов. Это связано с торможением катодного и анодного процессов и их адсорбцией на поверхности металла.

Я.М. Колотыркин развил представления, что на анодное растворение железа оказывают влияние анионы. Это связано с образование комплекса:

Из вышеперечисленных уравнений понятно, что скорость анодного процесса возрастает с увеличением концентрации ионов HSO4 - и SO4 2- . С поверхности железа сульфат ионы вытесняются хлорид ионами, но до определенной концентрации ионов хлора, скорость протекания анодного процесса замедляется.

В 95 – 98% серной кислоте при нормальной температуре хорошей устойчивостью обладают хромистые стали (с содержанием хрома около 17%) с небольшой добавкой молибдена или без него. В таких условиях (при большой концентрации серной кислоты) стоек также алюминий и углеродистые стали. Чистый алюминий (99,5%) более устойчив в серной кислоте, чем его сплавы, в состав которых не входит медь. Скорость коррозии алюминия в серной кислоте (и его сплавов) при повышении температуры с 20°С до 98°С увеличивается с 8 до 24 г/(м 2 •сут). Коррозионно-стойкие стали в 5-ти или 20-% растворе при температуре кипения серной кислоты устойчивы только в присутствии ингибиторов коррозии.

При обычной температуре в серной кислоте коррозия меди практически не наблюдается. А при повышении температуры до 100°С процесс разрушения интенсифицируется. В 25% растворе серной кислоты, повышенном давлении и температуре близкой к 200°С медь быстро разрушается.

Латунь не обладает коррозионной стойкостью в растворах серной кислоты любых концентраций даже при комнатной температуре. Устойчивость латуней к разрушению в серной кислоте можно только повысить введением в раствор 30% соли CuSO4•5H2O.

Коррозия металлов в фосфорной кислоте

Наибольшей стойкостью к коррозии в фосфорной кислоте отличаются молибденовые стали. Алюминий и его сплавы (в состав которых не входит медь, магний) устойчивы в фосфорной кислоте. При обычной температуре не поддаются также разрушениям хромоникелевые аустенитные стали (в растворах фосфорной кислоты любой концентрации). В концентрированной технической фосфорной кислоте при температуре не выше 50°С стойки малоуглеродистые стали. Если сталь с 17% хрома поместить в раствор фосфорной кислоты, концентрацией от 1 до 10%, то она будет обладать высокой устойчивостью даже при температуре кипения.

Медь практически не подвергается коррозии в фосфорной кислоте при температуре от 20 до 95°С. Но если в систему вводить окислитель и повышать температуру – скорость коррозии меди в фосфорной кислоте значительно увеличивается. Бронзы и латуни в фосфорной кислоте ведут себя аналогично.

Коррозия металлов во фтористоводородной кислоте

Чугун, малоуглеродистая сталь и железо во фтористоводородной кислоте быстро разрушаются. В 10-% фтористоводородной кислоте при нормальной температуре обладают хорошей устойчивостью хромистые стали (с содержанием хрома 17%). В 20-% кислоте при температуре до 50°С устойчивы аустенитные высоколегированные стали. Латуни не разрушаются в 40-60-% фтористоводородной кислоте при 20°С. Магниевые сплавы устойчивы при температурах до 65°С в 45-% растворе.

Химическая стойкость металлов и сплавов.

Ржавчина покрывает металл рыхлым слоем, поэтому не предохраняет его от дальнейшей коррозии вплоть до полного разрушения. Растворы солей, как правило, вызывают более сильную коррозию, чем чистая вода. Небольшие количества NH 4 C l, присутствующие в воздухе лабораторий, в значительной степени ускоряют коррозию. Неустойчивы к действию большинства разбавленных кислот. В разбавленных растворах НС l растворение железа идет интенсивно. Азотная кислота с концентрацией выше 50% пассивирует металл, однако защитный слой оксида хрупок, и пассивное состояние легко нарушается. Железо вполне устойчиво к действию дымящей HNO 3 . Серная кислота пассивирует Железо при концентрации выше 70%, при нагревании стали марки СтЗ в 90%-й H 2 SO 4 при 40 °С скорость коррозии составляет 0,14 мм/год; при 90 °С скорость коррозии увеличивается в 10 раз; 50%-я H 2 SO 4 очень активно растворяет железо. Фосфорная кислота в отношении железа не агрессивна. В безводных органических растворителях Железо практически не корродирует, устойчиво к действию растворов щелочей, водного аммиака, сухих С l 2 и В r 2 . Хорошими ингибиторами коррозии являются хромовокислый натрий (в виде добавки к воде в количестве 0,1%), гексаметафосфат натрия. Ион Сl - , напротив, способствует снятию с металла защитной пленки и усилению коррозии. Технически чистое Железо с массовым содержанием примесей около 0,16% обладает высокой коррозионной стойкостью.

Низколегированные и среднелегирова н ные стали. Подобны простым углеродистым сталям, но небольшие легирующие добавки меди, никеля или хрома могут повышать устойчивость к атмосферной и водной коррозии. С повышением количества хрома повышается стойкость к окислению. Однако стали с содержанием хрома менее 12% в основном не рекомендуется использовать при контакте с химически активными средами.

Стали с содержанием хрома 12—18% устойчивы при контакте с пищевыми продуктами, большинством органических кислот, азотной кислотой, сильными щелочами, большинством растворов солей. скорость коррозии в 25%-й муравьиной кислоте составляет около 2 мм/год. Эта группа сталей неустойчива к действию сильных восстановителей, соляной кислоты, хлоридов и галогенов.

Нержавеющие стали с содержанием 17—19% хрома и 8—11% никеля более устойчивы по сравнению с обычными высокохромистыми сталями. Они исключительно стойки в окислительных средах, в том числе кислых (азотнокислой, хромовокислой и т. д.) и сильно щелочных. Добавка никеля повышает устойчивость к некоторым неокислительным средам. Они превосходно устойчивы к действию атмосферных факторов. Однако в кислых восстановительных средах, и особенно в кислых, содержащих ионы галогенов, пассивирующий слой оксидов разрушается и нержавеющие стали теряют свою кислотоустойчивость.

Нержавеющие стали с добавкой 1—4% молибдена. Их общая коррозионная стойкость выше, чем у хромоникелевых сталей. Введение молибдена повышает устойчивость к серной, сернистой, органическим кислотам, галогенидам и морской воде.

Железокремнистое литье (сплавы железа с 13—17% Si , ферросилиций). Коррозионная стойкость определяется образованием пленки Si 02, поэтому окислительные среды (азотная, серная, хромовая кислоты) лишь усиливают защитные свойства пленки. Соляная кислота вызывает коррозию ферросилиция.

Устойчив к атмосферным факторам, в том числе к атмосфере химических лабораторий, воде, даже соленой, нейтральным и щелочным солям — хлоридам, карбонатам, сульфатам, нитратам, ацетатам. Достаточно устойчив к органическим кислотам, если только они не горячие и не насыщены кислородом. Устойчив к кипящим концентрированным щелочам (КОН до 60%). Подвержен воздействию окислительных или восстановительных сред, окислительных солей (кислых или щелочных), окислительных кислот, например азотной, влажных газообразных галогенов, оксидов азота, диоксида серы.

Монельметалл (70% Ni , 30% Си) по сравнению с никелем более устойчив к кислотам, хотя и не выдерживает действия кислот с сильными окислительными свойствами. Обладает сравнительно хорошей устойчивостью к органическим кислотам, к большинству растворов солей. Не подвержен атмосферной и водной коррозии, устойчив к действию фтора. Монельметалл подобно платине выдерживает HF в концентрации 40% при кипении.

Благодаря защитной окисной пленке стойки к окислительным средам, в том числе к фтору, уксусной кислоте и большинству органических жидкостей, к атмосферной коррозии. Алюминий с содержанием примесей не более 0,5% обладает высокой стойкостью к действию Н2О2. Сильные восстановительные среды и едкие щелочи разрушают алюминий. Алюминий устойчив к действию разбавленной серной кислоты и олеума, но не стоек к серной кислоте средней концентрации. Такая же картина и в отношении горячей азотной кислоты. Соляная кислота разрушает защитную.пленку. При соприкосновении с ртутью или ее солями Алюминий быстро разрушается. Чем чище алюминий, тем меньше он подвержен коррозии. Дюралюминий (сплав с 3,5—5,5% Си, 0,5% Mg и 0,5—1% Мп) менее коррозионностоек. Силумин (11 — 14% Si ) имеет высокие антикоррозионные свойства.

Отличаются стойкостью к атмосферной и водной коррозии, включая морскую воду. Устойчивы к растворам едких щелочей при комнатной температуре, горячим разбавленным щелочам, сухому NH 3 , нейтральным солям, сухим газам и к большинству органических растворителей. Сплавы с высоким содержанием меди (бронзы) устойчивы ко многим кислотам, включая горячую разбавленную и холодную концентрированную H 2 SO 4 . как разбавленную, так и концентрированную НСl без нагревания. Контакт с органическими кислотами в отсутствие кислорода не вызывает разрушения меди. Медь не поддается воздействию F 2 и сухого HF . Медь и ее Сплавы подвержены действию окисляющих кислот и неокисляющих кислот в присутствии кислорода, влажного NH 3, некоторых кислых солей, таких влажных газов, как ацетилен, Cl 2 . SO 2 , СО2 . Медь легко амальгамируется. Цинк-медные Сплавы (латуни) в основном не отличаются высокой коррозийной стойкостью.

Устойчив в сухом и влажном воздухе, в чистой воде. В воде с содержанием СО2, NH 3 или солей подвержен коррозии. Сильно корродирует в атмосфере лаборатории. щелочи растворяют цинк, в HNO 3 он растворяется быстро, в НС l и H 2 SO 4 — тем медленнее, чем чище цинк. Не взаимодействует с органическими растворителями, нефтепродуктами, однако при длительном контакте, например с крекинг-бензином, происходит коррозия за счет постепенного повышения кислотности бензина при его окислении воздухом.

Отличается устойчивостью к атмосферной и водной коррозии, устойчив при контакте с почвой, хотя заметно растворяется в воде, содержащей высокие концентрации СО2 , за счет образования растворимого гидрокарбоната свинца. В основном обладает хорошей стойкостью по отношению к нейтральным растворам, удовлетворительной к щелочным, практически стоек к хромовой, серной, сернистой и фосфорной кислотам. В H 2 SO 4 концентрации 98% и выше при комнатной температуре свинец растворяется очень медленно; 48%-я HF вызывает коррозию при нагревании; заметно действуют на свинец НС l , HNO 3 , а также уксусная и муравьиная кислоты. При взаимодействии с НС l свинец покрывается слоем труднорастворимого Р b С l 2 , который препятствует дальнейшему растворению металла. Азотнокислый свинец, образующийся при действии азотной кислоты, нерастворим в концентрированной HNO 3 , но растворим в разбавленной, поэтому разбавленная HNO 3 более агрессивна по отношению к свинцу, чем концентрированная. Растворы нитратов агрессивны по отношению к свинцу, а хлориды, сульфаты и карбонаты — нет.

Обладает превосходной коррозионной стойкостью. Устойчив к действию FeCl 3 , растворов солей, в том числе сильных окислителей. Легко подвергается действию более концентрированных минеральных кислот, но выдерживает кипящую HNO 3 до концентрации 65% и H 2 SO 4 и НС l ниже 5%. Проявляет хорошую устойчивость к органическим кислотам, щелочам и щелочным солям.

Используется при необходимости высокой химической стойкости к большинству кислот и щелочей. Устойчив при контакте с Н2О2. Подвержен действию некоторых хлоридов, кипящей концентрированной НСl, царской водки, дымящей азотной и горячей концентрированной серной кислот. По отношению к соляной и серной кислоте цирконий устойчивее титана, а по отношению к влажному хлору и царской водке — наоборот. Практически важное свойство металлического циркония — гидрофобность его поверхности, он не смачивается водой и водными растворами.

Отличается превосходной химической стойкостью, подобно стеклу, что обусловлено наличием плотной оксидной пленки. При температуре ниже 150 °С на него практически не действуют Cl 2 , В r 2 , I 2 . Устойчив к большинству кислот при комнатной температуре, в том числе к азотной кислоте, царской водке. На него почти не оказывают действия Растворы щелочей. На тантал действует HF и горя чие концентрированные Растворы щелочей, он растворяется в расплавах щелочей.

Кислотостойкость некоторых сплавов к действию различных кислот

Серная кислота.При комнатной температуре высокой стойкостью в этой кислоте обладают все аустенитные нержавеющие стали (хромистые типа X17 нестойки). Примерно при 70 °С аустенитные хромоникелевые стали нестойки даже в кислотах слабой концентрации, но примерно до 5 % H24 могут работать аустенитные стали с добавлением молибдена и меди. В кипящей серной кислоте до концентрации примерно 30 % все стали нестойки. В этих случаях следует применять сплавы типа хастеллой, а при концентрации от 30 % до 60-80 % в кипящей серной кислоте могут работать лишь тугоплавкие металлы (рисунок 11.2).

Фосфорная кислота. При комнатной температуре любой концент­рации аустенитные стали устойчивы, хромистые нет. Исключительно высокой стойкостью отличаются также ниобий и его сплавы с молибденом, алюминием и никелем. В горячей (70 °С) фосфорной кислоте устойчивы лишь сталь ЭИ943 (до концентрации 25 %), в кипящей – лишь хастеллой (до концентрации 20–50 %), а при более высокой устойчивы лишь тугоплавкие металлы. Химический состав некоторых хастеллоев приведен в таблице 11.3.

Соляная кислота.При комнатной температуре устойчива только сталь ЭИ943, но лишь в разбавленной кислоте (5 %). В кипящей кислоте концентрацией до 20 % может работать сплав хастеллой и до любой концентрации - тугоплавкие металлы. Все сплавы хастеллой содержат 5-30% Мо и 60-80% Ni, дополнительно легированы кобальтом, иногда и другими элементами. Эти сплавы должны иметь минимальное содержание углерода, так как он вызывает межкристал­литную коррозию и в этих сплавах, причем других средств борьбы с коррози­ей в этих сплавах, кроме снижения в них содержания углерода, нет.

Таблица 11.3 Химический состав сплавов типа хастеллой, %

Сплав С Si Mn Мо Cr W V Со Fe
не более
Хастеллой В 0,05 1,0 1,0 26-30 1,0 0,35 2,5 4-6
ЭП496 (Н70МФ) 0,05 0,2 0,5 25-29 ≤ 0,3 1,4-1,7 ≤ 4,0
Хастеллой С 0,08 1,0 1,0 15-17 14,5-16,5 3-4 0,35 2,5 4-7
ЭП5б7 (ХН65МВ) 0,03 0,15 1,0 15-17 14,5-16,5 3,0-4,5 ≤ 1,0
Примечание. Основа - никель.




Рисунок 11.1– Изокоры (0,1 мм/год) кислотостойких сплавов (1 – сталь марки 0Х23Н28М3Д3Т; 2 – 0Х21Н6М2Т; 3 – 0Х18Н10Т; 4 – Х18Н12М2Т; 5 – хастелой С; 6 – хастелой В) в зависимости от температуры и концентрации кислоты. Штриховая линия соответствует температуре кипения кислоты (а – НNО3; б – H2SO4; в – HCl; г – Н3РО4).

Кроме высоких коррозионных свойств, сплавы хастеллой обладают и высокими механическими свойствами (> 900МПа, σ0,2 > 400 МПа) при вы­сокой пластичности, что делает их ценным конструкционным материалом. Еще более высокие механические свойства (σВ ≈ 1200МПа) можно получить тер­мической обработкой, аналогично той, которую применяют для никелевых жаропрочных сплавов; закалка + старение при 800 °С. Однако максимальное упрочнение соответствует минимуму коррозионной стойкости, поэтому упроч­няющая термическая обработка рекомендуется не всегда.

Кислотостойкость конструкционных сплавов в зависимости от температуры и кон­центрации кислоты сравнивают по кри­вым равной скорости коррозии (изо­корам, рисунок 11.1).

Наиболее стойки в неокислительных кислотах, включая горячие сернокислые и солянокислые растворы, сплавы титана с высоким содержанием молибдена (30-35 %). Они разрушаются только в очень концентрированных горячих растворах этих кислот. В азотной и окислительных кислотах данный сплав стоек при низких температурах и концентрациях, при повышенных температурах его применение исключается. В этих условиях более стойкими оказываются сплавы, содержащие не более 5 % молибдена.

Кислотостойкость тугоплавких металлов. Несмотря на малую стойкость против окисления (газовой коррозии) при высоких температурах все тугоплавкие металлы являются чрезвычайно кислотостойкими. В кипящей серной кислоте – одной из наиболее агрессивных сред – кис­лотостойкая хромоникельмолибденомедистая сталь может работать при кон­центрации Н24 до 5 %, сплав хастеллой (80 % Ni, 20 % Мо) – при концентрации до 20 %, а тантал не подвергается коррозии в кипящей серной кислоте при концентрации до 80 % (рисунок 11.2).

Из тугоплавких материалов тантал является наиболее кис­лотостойким. Ниобий по кислотостойкости превосходит сплавы на основах железа и никеля, однако уступает танталу. Использование ниобия вместо тантала представляет интерес из-за более низкой (по сравне-нию с танталом) его стоимости. Легирование ниобия позволяет изыскать технологические сплавы, по коррозионной стойкости приближающиеся к танталу.

Добавка к ниобию молибдена и тантала улучшает коррозионную стой­кость. Так как при высоком содержании молибдена. а его концентрация должна быть достаточно высока, технологическая пластич­ность падает, то перспективным является легирование ниобия танталом. Вве­дение тантала в ниобий резко повышает стойкость сплава в соляной, фосфор­ной и в кипящей серной кислотах (рисунок 11.3). Сплав Nb+25 % Та по коррозион­ной стойкости значительно превосходит чистый ниобий и приближается к тан­талу. Поскольку титан при содержании его до 10 % не ухудшает коррозионной стойкости ниобия, то рекомендуется применять тройной сплав 65 % Nb + 25 % Та + 10 % Ti. Титан также вводят для уменьшения стоимости, снижения плотности и улучшения технологичности.



Рисунок 11.2 – Скорость коррозии различных металлов в кипящей серной кислоте Рисунок 11.3 – Влияние легирующих эле-ментов на коррозионную стойкость ниобия в кипящей 40 %-ной серной кислоте

По кислотостойкости мо­либден и вольфрам в условиях экс­плуатации в кипящих неорганических кислотах значительно превосходят ниобий и мало уступают танталу. При их стоимости, существенно мень­шей по сравнению с танталом, они явились бы весьма перспективными материалами для химического маши­ностроения. Однако технологические трудности изготовления химической аппаратуры ограничивают применение молибдена и вольфрама. Возможно изготовление аппаратуры не из ли­стов чистого молибдена, а из биме­талла: сталь + молибден (молибден – покрытие). Такой биметалличе­ский лист не только в два-три раза дешевле молибденового листа, но и обладает высокой пластичностью.

Тугоплавкие сплавы, в первую очередь тантал, сплав нио­бия с танталом и в отдельных случаях молибден, являются са­мыми кислотостойкими металлическими материалами. Их при­менение особенно целесообразно в средах, в которых другие материалы не обладают коррозионной стойкостью. К таким средам относятся неорганические крепкие кислоты при повышен­ных температурах, а также некоторые промышленные среды. Несмотря на высокую стоимость тугоплавких материалов по сравнению с такими кислотостойкими материалами, как высоколегированная нержавеющая сталь или сплав хастеллой, применение сплавов Ta–Nb, экономически оправданно, так как вследствие высокой коррозионной стойкости можно эксплуати­ровать химическую аппаратуру весь срок без замены облицовки. Следует иметь в виду, что корро­зионная стойкость в крепких кисло­тах определяется в основном химиче­ским составом сплава и мало зависит от структуры и способа производ­ства.

Читайте также: